blob: 748fc00c5e19c3f29c326bb107bf898f0ed8ae48 [file] [log] [blame]
Markus Stockhausen8a28a1a2015-02-22 10:00:05 +01001/*
2 * Glue code for AES implementation for SPE instructions (PPC)
3 *
4 * Based on generic implementation. The assembler module takes care
5 * about the SPE registers so it can run from interrupt context.
6 *
7 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 */
15
16#include <crypto/aes.h>
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/types.h>
20#include <linux/errno.h>
21#include <linux/crypto.h>
22#include <asm/byteorder.h>
23#include <asm/switch_to.h>
24#include <crypto/algapi.h>
Stephan Mueller49abc0d2016-02-17 07:00:01 +010025#include <crypto/xts.h>
Markus Stockhausen8a28a1a2015-02-22 10:00:05 +010026
27/*
28 * MAX_BYTES defines the number of bytes that are allowed to be processed
29 * between preempt_disable() and preempt_enable(). e500 cores can issue two
30 * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
31 * bit unit (SU2). One of these can be a memory access that is executed via
32 * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
33 * 16 byte block block or 25 cycles per byte. Thus 768 bytes of input data
34 * will need an estimated maximum of 20,000 cycles. Headroom for cache misses
35 * included. Even with the low end model clocked at 667 MHz this equals to a
Adam Buchbinder446957b2016-02-24 10:51:11 -080036 * critical time window of less than 30us. The value has been chosen to
Markus Stockhausen8a28a1a2015-02-22 10:00:05 +010037 * process a 512 byte disk block in one or a large 1400 bytes IPsec network
38 * packet in two runs.
39 *
40 */
41#define MAX_BYTES 768
42
43struct ppc_aes_ctx {
44 u32 key_enc[AES_MAX_KEYLENGTH_U32];
45 u32 key_dec[AES_MAX_KEYLENGTH_U32];
46 u32 rounds;
47};
48
49struct ppc_xts_ctx {
50 u32 key_enc[AES_MAX_KEYLENGTH_U32];
51 u32 key_dec[AES_MAX_KEYLENGTH_U32];
52 u32 key_twk[AES_MAX_KEYLENGTH_U32];
53 u32 rounds;
54};
55
56extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds);
57extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds);
58extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
59 u32 bytes);
60extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
61 u32 bytes);
62extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
63 u32 bytes, u8 *iv);
64extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
65 u32 bytes, u8 *iv);
66extern void ppc_crypt_ctr (u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
67 u32 bytes, u8 *iv);
68extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
69 u32 bytes, u8 *iv, u32 *key_twk);
70extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
71 u32 bytes, u8 *iv, u32 *key_twk);
72
73extern void ppc_expand_key_128(u32 *key_enc, const u8 *key);
74extern void ppc_expand_key_192(u32 *key_enc, const u8 *key);
75extern void ppc_expand_key_256(u32 *key_enc, const u8 *key);
76
77extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc,
78 unsigned int key_len);
79
80static void spe_begin(void)
81{
82 /* disable preemption and save users SPE registers if required */
83 preempt_disable();
84 enable_kernel_spe();
85}
86
87static void spe_end(void)
88{
Anton Blancharddc4fbba2015-10-29 11:44:05 +110089 disable_kernel_spe();
Markus Stockhausen8a28a1a2015-02-22 10:00:05 +010090 /* reenable preemption */
91 preempt_enable();
92}
93
94static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
95 unsigned int key_len)
96{
97 struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
98
99 if (key_len != AES_KEYSIZE_128 &&
100 key_len != AES_KEYSIZE_192 &&
101 key_len != AES_KEYSIZE_256) {
102 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
103 return -EINVAL;
104 }
105
106 switch (key_len) {
107 case AES_KEYSIZE_128:
108 ctx->rounds = 4;
109 ppc_expand_key_128(ctx->key_enc, in_key);
110 break;
111 case AES_KEYSIZE_192:
112 ctx->rounds = 5;
113 ppc_expand_key_192(ctx->key_enc, in_key);
114 break;
115 case AES_KEYSIZE_256:
116 ctx->rounds = 6;
117 ppc_expand_key_256(ctx->key_enc, in_key);
118 break;
119 }
120
121 ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
122
123 return 0;
124}
125
126static int ppc_xts_setkey(struct crypto_tfm *tfm, const u8 *in_key,
127 unsigned int key_len)
128{
129 struct ppc_xts_ctx *ctx = crypto_tfm_ctx(tfm);
Stephan Mueller28856a92016-02-09 15:37:47 +0100130 int err;
131
132 err = xts_check_key(tfm, in_key, key_len);
133 if (err)
134 return err;
Markus Stockhausen8a28a1a2015-02-22 10:00:05 +0100135
136 key_len >>= 1;
137
138 if (key_len != AES_KEYSIZE_128 &&
139 key_len != AES_KEYSIZE_192 &&
140 key_len != AES_KEYSIZE_256) {
141 tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
142 return -EINVAL;
143 }
144
145 switch (key_len) {
146 case AES_KEYSIZE_128:
147 ctx->rounds = 4;
148 ppc_expand_key_128(ctx->key_enc, in_key);
149 ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128);
150 break;
151 case AES_KEYSIZE_192:
152 ctx->rounds = 5;
153 ppc_expand_key_192(ctx->key_enc, in_key);
154 ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192);
155 break;
156 case AES_KEYSIZE_256:
157 ctx->rounds = 6;
158 ppc_expand_key_256(ctx->key_enc, in_key);
159 ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256);
160 break;
161 }
162
163 ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
164
165 return 0;
166}
167
168static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
169{
170 struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
171
172 spe_begin();
173 ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds);
174 spe_end();
175}
176
177static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
178{
179 struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
180
181 spe_begin();
182 ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds);
183 spe_end();
184}
185
186static int ppc_ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
187 struct scatterlist *src, unsigned int nbytes)
188{
189 struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
190 struct blkcipher_walk walk;
191 unsigned int ubytes;
192 int err;
193
194 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
195 blkcipher_walk_init(&walk, dst, src, nbytes);
196 err = blkcipher_walk_virt(desc, &walk);
197
198 while ((nbytes = walk.nbytes)) {
199 ubytes = nbytes > MAX_BYTES ?
200 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
201 nbytes -= ubytes;
202
203 spe_begin();
204 ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
205 ctx->key_enc, ctx->rounds, nbytes);
206 spe_end();
207
208 err = blkcipher_walk_done(desc, &walk, ubytes);
209 }
210
211 return err;
212}
213
214static int ppc_ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
215 struct scatterlist *src, unsigned int nbytes)
216{
217 struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
218 struct blkcipher_walk walk;
219 unsigned int ubytes;
220 int err;
221
222 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
223 blkcipher_walk_init(&walk, dst, src, nbytes);
224 err = blkcipher_walk_virt(desc, &walk);
225
226 while ((nbytes = walk.nbytes)) {
227 ubytes = nbytes > MAX_BYTES ?
228 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
229 nbytes -= ubytes;
230
231 spe_begin();
232 ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
233 ctx->key_dec, ctx->rounds, nbytes);
234 spe_end();
235
236 err = blkcipher_walk_done(desc, &walk, ubytes);
237 }
238
239 return err;
240}
241
242static int ppc_cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
243 struct scatterlist *src, unsigned int nbytes)
244{
245 struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
246 struct blkcipher_walk walk;
247 unsigned int ubytes;
248 int err;
249
250 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
251 blkcipher_walk_init(&walk, dst, src, nbytes);
252 err = blkcipher_walk_virt(desc, &walk);
253
254 while ((nbytes = walk.nbytes)) {
255 ubytes = nbytes > MAX_BYTES ?
256 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
257 nbytes -= ubytes;
258
259 spe_begin();
260 ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
261 ctx->key_enc, ctx->rounds, nbytes, walk.iv);
262 spe_end();
263
264 err = blkcipher_walk_done(desc, &walk, ubytes);
265 }
266
267 return err;
268}
269
270static int ppc_cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
271 struct scatterlist *src, unsigned int nbytes)
272{
273 struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
274 struct blkcipher_walk walk;
275 unsigned int ubytes;
276 int err;
277
278 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
279 blkcipher_walk_init(&walk, dst, src, nbytes);
280 err = blkcipher_walk_virt(desc, &walk);
281
282 while ((nbytes = walk.nbytes)) {
283 ubytes = nbytes > MAX_BYTES ?
284 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
285 nbytes -= ubytes;
286
287 spe_begin();
288 ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
289 ctx->key_dec, ctx->rounds, nbytes, walk.iv);
290 spe_end();
291
292 err = blkcipher_walk_done(desc, &walk, ubytes);
293 }
294
295 return err;
296}
297
298static int ppc_ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
299 struct scatterlist *src, unsigned int nbytes)
300{
301 struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
302 struct blkcipher_walk walk;
303 unsigned int pbytes, ubytes;
304 int err;
305
306 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
307 blkcipher_walk_init(&walk, dst, src, nbytes);
308 err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
309
310 while ((pbytes = walk.nbytes)) {
311 pbytes = pbytes > MAX_BYTES ? MAX_BYTES : pbytes;
312 pbytes = pbytes == nbytes ?
313 nbytes : pbytes & ~(AES_BLOCK_SIZE - 1);
314 ubytes = walk.nbytes - pbytes;
315
316 spe_begin();
317 ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr,
318 ctx->key_enc, ctx->rounds, pbytes , walk.iv);
319 spe_end();
320
321 nbytes -= pbytes;
322 err = blkcipher_walk_done(desc, &walk, ubytes);
323 }
324
325 return err;
326}
327
328static int ppc_xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
329 struct scatterlist *src, unsigned int nbytes)
330{
331 struct ppc_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
332 struct blkcipher_walk walk;
333 unsigned int ubytes;
334 int err;
335 u32 *twk;
336
337 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
338 blkcipher_walk_init(&walk, dst, src, nbytes);
339 err = blkcipher_walk_virt(desc, &walk);
340 twk = ctx->key_twk;
341
342 while ((nbytes = walk.nbytes)) {
343 ubytes = nbytes > MAX_BYTES ?
344 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
345 nbytes -= ubytes;
346
347 spe_begin();
348 ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
349 ctx->key_enc, ctx->rounds, nbytes, walk.iv, twk);
350 spe_end();
351
352 twk = NULL;
353 err = blkcipher_walk_done(desc, &walk, ubytes);
354 }
355
356 return err;
357}
358
359static int ppc_xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
360 struct scatterlist *src, unsigned int nbytes)
361{
362 struct ppc_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
363 struct blkcipher_walk walk;
364 unsigned int ubytes;
365 int err;
366 u32 *twk;
367
368 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
369 blkcipher_walk_init(&walk, dst, src, nbytes);
370 err = blkcipher_walk_virt(desc, &walk);
371 twk = ctx->key_twk;
372
373 while ((nbytes = walk.nbytes)) {
374 ubytes = nbytes > MAX_BYTES ?
375 nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1);
376 nbytes -= ubytes;
377
378 spe_begin();
379 ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
380 ctx->key_dec, ctx->rounds, nbytes, walk.iv, twk);
381 spe_end();
382
383 twk = NULL;
384 err = blkcipher_walk_done(desc, &walk, ubytes);
385 }
386
387 return err;
388}
389
390/*
391 * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen
392 * because the e500 platform can handle unaligned reads/writes very efficently.
393 * This improves IPsec thoughput by another few percent. Additionally we assume
394 * that AES context is always aligned to at least 8 bytes because it is created
395 * with kmalloc() in the crypto infrastructure
396 *
397 */
398static struct crypto_alg aes_algs[] = { {
399 .cra_name = "aes",
400 .cra_driver_name = "aes-ppc-spe",
401 .cra_priority = 300,
402 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
403 .cra_blocksize = AES_BLOCK_SIZE,
404 .cra_ctxsize = sizeof(struct ppc_aes_ctx),
405 .cra_alignmask = 0,
406 .cra_module = THIS_MODULE,
407 .cra_u = {
408 .cipher = {
409 .cia_min_keysize = AES_MIN_KEY_SIZE,
410 .cia_max_keysize = AES_MAX_KEY_SIZE,
411 .cia_setkey = ppc_aes_setkey,
412 .cia_encrypt = ppc_aes_encrypt,
413 .cia_decrypt = ppc_aes_decrypt
414 }
415 }
416}, {
417 .cra_name = "ecb(aes)",
418 .cra_driver_name = "ecb-ppc-spe",
419 .cra_priority = 300,
420 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
421 .cra_blocksize = AES_BLOCK_SIZE,
422 .cra_ctxsize = sizeof(struct ppc_aes_ctx),
423 .cra_alignmask = 0,
424 .cra_type = &crypto_blkcipher_type,
425 .cra_module = THIS_MODULE,
426 .cra_u = {
427 .blkcipher = {
428 .min_keysize = AES_MIN_KEY_SIZE,
429 .max_keysize = AES_MAX_KEY_SIZE,
430 .ivsize = AES_BLOCK_SIZE,
431 .setkey = ppc_aes_setkey,
432 .encrypt = ppc_ecb_encrypt,
433 .decrypt = ppc_ecb_decrypt,
434 }
435 }
436}, {
437 .cra_name = "cbc(aes)",
438 .cra_driver_name = "cbc-ppc-spe",
439 .cra_priority = 300,
440 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
441 .cra_blocksize = AES_BLOCK_SIZE,
442 .cra_ctxsize = sizeof(struct ppc_aes_ctx),
443 .cra_alignmask = 0,
444 .cra_type = &crypto_blkcipher_type,
445 .cra_module = THIS_MODULE,
446 .cra_u = {
447 .blkcipher = {
448 .min_keysize = AES_MIN_KEY_SIZE,
449 .max_keysize = AES_MAX_KEY_SIZE,
450 .ivsize = AES_BLOCK_SIZE,
451 .setkey = ppc_aes_setkey,
452 .encrypt = ppc_cbc_encrypt,
453 .decrypt = ppc_cbc_decrypt,
454 }
455 }
456}, {
457 .cra_name = "ctr(aes)",
458 .cra_driver_name = "ctr-ppc-spe",
459 .cra_priority = 300,
460 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
461 .cra_blocksize = 1,
462 .cra_ctxsize = sizeof(struct ppc_aes_ctx),
463 .cra_alignmask = 0,
464 .cra_type = &crypto_blkcipher_type,
465 .cra_module = THIS_MODULE,
466 .cra_u = {
467 .blkcipher = {
468 .min_keysize = AES_MIN_KEY_SIZE,
469 .max_keysize = AES_MAX_KEY_SIZE,
470 .ivsize = AES_BLOCK_SIZE,
471 .setkey = ppc_aes_setkey,
472 .encrypt = ppc_ctr_crypt,
473 .decrypt = ppc_ctr_crypt,
474 }
475 }
476}, {
477 .cra_name = "xts(aes)",
478 .cra_driver_name = "xts-ppc-spe",
479 .cra_priority = 300,
480 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
481 .cra_blocksize = AES_BLOCK_SIZE,
482 .cra_ctxsize = sizeof(struct ppc_xts_ctx),
483 .cra_alignmask = 0,
484 .cra_type = &crypto_blkcipher_type,
485 .cra_module = THIS_MODULE,
486 .cra_u = {
487 .blkcipher = {
488 .min_keysize = AES_MIN_KEY_SIZE * 2,
489 .max_keysize = AES_MAX_KEY_SIZE * 2,
490 .ivsize = AES_BLOCK_SIZE,
491 .setkey = ppc_xts_setkey,
492 .encrypt = ppc_xts_encrypt,
493 .decrypt = ppc_xts_decrypt,
494 }
495 }
496} };
497
498static int __init ppc_aes_mod_init(void)
499{
500 return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs));
501}
502
503static void __exit ppc_aes_mod_fini(void)
504{
505 crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs));
506}
507
508module_init(ppc_aes_mod_init);
509module_exit(ppc_aes_mod_fini);
510
511MODULE_LICENSE("GPL");
512MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized");
513
514MODULE_ALIAS_CRYPTO("aes");
515MODULE_ALIAS_CRYPTO("ecb(aes)");
516MODULE_ALIAS_CRYPTO("cbc(aes)");
517MODULE_ALIAS_CRYPTO("ctr(aes)");
518MODULE_ALIAS_CRYPTO("xts(aes)");
519MODULE_ALIAS_CRYPTO("aes-ppc-spe");