Thomas Gleixner | d2912cb | 2019-06-04 10:11:33 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Mark Salter | 9de98fb | 2011-10-04 11:20:28 -0400 | [diff] [blame] | 2 | /* |
| 3 | * Device State Control Registers driver |
| 4 | * |
| 5 | * Copyright (C) 2011 Texas Instruments Incorporated |
| 6 | * Author: Mark Salter <msalter@redhat.com> |
Mark Salter | 9de98fb | 2011-10-04 11:20:28 -0400 | [diff] [blame] | 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * The Device State Control Registers (DSCR) provide SoC level control over |
| 11 | * a number of peripherals. Details vary considerably among the various SoC |
| 12 | * parts. In general, the DSCR block will provide one or more configuration |
| 13 | * registers often protected by a lock register. One or more key values must |
| 14 | * be written to a lock register in order to unlock the configuration register. |
| 15 | * The configuration register may be used to enable (and disable in some |
| 16 | * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc. |
| 17 | * In some cases, a configuration register is write once or the individual |
| 18 | * bits are write once. That is, you may be able to enable a device, but |
| 19 | * will not be able to disable it. |
| 20 | * |
| 21 | * In addition to device configuration, the DSCR block may provide registers |
| 22 | * which are used to reset SoC peripherals, provide device ID information, |
| 23 | * provide MAC addresses, and other miscellaneous functions. |
| 24 | */ |
| 25 | |
| 26 | #include <linux/of.h> |
| 27 | #include <linux/of_address.h> |
| 28 | #include <linux/of_platform.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/io.h> |
| 31 | #include <linux/delay.h> |
| 32 | #include <asm/soc.h> |
| 33 | #include <asm/dscr.h> |
| 34 | |
| 35 | #define MAX_DEVSTATE_IDS 32 |
| 36 | #define MAX_DEVCTL_REGS 8 |
| 37 | #define MAX_DEVSTAT_REGS 8 |
| 38 | #define MAX_LOCKED_REGS 4 |
| 39 | #define MAX_SOC_EMACS 2 |
| 40 | |
| 41 | struct rmii_reset_reg { |
| 42 | u32 reg; |
| 43 | u32 mask; |
| 44 | }; |
| 45 | |
| 46 | /* |
| 47 | * Some registerd may be locked. In order to write to these |
| 48 | * registers, the key value must first be written to the lockreg. |
| 49 | */ |
| 50 | struct locked_reg { |
| 51 | u32 reg; /* offset from base */ |
| 52 | u32 lockreg; /* offset from base */ |
| 53 | u32 key; /* unlock key */ |
| 54 | }; |
| 55 | |
| 56 | /* |
| 57 | * This describes a contiguous area of like control bits used to enable/disable |
| 58 | * SoC devices. Each controllable device is given an ID which is used by the |
| 59 | * individual device drivers to control the device state. These IDs start at |
| 60 | * zero and are assigned sequentially to the control bitfield ranges described |
| 61 | * by this structure. |
| 62 | */ |
| 63 | struct devstate_ctl_reg { |
| 64 | u32 reg; /* register holding the control bits */ |
| 65 | u8 start_id; /* start id of this range */ |
| 66 | u8 num_ids; /* number of devices in this range */ |
| 67 | u8 enable_only; /* bits are write-once to enable only */ |
| 68 | u8 enable; /* value used to enable device */ |
| 69 | u8 disable; /* value used to disable device */ |
| 70 | u8 shift; /* starting (rightmost) bit in range */ |
| 71 | u8 nbits; /* number of bits per device */ |
| 72 | }; |
| 73 | |
| 74 | |
| 75 | /* |
| 76 | * This describes a region of status bits indicating the state of |
| 77 | * various devices. This is used internally to wait for status |
| 78 | * change completion when enabling/disabling a device. Status is |
| 79 | * optional and not all device controls will have a corresponding |
| 80 | * status. |
| 81 | */ |
| 82 | struct devstate_stat_reg { |
| 83 | u32 reg; /* register holding the status bits */ |
| 84 | u8 start_id; /* start id of this range */ |
| 85 | u8 num_ids; /* number of devices in this range */ |
| 86 | u8 enable; /* value indicating enabled state */ |
| 87 | u8 disable; /* value indicating disabled state */ |
| 88 | u8 shift; /* starting (rightmost) bit in range */ |
| 89 | u8 nbits; /* number of bits per device */ |
| 90 | }; |
| 91 | |
| 92 | struct devstate_info { |
| 93 | struct devstate_ctl_reg *ctl; |
| 94 | struct devstate_stat_reg *stat; |
| 95 | }; |
| 96 | |
| 97 | /* These are callbacks to SOC-specific code. */ |
| 98 | struct dscr_ops { |
| 99 | void (*init)(struct device_node *node); |
| 100 | }; |
| 101 | |
| 102 | struct dscr_regs { |
| 103 | spinlock_t lock; |
| 104 | void __iomem *base; |
| 105 | u32 kick_reg[2]; |
| 106 | u32 kick_key[2]; |
| 107 | struct locked_reg locked[MAX_LOCKED_REGS]; |
| 108 | struct devstate_info devstate_info[MAX_DEVSTATE_IDS]; |
| 109 | struct rmii_reset_reg rmii_resets[MAX_SOC_EMACS]; |
| 110 | struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS]; |
| 111 | struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS]; |
| 112 | }; |
| 113 | |
| 114 | static struct dscr_regs dscr; |
| 115 | |
| 116 | static struct locked_reg *find_locked_reg(u32 reg) |
| 117 | { |
| 118 | int i; |
| 119 | |
| 120 | for (i = 0; i < MAX_LOCKED_REGS; i++) |
| 121 | if (dscr.locked[i].key && reg == dscr.locked[i].reg) |
| 122 | return &dscr.locked[i]; |
| 123 | return NULL; |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Write to a register with one lock |
| 128 | */ |
| 129 | static void dscr_write_locked1(u32 reg, u32 val, |
| 130 | u32 lock, u32 key) |
| 131 | { |
| 132 | void __iomem *reg_addr = dscr.base + reg; |
| 133 | void __iomem *lock_addr = dscr.base + lock; |
| 134 | |
| 135 | /* |
| 136 | * For some registers, the lock is relocked after a short number |
| 137 | * of cycles. We have to put the lock write and register write in |
| 138 | * the same fetch packet to meet this timing. The .align ensures |
| 139 | * the two stw instructions are in the same fetch packet. |
| 140 | */ |
| 141 | asm volatile ("b .s2 0f\n" |
| 142 | "nop 5\n" |
| 143 | " .align 5\n" |
| 144 | "0:\n" |
| 145 | "stw .D1T2 %3,*%2\n" |
| 146 | "stw .D1T2 %1,*%0\n" |
| 147 | : |
| 148 | : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key) |
| 149 | ); |
| 150 | |
| 151 | /* in case the hw doesn't reset the lock */ |
| 152 | soc_writel(0, lock_addr); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Write to a register protected by two lock registers |
| 157 | */ |
| 158 | static void dscr_write_locked2(u32 reg, u32 val, |
| 159 | u32 lock0, u32 key0, |
| 160 | u32 lock1, u32 key1) |
| 161 | { |
| 162 | soc_writel(key0, dscr.base + lock0); |
| 163 | soc_writel(key1, dscr.base + lock1); |
| 164 | soc_writel(val, dscr.base + reg); |
| 165 | soc_writel(0, dscr.base + lock0); |
| 166 | soc_writel(0, dscr.base + lock1); |
| 167 | } |
| 168 | |
| 169 | static void dscr_write(u32 reg, u32 val) |
| 170 | { |
| 171 | struct locked_reg *lock; |
| 172 | |
| 173 | lock = find_locked_reg(reg); |
| 174 | if (lock) |
| 175 | dscr_write_locked1(reg, val, lock->lockreg, lock->key); |
| 176 | else if (dscr.kick_key[0]) |
| 177 | dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0], |
| 178 | dscr.kick_reg[1], dscr.kick_key[1]); |
| 179 | else |
| 180 | soc_writel(val, dscr.base + reg); |
| 181 | } |
| 182 | |
| 183 | |
| 184 | /* |
| 185 | * Drivers can use this interface to enable/disable SoC IP blocks. |
| 186 | */ |
| 187 | void dscr_set_devstate(int id, enum dscr_devstate_t state) |
| 188 | { |
| 189 | struct devstate_ctl_reg *ctl; |
| 190 | struct devstate_stat_reg *stat; |
| 191 | struct devstate_info *info; |
| 192 | u32 ctl_val, val; |
| 193 | int ctl_shift, ctl_mask; |
| 194 | unsigned long flags; |
| 195 | |
| 196 | if (!dscr.base) |
| 197 | return; |
| 198 | |
| 199 | if (id < 0 || id >= MAX_DEVSTATE_IDS) |
| 200 | return; |
| 201 | |
| 202 | info = &dscr.devstate_info[id]; |
| 203 | ctl = info->ctl; |
| 204 | stat = info->stat; |
| 205 | |
| 206 | if (ctl == NULL) |
| 207 | return; |
| 208 | |
| 209 | ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id); |
| 210 | ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift; |
| 211 | |
| 212 | switch (state) { |
| 213 | case DSCR_DEVSTATE_ENABLED: |
| 214 | ctl_val = ctl->enable << ctl_shift; |
| 215 | break; |
| 216 | case DSCR_DEVSTATE_DISABLED: |
| 217 | if (ctl->enable_only) |
| 218 | return; |
| 219 | ctl_val = ctl->disable << ctl_shift; |
| 220 | break; |
| 221 | default: |
| 222 | return; |
| 223 | } |
| 224 | |
| 225 | spin_lock_irqsave(&dscr.lock, flags); |
| 226 | |
| 227 | val = soc_readl(dscr.base + ctl->reg); |
| 228 | val &= ~ctl_mask; |
| 229 | val |= ctl_val; |
| 230 | |
| 231 | dscr_write(ctl->reg, val); |
| 232 | |
| 233 | spin_unlock_irqrestore(&dscr.lock, flags); |
| 234 | |
| 235 | if (!stat) |
| 236 | return; |
| 237 | |
| 238 | ctl_shift = stat->shift + stat->nbits * (id - stat->start_id); |
| 239 | |
| 240 | if (state == DSCR_DEVSTATE_ENABLED) |
| 241 | ctl_val = stat->enable; |
| 242 | else |
| 243 | ctl_val = stat->disable; |
| 244 | |
| 245 | do { |
| 246 | val = soc_readl(dscr.base + stat->reg); |
| 247 | val >>= ctl_shift; |
| 248 | val &= ((1 << stat->nbits) - 1); |
| 249 | } while (val != ctl_val); |
| 250 | } |
| 251 | EXPORT_SYMBOL(dscr_set_devstate); |
| 252 | |
| 253 | /* |
| 254 | * Drivers can use this to reset RMII module. |
| 255 | */ |
| 256 | void dscr_rmii_reset(int id, int assert) |
| 257 | { |
| 258 | struct rmii_reset_reg *r; |
| 259 | unsigned long flags; |
| 260 | u32 val; |
| 261 | |
| 262 | if (id < 0 || id >= MAX_SOC_EMACS) |
| 263 | return; |
| 264 | |
| 265 | r = &dscr.rmii_resets[id]; |
| 266 | if (r->mask == 0) |
| 267 | return; |
| 268 | |
| 269 | spin_lock_irqsave(&dscr.lock, flags); |
| 270 | |
| 271 | val = soc_readl(dscr.base + r->reg); |
| 272 | if (assert) |
| 273 | dscr_write(r->reg, val | r->mask); |
| 274 | else |
| 275 | dscr_write(r->reg, val & ~(r->mask)); |
| 276 | |
| 277 | spin_unlock_irqrestore(&dscr.lock, flags); |
| 278 | } |
| 279 | EXPORT_SYMBOL(dscr_rmii_reset); |
| 280 | |
| 281 | static void __init dscr_parse_devstat(struct device_node *node, |
| 282 | void __iomem *base) |
| 283 | { |
| 284 | u32 val; |
| 285 | int err; |
| 286 | |
| 287 | err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1); |
| 288 | if (!err) |
| 289 | c6x_devstat = soc_readl(base + val); |
| 290 | printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat); |
| 291 | } |
| 292 | |
| 293 | static void __init dscr_parse_silicon_rev(struct device_node *node, |
| 294 | void __iomem *base) |
| 295 | { |
| 296 | u32 vals[3]; |
| 297 | int err; |
| 298 | |
| 299 | err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3); |
| 300 | if (!err) { |
| 301 | c6x_silicon_rev = soc_readl(base + vals[0]); |
| 302 | c6x_silicon_rev >>= vals[1]; |
| 303 | c6x_silicon_rev &= vals[2]; |
| 304 | } |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Some SoCs will have a pair of fuse registers which hold |
| 309 | * an ethernet MAC address. The "ti,dscr-mac-fuse-regs" |
| 310 | * property is a mapping from fuse register bytes to MAC |
| 311 | * address bytes. The expected format is: |
| 312 | * |
| 313 | * ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0 |
| 314 | * reg1 b3 b2 b1 b0> |
| 315 | * |
| 316 | * reg0 and reg1 are the offsets of the two fuse registers. |
| 317 | * b3-b0 positionally represent bytes within the fuse register. |
| 318 | * b3 is the most significant byte and b0 is the least. |
| 319 | * Allowable values for b3-b0 are: |
| 320 | * |
| 321 | * 0 = fuse register byte not used in MAC address |
| 322 | * 1-6 = index+1 into c6x_fuse_mac[] |
| 323 | */ |
| 324 | static void __init dscr_parse_mac_fuse(struct device_node *node, |
| 325 | void __iomem *base) |
| 326 | { |
| 327 | u32 vals[10], fuse; |
| 328 | int f, i, j, err; |
| 329 | |
| 330 | err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs", |
| 331 | vals, 10); |
| 332 | if (err) |
| 333 | return; |
| 334 | |
| 335 | for (f = 0; f < 2; f++) { |
| 336 | fuse = soc_readl(base + vals[f * 5]); |
| 337 | for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++) |
| 338 | if (vals[j] && vals[j] <= 6) |
| 339 | c6x_fuse_mac[vals[j] - 1] = fuse >> i; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | static void __init dscr_parse_rmii_resets(struct device_node *node, |
| 344 | void __iomem *base) |
| 345 | { |
| 346 | const __be32 *p; |
| 347 | int i, size; |
| 348 | |
| 349 | /* look for RMII reset registers */ |
| 350 | p = of_get_property(node, "ti,dscr-rmii-resets", &size); |
| 351 | if (p) { |
| 352 | /* parse all the reg/mask pairs we can handle */ |
| 353 | size /= (sizeof(*p) * 2); |
| 354 | if (size > MAX_SOC_EMACS) |
| 355 | size = MAX_SOC_EMACS; |
| 356 | |
| 357 | for (i = 0; i < size; i++) { |
| 358 | dscr.rmii_resets[i].reg = be32_to_cpup(p++); |
| 359 | dscr.rmii_resets[i].mask = be32_to_cpup(p++); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | |
| 365 | static void __init dscr_parse_privperm(struct device_node *node, |
| 366 | void __iomem *base) |
| 367 | { |
| 368 | u32 vals[2]; |
| 369 | int err; |
| 370 | |
| 371 | err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2); |
| 372 | if (err) |
| 373 | return; |
| 374 | dscr_write(vals[0], vals[1]); |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * SoCs may have "locked" DSCR registers which can only be written |
| 379 | * to only after writing a key value to a lock registers. These |
| 380 | * regisers can be described with the "ti,dscr-locked-regs" property. |
| 381 | * This property provides a list of register descriptions with each |
| 382 | * description consisting of three values. |
| 383 | * |
| 384 | * ti,dscr-locked-regs = <reg0 lockreg0 key0 |
| 385 | * ... |
| 386 | * regN lockregN keyN>; |
| 387 | * |
| 388 | * reg is the offset of the locked register |
| 389 | * lockreg is the offset of the lock register |
| 390 | * key is the unlock key written to lockreg |
| 391 | * |
| 392 | */ |
| 393 | static void __init dscr_parse_locked_regs(struct device_node *node, |
| 394 | void __iomem *base) |
| 395 | { |
| 396 | struct locked_reg *r; |
| 397 | const __be32 *p; |
| 398 | int i, size; |
| 399 | |
| 400 | p = of_get_property(node, "ti,dscr-locked-regs", &size); |
| 401 | if (p) { |
| 402 | /* parse all the register descriptions we can handle */ |
| 403 | size /= (sizeof(*p) * 3); |
| 404 | if (size > MAX_LOCKED_REGS) |
| 405 | size = MAX_LOCKED_REGS; |
| 406 | |
| 407 | for (i = 0; i < size; i++) { |
| 408 | r = &dscr.locked[i]; |
| 409 | |
| 410 | r->reg = be32_to_cpup(p++); |
| 411 | r->lockreg = be32_to_cpup(p++); |
| 412 | r->key = be32_to_cpup(p++); |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * SoCs may have DSCR registers which are only write enabled after |
| 419 | * writing specific key values to two registers. The two key registers |
| 420 | * and the key values can be parsed from a "ti,dscr-kick-regs" |
| 421 | * propety with the following layout: |
| 422 | * |
| 423 | * ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1> |
| 424 | * |
| 425 | * kickreg is the offset of the "kick" register |
| 426 | * key is the value which unlocks writing for protected regs |
| 427 | */ |
| 428 | static void __init dscr_parse_kick_regs(struct device_node *node, |
| 429 | void __iomem *base) |
| 430 | { |
| 431 | u32 vals[4]; |
| 432 | int err; |
| 433 | |
| 434 | err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4); |
| 435 | if (!err) { |
| 436 | dscr.kick_reg[0] = vals[0]; |
| 437 | dscr.kick_key[0] = vals[1]; |
| 438 | dscr.kick_reg[1] = vals[2]; |
| 439 | dscr.kick_key[1] = vals[3]; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | |
| 444 | /* |
| 445 | * SoCs may provide controls to enable/disable individual IP blocks. These |
| 446 | * controls in the DSCR usually control pin drivers but also may control |
| 447 | * clocking and or resets. The device tree is used to describe the bitfields |
| 448 | * in registers used to control device state. The number of bits and their |
| 449 | * values may vary even within the same register. |
| 450 | * |
| 451 | * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs |
| 452 | * property. This property is a list where each element describes a contiguous |
| 453 | * range of control fields with like properties. Each element of the list |
| 454 | * consists of 7 cells with the following values: |
| 455 | * |
| 456 | * start_id num_ids reg enable disable start_bit nbits |
| 457 | * |
| 458 | * start_id is device id for the first device control in the range |
| 459 | * num_ids is the number of device controls in the range |
| 460 | * reg is the offset of the register holding the control bits |
| 461 | * enable is the value to enable a device |
| 462 | * disable is the value to disable a device (0xffffffff if cannot disable) |
| 463 | * start_bit is the bit number of the first bit in the range |
| 464 | * nbits is the number of bits per device control |
| 465 | */ |
| 466 | static void __init dscr_parse_devstate_ctl_regs(struct device_node *node, |
| 467 | void __iomem *base) |
| 468 | { |
| 469 | struct devstate_ctl_reg *r; |
| 470 | const __be32 *p; |
| 471 | int i, j, size; |
| 472 | |
| 473 | p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size); |
| 474 | if (p) { |
| 475 | /* parse all the ranges we can handle */ |
| 476 | size /= (sizeof(*p) * 7); |
| 477 | if (size > MAX_DEVCTL_REGS) |
| 478 | size = MAX_DEVCTL_REGS; |
| 479 | |
| 480 | for (i = 0; i < size; i++) { |
| 481 | r = &dscr.devctl[i]; |
| 482 | |
| 483 | r->start_id = be32_to_cpup(p++); |
| 484 | r->num_ids = be32_to_cpup(p++); |
| 485 | r->reg = be32_to_cpup(p++); |
| 486 | r->enable = be32_to_cpup(p++); |
| 487 | r->disable = be32_to_cpup(p++); |
| 488 | if (r->disable == 0xffffffff) |
| 489 | r->enable_only = 1; |
| 490 | r->shift = be32_to_cpup(p++); |
| 491 | r->nbits = be32_to_cpup(p++); |
| 492 | |
| 493 | for (j = r->start_id; |
| 494 | j < (r->start_id + r->num_ids); |
| 495 | j++) |
| 496 | dscr.devstate_info[j].ctl = r; |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * SoCs may provide status registers indicating the state (enabled/disabled) of |
| 503 | * devices on the SoC. The device tree is used to describe the bitfields in |
| 504 | * registers used to provide device status. The number of bits and their |
| 505 | * values used to provide status may vary even within the same register. |
| 506 | * |
| 507 | * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs |
| 508 | * property. This property is a list where each element describes a contiguous |
| 509 | * range of status fields with like properties. Each element of the list |
| 510 | * consists of 7 cells with the following values: |
| 511 | * |
| 512 | * start_id num_ids reg enable disable start_bit nbits |
| 513 | * |
| 514 | * start_id is device id for the first device status in the range |
| 515 | * num_ids is the number of devices covered by the range |
| 516 | * reg is the offset of the register holding the status bits |
| 517 | * enable is the value indicating device is enabled |
| 518 | * disable is the value indicating device is disabled |
| 519 | * start_bit is the bit number of the first bit in the range |
| 520 | * nbits is the number of bits per device status |
| 521 | */ |
| 522 | static void __init dscr_parse_devstate_stat_regs(struct device_node *node, |
| 523 | void __iomem *base) |
| 524 | { |
| 525 | struct devstate_stat_reg *r; |
| 526 | const __be32 *p; |
| 527 | int i, j, size; |
| 528 | |
| 529 | p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size); |
| 530 | if (p) { |
| 531 | /* parse all the ranges we can handle */ |
| 532 | size /= (sizeof(*p) * 7); |
| 533 | if (size > MAX_DEVSTAT_REGS) |
| 534 | size = MAX_DEVSTAT_REGS; |
| 535 | |
| 536 | for (i = 0; i < size; i++) { |
| 537 | r = &dscr.devstat[i]; |
| 538 | |
| 539 | r->start_id = be32_to_cpup(p++); |
| 540 | r->num_ids = be32_to_cpup(p++); |
| 541 | r->reg = be32_to_cpup(p++); |
| 542 | r->enable = be32_to_cpup(p++); |
| 543 | r->disable = be32_to_cpup(p++); |
| 544 | r->shift = be32_to_cpup(p++); |
| 545 | r->nbits = be32_to_cpup(p++); |
| 546 | |
| 547 | for (j = r->start_id; |
| 548 | j < (r->start_id + r->num_ids); |
| 549 | j++) |
| 550 | dscr.devstate_info[j].stat = r; |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | static struct of_device_id dscr_ids[] __initdata = { |
| 556 | { .compatible = "ti,c64x+dscr" }, |
| 557 | {} |
| 558 | }; |
| 559 | |
| 560 | /* |
| 561 | * Probe for DSCR area. |
| 562 | * |
| 563 | * This has to be done early on in case timer or interrupt controller |
| 564 | * needs something. e.g. On C6455 SoC, timer must be enabled through |
| 565 | * DSCR before it is functional. |
| 566 | */ |
| 567 | void __init dscr_probe(void) |
| 568 | { |
| 569 | struct device_node *node; |
| 570 | void __iomem *base; |
| 571 | |
| 572 | spin_lock_init(&dscr.lock); |
| 573 | |
| 574 | node = of_find_matching_node(NULL, dscr_ids); |
| 575 | if (!node) |
| 576 | return; |
| 577 | |
| 578 | base = of_iomap(node, 0); |
| 579 | if (!base) { |
| 580 | of_node_put(node); |
| 581 | return; |
| 582 | } |
| 583 | |
| 584 | dscr.base = base; |
| 585 | |
| 586 | dscr_parse_devstat(node, base); |
| 587 | dscr_parse_silicon_rev(node, base); |
| 588 | dscr_parse_mac_fuse(node, base); |
| 589 | dscr_parse_rmii_resets(node, base); |
| 590 | dscr_parse_locked_regs(node, base); |
| 591 | dscr_parse_kick_regs(node, base); |
| 592 | dscr_parse_devstate_ctl_regs(node, base); |
| 593 | dscr_parse_devstate_stat_regs(node, base); |
| 594 | dscr_parse_privperm(node, base); |
| 595 | } |