blob: 4617d97e877cb80b96b9953f884caaf5c68b0244 [file] [log] [blame]
Tejun Heofbf59bc2009-02-20 16:29:08 +09001/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
50 *
51 * - use pcpu_setup_static() during percpu area initialization to
52 * setup kernel static percpu area
53 */
54
55#include <linux/bitmap.h>
56#include <linux/bootmem.h>
57#include <linux/list.h>
58#include <linux/mm.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/percpu.h>
62#include <linux/pfn.h>
63#include <linux/rbtree.h>
64#include <linux/slab.h>
65#include <linux/vmalloc.h>
66
67#include <asm/cacheflush.h>
68#include <asm/tlbflush.h>
69
70#define PCPU_MIN_UNIT_PAGES_SHIFT 4 /* also max alloc size */
71#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
72#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
73
74struct pcpu_chunk {
75 struct list_head list; /* linked to pcpu_slot lists */
76 struct rb_node rb_node; /* key is chunk->vm->addr */
77 int free_size; /* free bytes in the chunk */
78 int contig_hint; /* max contiguous size hint */
79 struct vm_struct *vm; /* mapped vmalloc region */
80 int map_used; /* # of map entries used */
81 int map_alloc; /* # of map entries allocated */
82 int *map; /* allocation map */
83 struct page *page[]; /* #cpus * UNIT_PAGES */
84};
85
86static int pcpu_unit_pages_shift;
87static int pcpu_unit_pages;
88static int pcpu_unit_shift;
89static int pcpu_unit_size;
90static int pcpu_chunk_size;
91static int pcpu_nr_slots;
92static size_t pcpu_chunk_struct_size;
93
94/* the address of the first chunk which starts with the kernel static area */
95void *pcpu_base_addr;
96EXPORT_SYMBOL_GPL(pcpu_base_addr);
97
98/* the size of kernel static area */
99static int pcpu_static_size;
100
101/*
102 * One mutex to rule them all.
103 *
104 * The following mutex is grabbed in the outermost public alloc/free
105 * interface functions and released only when the operation is
106 * complete. As such, every function in this file other than the
107 * outermost functions are called under pcpu_mutex.
108 *
109 * It can easily be switched to use spinlock such that only the area
110 * allocation and page population commit are protected with it doing
111 * actual [de]allocation without holding any lock. However, given
112 * what this allocator does, I think it's better to let them run
113 * sequentially.
114 */
115static DEFINE_MUTEX(pcpu_mutex);
116
117static struct list_head *pcpu_slot; /* chunk list slots */
118static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
119
120static int pcpu_size_to_slot(int size)
121{
122 int highbit = fls(size);
123 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
124}
125
126static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
127{
128 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
129 return 0;
130
131 return pcpu_size_to_slot(chunk->free_size);
132}
133
134static int pcpu_page_idx(unsigned int cpu, int page_idx)
135{
136 return (cpu << pcpu_unit_pages_shift) + page_idx;
137}
138
139static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
140 unsigned int cpu, int page_idx)
141{
142 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
143}
144
145static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
146 unsigned int cpu, int page_idx)
147{
148 return (unsigned long)chunk->vm->addr +
149 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
150}
151
152static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
153 int page_idx)
154{
155 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
156}
157
158/**
159 * pcpu_realloc - versatile realloc
160 * @p: the current pointer (can be NULL for new allocations)
161 * @size: the current size (can be 0 for new allocations)
162 * @new_size: the wanted new size (can be 0 for free)
163 *
164 * More robust realloc which can be used to allocate, resize or free a
165 * memory area of arbitrary size. If the needed size goes over
166 * PAGE_SIZE, kernel VM is used.
167 *
168 * RETURNS:
169 * The new pointer on success, NULL on failure.
170 */
171static void *pcpu_realloc(void *p, size_t size, size_t new_size)
172{
173 void *new;
174
175 if (new_size <= PAGE_SIZE)
176 new = kmalloc(new_size, GFP_KERNEL);
177 else
178 new = vmalloc(new_size);
179 if (new_size && !new)
180 return NULL;
181
182 memcpy(new, p, min(size, new_size));
183 if (new_size > size)
184 memset(new + size, 0, new_size - size);
185
186 if (size <= PAGE_SIZE)
187 kfree(p);
188 else
189 vfree(p);
190
191 return new;
192}
193
194/**
195 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
196 * @chunk: chunk of interest
197 * @oslot: the previous slot it was on
198 *
199 * This function is called after an allocation or free changed @chunk.
200 * New slot according to the changed state is determined and @chunk is
201 * moved to the slot.
202 */
203static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
204{
205 int nslot = pcpu_chunk_slot(chunk);
206
207 if (oslot != nslot) {
208 if (oslot < nslot)
209 list_move(&chunk->list, &pcpu_slot[nslot]);
210 else
211 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
212 }
213}
214
215static struct rb_node **pcpu_chunk_rb_search(void *addr,
216 struct rb_node **parentp)
217{
218 struct rb_node **p = &pcpu_addr_root.rb_node;
219 struct rb_node *parent = NULL;
220 struct pcpu_chunk *chunk;
221
222 while (*p) {
223 parent = *p;
224 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
225
226 if (addr < chunk->vm->addr)
227 p = &(*p)->rb_left;
228 else if (addr > chunk->vm->addr)
229 p = &(*p)->rb_right;
230 else
231 break;
232 }
233
234 if (parentp)
235 *parentp = parent;
236 return p;
237}
238
239/**
240 * pcpu_chunk_addr_search - search for chunk containing specified address
241 * @addr: address to search for
242 *
243 * Look for chunk which might contain @addr. More specifically, it
244 * searchs for the chunk with the highest start address which isn't
245 * beyond @addr.
246 *
247 * RETURNS:
248 * The address of the found chunk.
249 */
250static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
251{
252 struct rb_node *n, *parent;
253 struct pcpu_chunk *chunk;
254
255 n = *pcpu_chunk_rb_search(addr, &parent);
256 if (!n) {
257 /* no exactly matching chunk, the parent is the closest */
258 n = parent;
259 BUG_ON(!n);
260 }
261 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
262
263 if (addr < chunk->vm->addr) {
264 /* the parent was the next one, look for the previous one */
265 n = rb_prev(n);
266 BUG_ON(!n);
267 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
268 }
269
270 return chunk;
271}
272
273/**
274 * pcpu_chunk_addr_insert - insert chunk into address rb tree
275 * @new: chunk to insert
276 *
277 * Insert @new into address rb tree.
278 */
279static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
280{
281 struct rb_node **p, *parent;
282
283 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
284 BUG_ON(*p);
285 rb_link_node(&new->rb_node, parent, p);
286 rb_insert_color(&new->rb_node, &pcpu_addr_root);
287}
288
289/**
290 * pcpu_split_block - split a map block
291 * @chunk: chunk of interest
292 * @i: index of map block to split
293 * @head: head size (can be 0)
294 * @tail: tail size (can be 0)
295 *
296 * Split the @i'th map block into two or three blocks. If @head is
297 * non-zero, @head bytes block is inserted before block @i moving it
298 * to @i+1 and reducing its size by @head bytes.
299 *
300 * If @tail is non-zero, the target block, which can be @i or @i+1
301 * depending on @head, is reduced by @tail bytes and @tail byte block
302 * is inserted after the target block.
303 *
304 * RETURNS:
305 * 0 on success, -errno on failure.
306 */
307static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
308{
309 int nr_extra = !!head + !!tail;
310 int target = chunk->map_used + nr_extra;
311
312 /* reallocation required? */
313 if (chunk->map_alloc < target) {
314 int new_alloc = chunk->map_alloc;
315 int *new;
316
317 while (new_alloc < target)
318 new_alloc *= 2;
319
320 new = pcpu_realloc(chunk->map,
321 chunk->map_alloc * sizeof(new[0]),
322 new_alloc * sizeof(new[0]));
323 if (!new)
324 return -ENOMEM;
325
326 chunk->map_alloc = new_alloc;
327 chunk->map = new;
328 }
329
330 /* insert a new subblock */
331 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
332 sizeof(chunk->map[0]) * (chunk->map_used - i));
333 chunk->map_used += nr_extra;
334
335 if (head) {
336 chunk->map[i + 1] = chunk->map[i] - head;
337 chunk->map[i++] = head;
338 }
339 if (tail) {
340 chunk->map[i++] -= tail;
341 chunk->map[i] = tail;
342 }
343 return 0;
344}
345
346/**
347 * pcpu_alloc_area - allocate area from a pcpu_chunk
348 * @chunk: chunk of interest
349 * @size: wanted size
350 * @align: wanted align
351 *
352 * Try to allocate @size bytes area aligned at @align from @chunk.
353 * Note that this function only allocates the offset. It doesn't
354 * populate or map the area.
355 *
356 * RETURNS:
357 * Allocated offset in @chunk on success, -errno on failure.
358 */
359static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
360{
361 int oslot = pcpu_chunk_slot(chunk);
362 int max_contig = 0;
363 int i, off;
364
365 /*
366 * The static chunk initially doesn't have map attached
367 * because kmalloc wasn't available during init. Give it one.
368 */
369 if (unlikely(!chunk->map)) {
370 chunk->map = pcpu_realloc(NULL, 0,
371 PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
372 if (!chunk->map)
373 return -ENOMEM;
374
375 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
376 chunk->map[chunk->map_used++] = -pcpu_static_size;
377 if (chunk->free_size)
378 chunk->map[chunk->map_used++] = chunk->free_size;
379 }
380
381 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
382 bool is_last = i + 1 == chunk->map_used;
383 int head, tail;
384
385 /* extra for alignment requirement */
386 head = ALIGN(off, align) - off;
387 BUG_ON(i == 0 && head != 0);
388
389 if (chunk->map[i] < 0)
390 continue;
391 if (chunk->map[i] < head + size) {
392 max_contig = max(chunk->map[i], max_contig);
393 continue;
394 }
395
396 /*
397 * If head is small or the previous block is free,
398 * merge'em. Note that 'small' is defined as smaller
399 * than sizeof(int), which is very small but isn't too
400 * uncommon for percpu allocations.
401 */
402 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
403 if (chunk->map[i - 1] > 0)
404 chunk->map[i - 1] += head;
405 else {
406 chunk->map[i - 1] -= head;
407 chunk->free_size -= head;
408 }
409 chunk->map[i] -= head;
410 off += head;
411 head = 0;
412 }
413
414 /* if tail is small, just keep it around */
415 tail = chunk->map[i] - head - size;
416 if (tail < sizeof(int))
417 tail = 0;
418
419 /* split if warranted */
420 if (head || tail) {
421 if (pcpu_split_block(chunk, i, head, tail))
422 return -ENOMEM;
423 if (head) {
424 i++;
425 off += head;
426 max_contig = max(chunk->map[i - 1], max_contig);
427 }
428 if (tail)
429 max_contig = max(chunk->map[i + 1], max_contig);
430 }
431
432 /* update hint and mark allocated */
433 if (is_last)
434 chunk->contig_hint = max_contig; /* fully scanned */
435 else
436 chunk->contig_hint = max(chunk->contig_hint,
437 max_contig);
438
439 chunk->free_size -= chunk->map[i];
440 chunk->map[i] = -chunk->map[i];
441
442 pcpu_chunk_relocate(chunk, oslot);
443 return off;
444 }
445
446 chunk->contig_hint = max_contig; /* fully scanned */
447 pcpu_chunk_relocate(chunk, oslot);
448
449 /*
450 * Tell the upper layer that this chunk has no area left.
451 * Note that this is not an error condition but a notification
452 * to upper layer that it needs to look at other chunks.
453 * -ENOSPC is chosen as it isn't used in memory subsystem and
454 * matches the meaning in a way.
455 */
456 return -ENOSPC;
457}
458
459/**
460 * pcpu_free_area - free area to a pcpu_chunk
461 * @chunk: chunk of interest
462 * @freeme: offset of area to free
463 *
464 * Free area starting from @freeme to @chunk. Note that this function
465 * only modifies the allocation map. It doesn't depopulate or unmap
466 * the area.
467 */
468static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
469{
470 int oslot = pcpu_chunk_slot(chunk);
471 int i, off;
472
473 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
474 if (off == freeme)
475 break;
476 BUG_ON(off != freeme);
477 BUG_ON(chunk->map[i] > 0);
478
479 chunk->map[i] = -chunk->map[i];
480 chunk->free_size += chunk->map[i];
481
482 /* merge with previous? */
483 if (i > 0 && chunk->map[i - 1] >= 0) {
484 chunk->map[i - 1] += chunk->map[i];
485 chunk->map_used--;
486 memmove(&chunk->map[i], &chunk->map[i + 1],
487 (chunk->map_used - i) * sizeof(chunk->map[0]));
488 i--;
489 }
490 /* merge with next? */
491 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
492 chunk->map[i] += chunk->map[i + 1];
493 chunk->map_used--;
494 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
495 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
496 }
497
498 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
499 pcpu_chunk_relocate(chunk, oslot);
500}
501
502/**
503 * pcpu_unmap - unmap pages out of a pcpu_chunk
504 * @chunk: chunk of interest
505 * @page_start: page index of the first page to unmap
506 * @page_end: page index of the last page to unmap + 1
507 * @flush: whether to flush cache and tlb or not
508 *
509 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
510 * If @flush is true, vcache is flushed before unmapping and tlb
511 * after.
512 */
513static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
514 bool flush)
515{
516 unsigned int last = num_possible_cpus() - 1;
517 unsigned int cpu;
518
519 /*
520 * Each flushing trial can be very expensive, issue flush on
521 * the whole region at once rather than doing it for each cpu.
522 * This could be an overkill but is more scalable.
523 */
524 if (flush)
525 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
526 pcpu_chunk_addr(chunk, last, page_end));
527
528 for_each_possible_cpu(cpu)
529 unmap_kernel_range_noflush(
530 pcpu_chunk_addr(chunk, cpu, page_start),
531 (page_end - page_start) << PAGE_SHIFT);
532
533 /* ditto as flush_cache_vunmap() */
534 if (flush)
535 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
536 pcpu_chunk_addr(chunk, last, page_end));
537}
538
539/**
540 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
541 * @chunk: chunk to depopulate
542 * @off: offset to the area to depopulate
543 * @size: size of the area to depopulate
544 * @flush: whether to flush cache and tlb or not
545 *
546 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
547 * from @chunk. If @flush is true, vcache is flushed before unmapping
548 * and tlb after.
549 */
550static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, size_t off,
551 size_t size, bool flush)
552{
553 int page_start = PFN_DOWN(off);
554 int page_end = PFN_UP(off + size);
555 int unmap_start = -1;
556 int uninitialized_var(unmap_end);
557 unsigned int cpu;
558 int i;
559
560 for (i = page_start; i < page_end; i++) {
561 for_each_possible_cpu(cpu) {
562 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
563
564 if (!*pagep)
565 continue;
566
567 __free_page(*pagep);
568
569 /*
570 * If it's partial depopulation, it might get
571 * populated or depopulated again. Mark the
572 * page gone.
573 */
574 *pagep = NULL;
575
576 unmap_start = unmap_start < 0 ? i : unmap_start;
577 unmap_end = i + 1;
578 }
579 }
580
581 if (unmap_start >= 0)
582 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
583}
584
585/**
586 * pcpu_map - map pages into a pcpu_chunk
587 * @chunk: chunk of interest
588 * @page_start: page index of the first page to map
589 * @page_end: page index of the last page to map + 1
590 *
591 * For each cpu, map pages [@page_start,@page_end) into @chunk.
592 * vcache is flushed afterwards.
593 */
594static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
595{
596 unsigned int last = num_possible_cpus() - 1;
597 unsigned int cpu;
598 int err;
599
600 for_each_possible_cpu(cpu) {
601 err = map_kernel_range_noflush(
602 pcpu_chunk_addr(chunk, cpu, page_start),
603 (page_end - page_start) << PAGE_SHIFT,
604 PAGE_KERNEL,
605 pcpu_chunk_pagep(chunk, cpu, page_start));
606 if (err < 0)
607 return err;
608 }
609
610 /* flush at once, please read comments in pcpu_unmap() */
611 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
612 pcpu_chunk_addr(chunk, last, page_end));
613 return 0;
614}
615
616/**
617 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
618 * @chunk: chunk of interest
619 * @off: offset to the area to populate
620 * @size: size of the area to populate
621 *
622 * For each cpu, populate and map pages [@page_start,@page_end) into
623 * @chunk. The area is cleared on return.
624 */
625static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
626{
627 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
628 int page_start = PFN_DOWN(off);
629 int page_end = PFN_UP(off + size);
630 int map_start = -1;
631 int map_end;
632 unsigned int cpu;
633 int i;
634
635 for (i = page_start; i < page_end; i++) {
636 if (pcpu_chunk_page_occupied(chunk, i)) {
637 if (map_start >= 0) {
638 if (pcpu_map(chunk, map_start, map_end))
639 goto err;
640 map_start = -1;
641 }
642 continue;
643 }
644
645 map_start = map_start < 0 ? i : map_start;
646 map_end = i + 1;
647
648 for_each_possible_cpu(cpu) {
649 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
650
651 *pagep = alloc_pages_node(cpu_to_node(cpu),
652 alloc_mask, 0);
653 if (!*pagep)
654 goto err;
655 }
656 }
657
658 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
659 goto err;
660
661 for_each_possible_cpu(cpu)
662 memset(chunk->vm->addr + (cpu << pcpu_unit_shift) + off, 0,
663 size);
664
665 return 0;
666err:
667 /* likely under heavy memory pressure, give memory back */
668 pcpu_depopulate_chunk(chunk, off, size, true);
669 return -ENOMEM;
670}
671
672static void free_pcpu_chunk(struct pcpu_chunk *chunk)
673{
674 if (!chunk)
675 return;
676 if (chunk->vm)
677 free_vm_area(chunk->vm);
678 pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
679 kfree(chunk);
680}
681
682static struct pcpu_chunk *alloc_pcpu_chunk(void)
683{
684 struct pcpu_chunk *chunk;
685
686 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
687 if (!chunk)
688 return NULL;
689
690 chunk->map = pcpu_realloc(NULL, 0,
691 PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
692 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
693 chunk->map[chunk->map_used++] = pcpu_unit_size;
694
695 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
696 if (!chunk->vm) {
697 free_pcpu_chunk(chunk);
698 return NULL;
699 }
700
701 INIT_LIST_HEAD(&chunk->list);
702 chunk->free_size = pcpu_unit_size;
703 chunk->contig_hint = pcpu_unit_size;
704
705 return chunk;
706}
707
708/**
709 * __alloc_percpu - allocate percpu area
710 * @size: size of area to allocate
711 * @align: alignment of area (max PAGE_SIZE)
712 *
713 * Allocate percpu area of @size bytes aligned at @align. Might
714 * sleep. Might trigger writeouts.
715 *
716 * RETURNS:
717 * Percpu pointer to the allocated area on success, NULL on failure.
718 */
719void *__alloc_percpu(size_t size, size_t align)
720{
721 void *ptr = NULL;
722 struct pcpu_chunk *chunk;
723 int slot, off;
724
725 if (unlikely(!size || size > PAGE_SIZE << PCPU_MIN_UNIT_PAGES_SHIFT ||
726 align > PAGE_SIZE)) {
727 WARN(true, "illegal size (%zu) or align (%zu) for "
728 "percpu allocation\n", size, align);
729 return NULL;
730 }
731
732 mutex_lock(&pcpu_mutex);
733
734 /* allocate area */
735 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
736 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
737 if (size > chunk->contig_hint)
738 continue;
739 off = pcpu_alloc_area(chunk, size, align);
740 if (off >= 0)
741 goto area_found;
742 if (off != -ENOSPC)
743 goto out_unlock;
744 }
745 }
746
747 /* hmmm... no space left, create a new chunk */
748 chunk = alloc_pcpu_chunk();
749 if (!chunk)
750 goto out_unlock;
751 pcpu_chunk_relocate(chunk, -1);
752 pcpu_chunk_addr_insert(chunk);
753
754 off = pcpu_alloc_area(chunk, size, align);
755 if (off < 0)
756 goto out_unlock;
757
758area_found:
759 /* populate, map and clear the area */
760 if (pcpu_populate_chunk(chunk, off, size)) {
761 pcpu_free_area(chunk, off);
762 goto out_unlock;
763 }
764
765 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
766out_unlock:
767 mutex_unlock(&pcpu_mutex);
768 return ptr;
769}
770EXPORT_SYMBOL_GPL(__alloc_percpu);
771
772static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
773{
774 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
775 list_del(&chunk->list);
776 rb_erase(&chunk->rb_node, &pcpu_addr_root);
777 free_pcpu_chunk(chunk);
778}
779
780/**
781 * free_percpu - free percpu area
782 * @ptr: pointer to area to free
783 *
784 * Free percpu area @ptr. Might sleep.
785 */
786void free_percpu(void *ptr)
787{
788 void *addr = __pcpu_ptr_to_addr(ptr);
789 struct pcpu_chunk *chunk;
790 int off;
791
792 if (!ptr)
793 return;
794
795 mutex_lock(&pcpu_mutex);
796
797 chunk = pcpu_chunk_addr_search(addr);
798 off = addr - chunk->vm->addr;
799
800 pcpu_free_area(chunk, off);
801
802 /* the chunk became fully free, kill one if there are other free ones */
803 if (chunk->free_size == pcpu_unit_size) {
804 struct pcpu_chunk *pos;
805
806 list_for_each_entry(pos,
807 &pcpu_slot[pcpu_chunk_slot(chunk)], list)
808 if (pos != chunk) {
809 pcpu_kill_chunk(pos);
810 break;
811 }
812 }
813
814 mutex_unlock(&pcpu_mutex);
815}
816EXPORT_SYMBOL_GPL(free_percpu);
817
818/**
819 * pcpu_setup_static - initialize kernel static percpu area
820 * @populate_pte_fn: callback to allocate pagetable
821 * @pages: num_possible_cpus() * PFN_UP(cpu_size) pages
822 *
823 * Initialize kernel static percpu area. The caller should allocate
824 * all the necessary pages and pass them in @pages.
825 * @populate_pte_fn() is called on each page to be used for percpu
826 * mapping and is responsible for making sure all the necessary page
827 * tables for the page is allocated.
828 *
829 * RETURNS:
830 * The determined pcpu_unit_size which can be used to initialize
831 * percpu access.
832 */
833size_t __init pcpu_setup_static(pcpu_populate_pte_fn_t populate_pte_fn,
834 struct page **pages, size_t cpu_size)
835{
836 static struct vm_struct static_vm;
837 struct pcpu_chunk *static_chunk;
838 int nr_cpu_pages = DIV_ROUND_UP(cpu_size, PAGE_SIZE);
839 unsigned int cpu;
840 int err, i;
841
842 pcpu_unit_pages_shift = max_t(int, PCPU_MIN_UNIT_PAGES_SHIFT,
843 order_base_2(cpu_size) - PAGE_SHIFT);
844
845 pcpu_static_size = cpu_size;
846 pcpu_unit_pages = 1 << pcpu_unit_pages_shift;
847 pcpu_unit_shift = PAGE_SHIFT + pcpu_unit_pages_shift;
848 pcpu_unit_size = 1 << pcpu_unit_shift;
849 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
850 pcpu_nr_slots = pcpu_size_to_slot(pcpu_unit_size) + 1;
851 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
852 + (1 << pcpu_unit_pages_shift) * sizeof(struct page *);
853
854 /* allocate chunk slots */
855 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
856 for (i = 0; i < pcpu_nr_slots; i++)
857 INIT_LIST_HEAD(&pcpu_slot[i]);
858
859 /* init and register vm area */
860 static_vm.flags = VM_ALLOC;
861 static_vm.size = pcpu_chunk_size;
862 vm_area_register_early(&static_vm);
863
864 /* init static_chunk */
865 static_chunk = alloc_bootmem(pcpu_chunk_struct_size);
866 INIT_LIST_HEAD(&static_chunk->list);
867 static_chunk->vm = &static_vm;
868 static_chunk->free_size = pcpu_unit_size - pcpu_static_size;
869 static_chunk->contig_hint = static_chunk->free_size;
870
871 /* assign pages and map them */
872 for_each_possible_cpu(cpu) {
873 for (i = 0; i < nr_cpu_pages; i++) {
874 *pcpu_chunk_pagep(static_chunk, cpu, i) = *pages++;
875 populate_pte_fn(pcpu_chunk_addr(static_chunk, cpu, i));
876 }
877 }
878
879 err = pcpu_map(static_chunk, 0, nr_cpu_pages);
880 if (err)
881 panic("failed to setup static percpu area, err=%d\n", err);
882
883 /* link static_chunk in */
884 pcpu_chunk_relocate(static_chunk, -1);
885 pcpu_chunk_addr_insert(static_chunk);
886
887 /* we're done */
888 pcpu_base_addr = (void *)pcpu_chunk_addr(static_chunk, 0, 0);
889 return pcpu_unit_size;
890}