blob: 14e35364cdfa6e6695fcba2afdc78bed2e2fa8dd [file] [log] [blame]
Herbert Xu743edf52007-12-10 16:18:01 +08001/*
2 * AEAD: Authenticated Encryption with Associated Data
3 *
4 * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_AEAD_H
14#define _CRYPTO_AEAD_H
15
16#include <linux/crypto.h>
17#include <linux/kernel.h>
Herbert Xu3a282bd2007-12-08 20:13:15 +080018#include <linux/slab.h>
Herbert Xu743edf52007-12-10 16:18:01 +080019
20/**
Herbert Xu5d1d65f2015-05-11 17:48:12 +080021 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
22 *
23 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24 * (listed as type "aead" in /proc/crypto)
25 *
26 * The most prominent examples for this type of encryption is GCM and CCM.
27 * However, the kernel supports other types of AEAD ciphers which are defined
28 * with the following cipher string:
29 *
30 * authenc(keyed message digest, block cipher)
31 *
32 * For example: authenc(hmac(sha256), cbc(aes))
33 *
34 * The example code provided for the asynchronous block cipher operation
35 * applies here as well. Naturally all *ablkcipher* symbols must be exchanged
Masanari Iida12f7c142015-06-04 00:01:21 +090036 * the *aead* pendants discussed in the following. In addition, for the AEAD
Herbert Xu5d1d65f2015-05-11 17:48:12 +080037 * operation, the aead_request_set_assoc function must be used to set the
38 * pointer to the associated data memory location before performing the
39 * encryption or decryption operation. In case of an encryption, the associated
40 * data memory is filled during the encryption operation. For decryption, the
41 * associated data memory must contain data that is used to verify the integrity
42 * of the decrypted data. Another deviation from the asynchronous block cipher
43 * operation is that the caller should explicitly check for -EBADMSG of the
44 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45 * a breach in the integrity of the message. In essence, that -EBADMSG error
46 * code is the key bonus an AEAD cipher has over "standard" block chaining
47 * modes.
Stephan Muellerf6e45c22015-08-03 09:08:05 +020048 *
49 * Memory Structure:
50 *
51 * To support the needs of the most prominent user of AEAD ciphers, namely
52 * IPSEC, the AEAD ciphers have a special memory layout the caller must adhere
53 * to.
54 *
55 * The scatter list pointing to the input data must contain:
56 *
57 * * for RFC4106 ciphers, the concatenation of
58 * associated authentication data || IV || plaintext or ciphertext. Note, the
59 * same IV (buffer) is also set with the aead_request_set_crypt call. Note,
60 * the API call of aead_request_set_ad must provide the length of the AAD and
61 * the IV. The API call of aead_request_set_crypt only points to the size of
62 * the input plaintext or ciphertext.
63 *
64 * * for "normal" AEAD ciphers, the concatenation of
65 * associated authentication data || plaintext or ciphertext.
66 *
67 * It is important to note that if multiple scatter gather list entries form
68 * the input data mentioned above, the first entry must not point to a NULL
69 * buffer. If there is any potential where the AAD buffer can be NULL, the
70 * calling code must contain a precaution to ensure that this does not result
71 * in the first scatter gather list entry pointing to a NULL buffer.
Herbert Xu5d1d65f2015-05-11 17:48:12 +080072 */
73
74/**
75 * struct aead_request - AEAD request
76 * @base: Common attributes for async crypto requests
Stephan Muelleraddfda2f2015-05-28 08:52:42 +020077 * @old: Boolean whether the old or new AEAD API is used
Herbert Xu5d1d65f2015-05-11 17:48:12 +080078 * @assoclen: Length in bytes of associated data for authentication
79 * @cryptlen: Length of data to be encrypted or decrypted
80 * @iv: Initialisation vector
81 * @assoc: Associated data
82 * @src: Source data
83 * @dst: Destination data
84 * @__ctx: Start of private context data
85 */
86struct aead_request {
87 struct crypto_async_request base;
88
Herbert Xu996d98d2015-05-21 15:11:01 +080089 bool old;
90
Herbert Xu5d1d65f2015-05-11 17:48:12 +080091 unsigned int assoclen;
92 unsigned int cryptlen;
93
94 u8 *iv;
95
96 struct scatterlist *assoc;
97 struct scatterlist *src;
98 struct scatterlist *dst;
99
100 void *__ctx[] CRYPTO_MINALIGN_ATTR;
101};
102
103/**
Herbert Xu743edf52007-12-10 16:18:01 +0800104 * struct aead_givcrypt_request - AEAD request with IV generation
105 * @seq: Sequence number for IV generation
106 * @giv: Space for generated IV
107 * @areq: The AEAD request itself
108 */
109struct aead_givcrypt_request {
110 u64 seq;
111 u8 *giv;
112
113 struct aead_request areq;
114};
115
Herbert Xu63293c62015-05-21 15:11:08 +0800116/**
117 * struct aead_alg - AEAD cipher definition
118 * @maxauthsize: Set the maximum authentication tag size supported by the
119 * transformation. A transformation may support smaller tag sizes.
120 * As the authentication tag is a message digest to ensure the
121 * integrity of the encrypted data, a consumer typically wants the
122 * largest authentication tag possible as defined by this
123 * variable.
124 * @setauthsize: Set authentication size for the AEAD transformation. This
125 * function is used to specify the consumer requested size of the
126 * authentication tag to be either generated by the transformation
127 * during encryption or the size of the authentication tag to be
128 * supplied during the decryption operation. This function is also
129 * responsible for checking the authentication tag size for
130 * validity.
131 * @setkey: see struct ablkcipher_alg
132 * @encrypt: see struct ablkcipher_alg
133 * @decrypt: see struct ablkcipher_alg
134 * @geniv: see struct ablkcipher_alg
135 * @ivsize: see struct ablkcipher_alg
Herbert Xu5eb8ec62015-05-28 22:07:53 +0800136 * @init: Initialize the cryptographic transformation object. This function
137 * is used to initialize the cryptographic transformation object.
138 * This function is called only once at the instantiation time, right
139 * after the transformation context was allocated. In case the
140 * cryptographic hardware has some special requirements which need to
141 * be handled by software, this function shall check for the precise
142 * requirement of the transformation and put any software fallbacks
143 * in place.
144 * @exit: Deinitialize the cryptographic transformation object. This is a
145 * counterpart to @init, used to remove various changes set in
146 * @init.
Herbert Xu63293c62015-05-21 15:11:08 +0800147 *
148 * All fields except @ivsize is mandatory and must be filled.
149 */
150struct aead_alg {
151 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
152 unsigned int keylen);
153 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
154 int (*encrypt)(struct aead_request *req);
155 int (*decrypt)(struct aead_request *req);
Herbert Xu5eb8ec62015-05-28 22:07:53 +0800156 int (*init)(struct crypto_aead *tfm);
157 void (*exit)(struct crypto_aead *tfm);
Herbert Xu63293c62015-05-21 15:11:08 +0800158
159 const char *geniv;
160
161 unsigned int ivsize;
162 unsigned int maxauthsize;
163
164 struct crypto_alg base;
165};
166
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800167struct crypto_aead {
Herbert Xu63293c62015-05-21 15:11:08 +0800168 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
169 unsigned int keylen);
170 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800171 int (*encrypt)(struct aead_request *req);
172 int (*decrypt)(struct aead_request *req);
173 int (*givencrypt)(struct aead_givcrypt_request *req);
174 int (*givdecrypt)(struct aead_givcrypt_request *req);
175
176 struct crypto_aead *child;
177
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800178 unsigned int authsize;
179 unsigned int reqsize;
180
181 struct crypto_tfm base;
182};
183
184static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
185{
186 return container_of(tfm, struct crypto_aead, base);
187}
188
189/**
190 * crypto_alloc_aead() - allocate AEAD cipher handle
191 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
192 * AEAD cipher
193 * @type: specifies the type of the cipher
194 * @mask: specifies the mask for the cipher
195 *
196 * Allocate a cipher handle for an AEAD. The returned struct
197 * crypto_aead is the cipher handle that is required for any subsequent
198 * API invocation for that AEAD.
199 *
200 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
201 * of an error, PTR_ERR() returns the error code.
202 */
203struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
204
205static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
206{
207 return &tfm->base;
208}
209
210/**
211 * crypto_free_aead() - zeroize and free aead handle
212 * @tfm: cipher handle to be freed
213 */
214static inline void crypto_free_aead(struct crypto_aead *tfm)
215{
216 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
217}
218
219static inline struct crypto_aead *crypto_aead_crt(struct crypto_aead *tfm)
220{
221 return tfm;
222}
223
Herbert Xu30e4c012015-05-22 16:30:48 +0800224static inline struct old_aead_alg *crypto_old_aead_alg(struct crypto_aead *tfm)
225{
226 return &crypto_aead_tfm(tfm)->__crt_alg->cra_aead;
227}
228
229static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
230{
231 return container_of(crypto_aead_tfm(tfm)->__crt_alg,
232 struct aead_alg, base);
233}
234
235static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
236{
237 return alg->base.cra_aead.encrypt ? alg->base.cra_aead.ivsize :
238 alg->ivsize;
239}
240
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800241/**
242 * crypto_aead_ivsize() - obtain IV size
243 * @tfm: cipher handle
244 *
245 * The size of the IV for the aead referenced by the cipher handle is
246 * returned. This IV size may be zero if the cipher does not need an IV.
247 *
248 * Return: IV size in bytes
249 */
250static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
251{
Herbert Xu30e4c012015-05-22 16:30:48 +0800252 return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800253}
254
255/**
256 * crypto_aead_authsize() - obtain maximum authentication data size
257 * @tfm: cipher handle
258 *
259 * The maximum size of the authentication data for the AEAD cipher referenced
260 * by the AEAD cipher handle is returned. The authentication data size may be
261 * zero if the cipher implements a hard-coded maximum.
262 *
263 * The authentication data may also be known as "tag value".
264 *
265 * Return: authentication data size / tag size in bytes
266 */
267static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
268{
269 return tfm->authsize;
270}
271
272/**
273 * crypto_aead_blocksize() - obtain block size of cipher
274 * @tfm: cipher handle
275 *
276 * The block size for the AEAD referenced with the cipher handle is returned.
277 * The caller may use that information to allocate appropriate memory for the
278 * data returned by the encryption or decryption operation
279 *
280 * Return: block size of cipher
281 */
282static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
283{
284 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
285}
286
287static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
288{
289 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
290}
291
292static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
293{
294 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
295}
296
297static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
298{
299 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
300}
301
302static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
303{
304 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
305}
306
307/**
308 * crypto_aead_setkey() - set key for cipher
309 * @tfm: cipher handle
310 * @key: buffer holding the key
311 * @keylen: length of the key in bytes
312 *
313 * The caller provided key is set for the AEAD referenced by the cipher
314 * handle.
315 *
316 * Note, the key length determines the cipher type. Many block ciphers implement
317 * different cipher modes depending on the key size, such as AES-128 vs AES-192
318 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
319 * is performed.
320 *
321 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
322 */
323int crypto_aead_setkey(struct crypto_aead *tfm,
324 const u8 *key, unsigned int keylen);
325
326/**
327 * crypto_aead_setauthsize() - set authentication data size
328 * @tfm: cipher handle
329 * @authsize: size of the authentication data / tag in bytes
330 *
331 * Set the authentication data size / tag size. AEAD requires an authentication
332 * tag (or MAC) in addition to the associated data.
333 *
334 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
335 */
336int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
337
338static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
339{
340 return __crypto_aead_cast(req->base.tfm);
341}
342
343/**
344 * crypto_aead_encrypt() - encrypt plaintext
345 * @req: reference to the aead_request handle that holds all information
346 * needed to perform the cipher operation
347 *
348 * Encrypt plaintext data using the aead_request handle. That data structure
349 * and how it is filled with data is discussed with the aead_request_*
350 * functions.
351 *
352 * IMPORTANT NOTE The encryption operation creates the authentication data /
353 * tag. That data is concatenated with the created ciphertext.
354 * The ciphertext memory size is therefore the given number of
355 * block cipher blocks + the size defined by the
356 * crypto_aead_setauthsize invocation. The caller must ensure
357 * that sufficient memory is available for the ciphertext and
358 * the authentication tag.
359 *
360 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
361 */
362static inline int crypto_aead_encrypt(struct aead_request *req)
363{
364 return crypto_aead_reqtfm(req)->encrypt(req);
365}
366
367/**
368 * crypto_aead_decrypt() - decrypt ciphertext
369 * @req: reference to the ablkcipher_request handle that holds all information
370 * needed to perform the cipher operation
371 *
372 * Decrypt ciphertext data using the aead_request handle. That data structure
373 * and how it is filled with data is discussed with the aead_request_*
374 * functions.
375 *
376 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
377 * authentication data / tag. That authentication data / tag
378 * must have the size defined by the crypto_aead_setauthsize
379 * invocation.
380 *
381 *
382 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
383 * cipher operation performs the authentication of the data during the
384 * decryption operation. Therefore, the function returns this error if
385 * the authentication of the ciphertext was unsuccessful (i.e. the
386 * integrity of the ciphertext or the associated data was violated);
387 * < 0 if an error occurred.
388 */
389static inline int crypto_aead_decrypt(struct aead_request *req)
390{
391 if (req->cryptlen < crypto_aead_authsize(crypto_aead_reqtfm(req)))
392 return -EINVAL;
393
394 return crypto_aead_reqtfm(req)->decrypt(req);
395}
396
397/**
398 * DOC: Asynchronous AEAD Request Handle
399 *
400 * The aead_request data structure contains all pointers to data required for
401 * the AEAD cipher operation. This includes the cipher handle (which can be
402 * used by multiple aead_request instances), pointer to plaintext and
403 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
404 * aead_request_* API calls in a similar way as AEAD handle to the
405 * crypto_aead_* API calls.
406 */
407
408/**
409 * crypto_aead_reqsize() - obtain size of the request data structure
410 * @tfm: cipher handle
411 *
412 * Return: number of bytes
413 */
Herbert Xu996d98d2015-05-21 15:11:01 +0800414unsigned int crypto_aead_reqsize(struct crypto_aead *tfm);
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800415
416/**
417 * aead_request_set_tfm() - update cipher handle reference in request
418 * @req: request handle to be modified
419 * @tfm: cipher handle that shall be added to the request handle
420 *
421 * Allow the caller to replace the existing aead handle in the request
422 * data structure with a different one.
423 */
424static inline void aead_request_set_tfm(struct aead_request *req,
425 struct crypto_aead *tfm)
426{
427 req->base.tfm = crypto_aead_tfm(tfm->child);
428}
429
430/**
431 * aead_request_alloc() - allocate request data structure
432 * @tfm: cipher handle to be registered with the request
433 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
434 *
435 * Allocate the request data structure that must be used with the AEAD
436 * encrypt and decrypt API calls. During the allocation, the provided aead
437 * handle is registered in the request data structure.
438 *
439 * Return: allocated request handle in case of success; IS_ERR() is true in case
440 * of an error, PTR_ERR() returns the error code.
441 */
442static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
443 gfp_t gfp)
444{
445 struct aead_request *req;
446
447 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
448
449 if (likely(req))
450 aead_request_set_tfm(req, tfm);
451
452 return req;
453}
454
455/**
456 * aead_request_free() - zeroize and free request data structure
457 * @req: request data structure cipher handle to be freed
458 */
459static inline void aead_request_free(struct aead_request *req)
460{
461 kzfree(req);
462}
463
464/**
465 * aead_request_set_callback() - set asynchronous callback function
466 * @req: request handle
467 * @flags: specify zero or an ORing of the flags
468 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
469 * increase the wait queue beyond the initial maximum size;
470 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
471 * @compl: callback function pointer to be registered with the request handle
472 * @data: The data pointer refers to memory that is not used by the kernel
473 * crypto API, but provided to the callback function for it to use. Here,
474 * the caller can provide a reference to memory the callback function can
475 * operate on. As the callback function is invoked asynchronously to the
476 * related functionality, it may need to access data structures of the
477 * related functionality which can be referenced using this pointer. The
478 * callback function can access the memory via the "data" field in the
479 * crypto_async_request data structure provided to the callback function.
480 *
481 * Setting the callback function that is triggered once the cipher operation
482 * completes
483 *
484 * The callback function is registered with the aead_request handle and
485 * must comply with the following template
486 *
487 * void callback_function(struct crypto_async_request *req, int error)
488 */
489static inline void aead_request_set_callback(struct aead_request *req,
490 u32 flags,
491 crypto_completion_t compl,
492 void *data)
493{
494 req->base.complete = compl;
495 req->base.data = data;
496 req->base.flags = flags;
497}
498
499/**
500 * aead_request_set_crypt - set data buffers
501 * @req: request handle
502 * @src: source scatter / gather list
503 * @dst: destination scatter / gather list
504 * @cryptlen: number of bytes to process from @src
505 * @iv: IV for the cipher operation which must comply with the IV size defined
506 * by crypto_aead_ivsize()
507 *
Stephan Muelleraddfda2f2015-05-28 08:52:42 +0200508 * Setting the source data and destination data scatter / gather lists which
509 * hold the associated data concatenated with the plaintext or ciphertext. See
510 * below for the authentication tag.
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800511 *
512 * For encryption, the source is treated as the plaintext and the
513 * destination is the ciphertext. For a decryption operation, the use is
514 * reversed - the source is the ciphertext and the destination is the plaintext.
515 *
Herbert Xu693b5492015-05-27 14:37:26 +0800516 * For both src/dst the layout is associated data, plain/cipher text,
517 * authentication tag.
518 *
519 * The content of the AD in the destination buffer after processing
520 * will either be untouched, or it will contain a copy of the AD
521 * from the source buffer. In order to ensure that it always has
522 * a copy of the AD, the user must copy the AD over either before
523 * or after processing. Of course this is not relevant if the user
524 * is doing in-place processing where src == dst.
Herbert Xu996d98d2015-05-21 15:11:01 +0800525 *
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800526 * IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption,
527 * the caller must concatenate the ciphertext followed by the
528 * authentication tag and provide the entire data stream to the
529 * decryption operation (i.e. the data length used for the
530 * initialization of the scatterlist and the data length for the
531 * decryption operation is identical). For encryption, however,
532 * the authentication tag is created while encrypting the data.
533 * The destination buffer must hold sufficient space for the
534 * ciphertext and the authentication tag while the encryption
535 * invocation must only point to the plaintext data size. The
536 * following code snippet illustrates the memory usage
537 * buffer = kmalloc(ptbuflen + (enc ? authsize : 0));
538 * sg_init_one(&sg, buffer, ptbuflen + (enc ? authsize : 0));
539 * aead_request_set_crypt(req, &sg, &sg, ptbuflen, iv);
540 */
541static inline void aead_request_set_crypt(struct aead_request *req,
542 struct scatterlist *src,
543 struct scatterlist *dst,
544 unsigned int cryptlen, u8 *iv)
545{
546 req->src = src;
547 req->dst = dst;
548 req->cryptlen = cryptlen;
549 req->iv = iv;
550}
551
552/**
553 * aead_request_set_assoc() - set the associated data scatter / gather list
554 * @req: request handle
555 * @assoc: associated data scatter / gather list
556 * @assoclen: number of bytes to process from @assoc
557 *
Herbert Xu996d98d2015-05-21 15:11:01 +0800558 * Obsolete, do not use.
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800559 */
560static inline void aead_request_set_assoc(struct aead_request *req,
561 struct scatterlist *assoc,
562 unsigned int assoclen)
563{
564 req->assoc = assoc;
565 req->assoclen = assoclen;
Herbert Xu996d98d2015-05-21 15:11:01 +0800566 req->old = true;
567}
568
569/**
570 * aead_request_set_ad - set associated data information
571 * @req: request handle
572 * @assoclen: number of bytes in associated data
Herbert Xu996d98d2015-05-21 15:11:01 +0800573 *
574 * Setting the AD information. This function sets the length of
Herbert Xu693b5492015-05-27 14:37:26 +0800575 * the associated data.
Herbert Xu996d98d2015-05-21 15:11:01 +0800576 */
577static inline void aead_request_set_ad(struct aead_request *req,
Herbert Xu374d4ad2015-05-23 15:41:57 +0800578 unsigned int assoclen)
Herbert Xu996d98d2015-05-21 15:11:01 +0800579{
580 req->assoclen = assoclen;
Herbert Xu996d98d2015-05-21 15:11:01 +0800581 req->old = false;
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800582}
583
Herbert Xu743edf52007-12-10 16:18:01 +0800584static inline struct crypto_aead *aead_givcrypt_reqtfm(
585 struct aead_givcrypt_request *req)
586{
587 return crypto_aead_reqtfm(&req->areq);
588}
589
Herbert Xu3a282bd2007-12-08 20:13:15 +0800590static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
591{
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800592 return aead_givcrypt_reqtfm(req)->givencrypt(req);
Herbert Xu3a282bd2007-12-08 20:13:15 +0800593};
594
595static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
596{
Herbert Xu5d1d65f2015-05-11 17:48:12 +0800597 return aead_givcrypt_reqtfm(req)->givdecrypt(req);
Herbert Xu3a282bd2007-12-08 20:13:15 +0800598};
599
600static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
601 struct crypto_aead *tfm)
602{
603 req->areq.base.tfm = crypto_aead_tfm(tfm);
604}
605
606static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
607 struct crypto_aead *tfm, gfp_t gfp)
608{
609 struct aead_givcrypt_request *req;
610
611 req = kmalloc(sizeof(struct aead_givcrypt_request) +
612 crypto_aead_reqsize(tfm), gfp);
613
614 if (likely(req))
615 aead_givcrypt_set_tfm(req, tfm);
616
617 return req;
618}
619
620static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
621{
622 kfree(req);
623}
624
625static inline void aead_givcrypt_set_callback(
626 struct aead_givcrypt_request *req, u32 flags,
Mark Rustad3e3dc252014-07-25 02:53:38 -0700627 crypto_completion_t compl, void *data)
Herbert Xu3a282bd2007-12-08 20:13:15 +0800628{
Mark Rustad3e3dc252014-07-25 02:53:38 -0700629 aead_request_set_callback(&req->areq, flags, compl, data);
Herbert Xu3a282bd2007-12-08 20:13:15 +0800630}
631
632static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
633 struct scatterlist *src,
634 struct scatterlist *dst,
635 unsigned int nbytes, void *iv)
636{
637 aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
638}
639
640static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
641 struct scatterlist *assoc,
642 unsigned int assoclen)
643{
644 aead_request_set_assoc(&req->areq, assoc, assoclen);
645}
646
647static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
648 u8 *giv, u64 seq)
649{
650 req->giv = giv;
651 req->seq = seq;
652}
653
Herbert Xu743edf52007-12-10 16:18:01 +0800654#endif /* _CRYPTO_AEAD_H */