Eddie James | bbb6b2f | 2020-03-06 13:41:18 -0600 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | // Copyright (C) IBM Corporation 2020 |
| 3 | |
| 4 | #include <linux/bitfield.h> |
| 5 | #include <linux/bits.h> |
| 6 | #include <linux/fsi.h> |
| 7 | #include <linux/jiffies.h> |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/of.h> |
| 11 | #include <linux/spi/spi.h> |
| 12 | |
| 13 | #define FSI_ENGID_SPI 0x23 |
| 14 | #define FSI_MBOX_ROOT_CTRL_8 0x2860 |
| 15 | |
| 16 | #define FSI2SPI_DATA0 0x00 |
| 17 | #define FSI2SPI_DATA1 0x04 |
| 18 | #define FSI2SPI_CMD 0x08 |
| 19 | #define FSI2SPI_CMD_WRITE BIT(31) |
| 20 | #define FSI2SPI_RESET 0x18 |
| 21 | #define FSI2SPI_STATUS 0x1c |
| 22 | #define FSI2SPI_STATUS_ANY_ERROR BIT(31) |
| 23 | #define FSI2SPI_IRQ 0x20 |
| 24 | |
| 25 | #define SPI_FSI_BASE 0x70000 |
| 26 | #define SPI_FSI_INIT_TIMEOUT_MS 1000 |
| 27 | #define SPI_FSI_MAX_TRANSFER_SIZE 2048 |
| 28 | |
| 29 | #define SPI_FSI_ERROR 0x0 |
| 30 | #define SPI_FSI_COUNTER_CFG 0x1 |
| 31 | #define SPI_FSI_COUNTER_CFG_LOOPS(x) (((u64)(x) & 0xffULL) << 32) |
| 32 | #define SPI_FSI_CFG1 0x2 |
| 33 | #define SPI_FSI_CLOCK_CFG 0x3 |
| 34 | #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32) |
| 35 | #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33)) |
| 36 | #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38)) |
| 37 | #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39)) |
| 38 | #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42)) |
| 39 | #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44) |
| 40 | #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51) |
| 41 | #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52) |
| 42 | #define SPI_FSI_MMAP 0x4 |
| 43 | #define SPI_FSI_DATA_TX 0x5 |
| 44 | #define SPI_FSI_DATA_RX 0x6 |
| 45 | #define SPI_FSI_SEQUENCE 0x7 |
| 46 | #define SPI_FSI_SEQUENCE_STOP 0x00 |
| 47 | #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf)) |
| 48 | #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf)) |
| 49 | #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf)) |
| 50 | #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0 |
| 51 | #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf)) |
| 52 | #define SPI_FSI_STATUS 0x8 |
| 53 | #define SPI_FSI_STATUS_ERROR \ |
| 54 | (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12)) |
| 55 | #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48) |
| 56 | #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48) |
| 57 | #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57) |
| 58 | #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58) |
| 59 | #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59) |
| 60 | #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61) |
| 61 | #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62) |
| 62 | #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63) |
| 63 | #define SPI_FSI_STATUS_ANY_ERROR \ |
| 64 | (SPI_FSI_STATUS_ERROR | SPI_FSI_STATUS_TDR_UNDERRUN | \ |
| 65 | SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \ |
| 66 | SPI_FSI_STATUS_RDR_OVERRUN) |
| 67 | #define SPI_FSI_PORT_CTRL 0x9 |
| 68 | |
| 69 | struct fsi_spi { |
| 70 | struct device *dev; /* SPI controller device */ |
| 71 | struct fsi_device *fsi; /* FSI2SPI CFAM engine device */ |
| 72 | u32 base; |
| 73 | }; |
| 74 | |
| 75 | struct fsi_spi_sequence { |
| 76 | int bit; |
| 77 | u64 data; |
| 78 | }; |
| 79 | |
| 80 | static int fsi_spi_check_status(struct fsi_spi *ctx) |
| 81 | { |
| 82 | int rc; |
| 83 | u32 sts; |
| 84 | __be32 sts_be; |
| 85 | |
| 86 | rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be, |
| 87 | sizeof(sts_be)); |
| 88 | if (rc) |
| 89 | return rc; |
| 90 | |
| 91 | sts = be32_to_cpu(sts_be); |
| 92 | if (sts & FSI2SPI_STATUS_ANY_ERROR) { |
| 93 | dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts); |
| 94 | return -EIO; |
| 95 | } |
| 96 | |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value) |
| 101 | { |
| 102 | int rc; |
| 103 | __be32 cmd_be; |
| 104 | __be32 data_be; |
| 105 | u32 cmd = offset + ctx->base; |
| 106 | |
| 107 | *value = 0ULL; |
| 108 | |
| 109 | if (cmd & FSI2SPI_CMD_WRITE) |
| 110 | return -EINVAL; |
| 111 | |
| 112 | cmd_be = cpu_to_be32(cmd); |
| 113 | rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be)); |
| 114 | if (rc) |
| 115 | return rc; |
| 116 | |
| 117 | rc = fsi_spi_check_status(ctx); |
| 118 | if (rc) |
| 119 | return rc; |
| 120 | |
| 121 | rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be, |
| 122 | sizeof(data_be)); |
| 123 | if (rc) |
| 124 | return rc; |
| 125 | |
| 126 | *value |= (u64)be32_to_cpu(data_be) << 32; |
| 127 | |
| 128 | rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be, |
| 129 | sizeof(data_be)); |
| 130 | if (rc) |
| 131 | return rc; |
| 132 | |
| 133 | *value |= (u64)be32_to_cpu(data_be); |
| 134 | dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value); |
| 135 | |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value) |
| 140 | { |
| 141 | int rc; |
| 142 | __be32 cmd_be; |
| 143 | __be32 data_be; |
| 144 | u32 cmd = offset + ctx->base; |
| 145 | |
| 146 | if (cmd & FSI2SPI_CMD_WRITE) |
| 147 | return -EINVAL; |
| 148 | |
| 149 | dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value); |
| 150 | |
| 151 | data_be = cpu_to_be32(upper_32_bits(value)); |
| 152 | rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be, |
| 153 | sizeof(data_be)); |
| 154 | if (rc) |
| 155 | return rc; |
| 156 | |
| 157 | data_be = cpu_to_be32(lower_32_bits(value)); |
| 158 | rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be, |
| 159 | sizeof(data_be)); |
| 160 | if (rc) |
| 161 | return rc; |
| 162 | |
| 163 | cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE); |
| 164 | rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be)); |
| 165 | if (rc) |
| 166 | return rc; |
| 167 | |
| 168 | return fsi_spi_check_status(ctx); |
| 169 | } |
| 170 | |
| 171 | static int fsi_spi_data_in(u64 in, u8 *rx, int len) |
| 172 | { |
| 173 | int i; |
| 174 | int num_bytes = min(len, 8); |
| 175 | |
| 176 | for (i = 0; i < num_bytes; ++i) |
| 177 | rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i))); |
| 178 | |
| 179 | return num_bytes; |
| 180 | } |
| 181 | |
| 182 | static int fsi_spi_data_out(u64 *out, const u8 *tx, int len) |
| 183 | { |
| 184 | int i; |
| 185 | int num_bytes = min(len, 8); |
| 186 | u8 *out_bytes = (u8 *)out; |
| 187 | |
| 188 | /* Unused bytes of the tx data should be 0. */ |
| 189 | *out = 0ULL; |
| 190 | |
| 191 | for (i = 0; i < num_bytes; ++i) |
| 192 | out_bytes[8 - (i + 1)] = tx[i]; |
| 193 | |
| 194 | return num_bytes; |
| 195 | } |
| 196 | |
| 197 | static int fsi_spi_reset(struct fsi_spi *ctx) |
| 198 | { |
| 199 | int rc; |
| 200 | |
| 201 | dev_dbg(ctx->dev, "Resetting SPI controller.\n"); |
| 202 | |
| 203 | rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| 204 | SPI_FSI_CLOCK_CFG_RESET1); |
| 205 | if (rc) |
| 206 | return rc; |
| 207 | |
| 208 | return fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| 209 | SPI_FSI_CLOCK_CFG_RESET2); |
| 210 | } |
| 211 | |
| 212 | static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val) |
| 213 | { |
| 214 | /* |
| 215 | * Add the next byte of instruction to the 8-byte sequence register. |
| 216 | * Then decrement the counter so that the next instruction will go in |
| 217 | * the right place. Return the number of "slots" left in the sequence |
| 218 | * register. |
| 219 | */ |
| 220 | seq->data |= (u64)val << seq->bit; |
| 221 | seq->bit -= 8; |
| 222 | |
| 223 | return ((64 - seq->bit) / 8) - 2; |
| 224 | } |
| 225 | |
| 226 | static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq) |
| 227 | { |
| 228 | seq->bit = 56; |
| 229 | seq->data = 0ULL; |
| 230 | } |
| 231 | |
| 232 | static int fsi_spi_sequence_transfer(struct fsi_spi *ctx, |
| 233 | struct fsi_spi_sequence *seq, |
| 234 | struct spi_transfer *transfer) |
| 235 | { |
| 236 | int loops; |
| 237 | int idx; |
| 238 | int rc; |
| 239 | u8 len = min(transfer->len, 8U); |
| 240 | u8 rem = transfer->len % len; |
| 241 | |
| 242 | loops = transfer->len / len; |
| 243 | |
| 244 | if (transfer->tx_buf) { |
| 245 | idx = fsi_spi_sequence_add(seq, |
| 246 | SPI_FSI_SEQUENCE_SHIFT_OUT(len)); |
| 247 | if (rem) |
| 248 | rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem); |
| 249 | } else if (transfer->rx_buf) { |
| 250 | idx = fsi_spi_sequence_add(seq, |
| 251 | SPI_FSI_SEQUENCE_SHIFT_IN(len)); |
| 252 | if (rem) |
| 253 | rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem); |
| 254 | } else { |
| 255 | return -EINVAL; |
| 256 | } |
| 257 | |
| 258 | if (loops > 1) { |
| 259 | fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx)); |
| 260 | |
| 261 | if (rem) |
| 262 | fsi_spi_sequence_add(seq, rem); |
| 263 | |
| 264 | rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, |
| 265 | SPI_FSI_COUNTER_CFG_LOOPS(loops - 1)); |
| 266 | if (rc) |
| 267 | return rc; |
| 268 | } |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | static int fsi_spi_transfer_data(struct fsi_spi *ctx, |
| 274 | struct spi_transfer *transfer) |
| 275 | { |
| 276 | int rc = 0; |
| 277 | u64 status = 0ULL; |
| 278 | |
| 279 | if (transfer->tx_buf) { |
| 280 | int nb; |
| 281 | int sent = 0; |
| 282 | u64 out = 0ULL; |
| 283 | const u8 *tx = transfer->tx_buf; |
| 284 | |
| 285 | while (transfer->len > sent) { |
| 286 | nb = fsi_spi_data_out(&out, &tx[sent], |
| 287 | (int)transfer->len - sent); |
| 288 | |
| 289 | rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out); |
| 290 | if (rc) |
| 291 | return rc; |
| 292 | |
| 293 | do { |
| 294 | rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, |
| 295 | &status); |
| 296 | if (rc) |
| 297 | return rc; |
| 298 | |
| 299 | if (status & SPI_FSI_STATUS_ANY_ERROR) { |
| 300 | rc = fsi_spi_reset(ctx); |
| 301 | if (rc) |
| 302 | return rc; |
| 303 | |
| 304 | return -EREMOTEIO; |
| 305 | } |
| 306 | } while (status & SPI_FSI_STATUS_TDR_FULL); |
| 307 | |
| 308 | sent += nb; |
| 309 | } |
| 310 | } else if (transfer->rx_buf) { |
| 311 | int recv = 0; |
| 312 | u64 in = 0ULL; |
| 313 | u8 *rx = transfer->rx_buf; |
| 314 | |
| 315 | while (transfer->len > recv) { |
| 316 | do { |
| 317 | rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, |
| 318 | &status); |
| 319 | if (rc) |
| 320 | return rc; |
| 321 | |
| 322 | if (status & SPI_FSI_STATUS_ANY_ERROR) { |
| 323 | rc = fsi_spi_reset(ctx); |
| 324 | if (rc) |
| 325 | return rc; |
| 326 | |
| 327 | return -EREMOTEIO; |
| 328 | } |
| 329 | } while (!(status & SPI_FSI_STATUS_RDR_FULL)); |
| 330 | |
| 331 | rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in); |
| 332 | if (rc) |
| 333 | return rc; |
| 334 | |
| 335 | recv += fsi_spi_data_in(in, &rx[recv], |
| 336 | (int)transfer->len - recv); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | static int fsi_spi_transfer_init(struct fsi_spi *ctx) |
| 344 | { |
| 345 | int rc; |
| 346 | bool reset = false; |
| 347 | unsigned long end; |
| 348 | u64 seq_state; |
| 349 | u64 clock_cfg = 0ULL; |
| 350 | u64 status = 0ULL; |
| 351 | u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE | |
| 352 | SPI_FSI_CLOCK_CFG_SCK_NO_DEL | |
| 353 | FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 4); |
| 354 | |
| 355 | end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS); |
| 356 | do { |
| 357 | if (time_after(jiffies, end)) |
| 358 | return -ETIMEDOUT; |
| 359 | |
| 360 | rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status); |
| 361 | if (rc) |
| 362 | return rc; |
| 363 | |
| 364 | seq_state = status & SPI_FSI_STATUS_SEQ_STATE; |
| 365 | |
| 366 | if (status & (SPI_FSI_STATUS_ANY_ERROR | |
| 367 | SPI_FSI_STATUS_TDR_FULL | |
| 368 | SPI_FSI_STATUS_RDR_FULL)) { |
| 369 | if (reset) |
| 370 | return -EIO; |
| 371 | |
| 372 | rc = fsi_spi_reset(ctx); |
| 373 | if (rc) |
| 374 | return rc; |
| 375 | |
| 376 | reset = true; |
| 377 | continue; |
| 378 | } |
| 379 | } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE)); |
| 380 | |
| 381 | rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg); |
| 382 | if (rc) |
| 383 | return rc; |
| 384 | |
| 385 | if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE | |
| 386 | SPI_FSI_CLOCK_CFG_ECC_DISABLE | |
| 387 | SPI_FSI_CLOCK_CFG_MODE | |
| 388 | SPI_FSI_CLOCK_CFG_SCK_RECV_DEL | |
| 389 | SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg) |
| 390 | rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| 391 | wanted_clock_cfg); |
| 392 | |
| 393 | return rc; |
| 394 | } |
| 395 | |
| 396 | static int fsi_spi_transfer_one_message(struct spi_controller *ctlr, |
| 397 | struct spi_message *mesg) |
| 398 | { |
| 399 | int rc = 0; |
| 400 | u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1); |
| 401 | struct spi_transfer *transfer; |
| 402 | struct fsi_spi *ctx = spi_controller_get_devdata(ctlr); |
| 403 | |
| 404 | list_for_each_entry(transfer, &mesg->transfers, transfer_list) { |
| 405 | struct fsi_spi_sequence seq; |
| 406 | struct spi_transfer *next = NULL; |
| 407 | |
| 408 | /* Sequencer must do shift out (tx) first. */ |
| 409 | if (!transfer->tx_buf || |
| 410 | transfer->len > SPI_FSI_MAX_TRANSFER_SIZE) { |
| 411 | rc = -EINVAL; |
| 412 | goto error; |
| 413 | } |
| 414 | |
| 415 | dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len); |
| 416 | |
| 417 | rc = fsi_spi_transfer_init(ctx); |
| 418 | if (rc < 0) |
| 419 | goto error; |
| 420 | |
| 421 | fsi_spi_sequence_init(&seq); |
| 422 | fsi_spi_sequence_add(&seq, seq_slave); |
| 423 | |
| 424 | rc = fsi_spi_sequence_transfer(ctx, &seq, transfer); |
| 425 | if (rc) |
| 426 | goto error; |
| 427 | |
| 428 | if (!list_is_last(&transfer->transfer_list, |
| 429 | &mesg->transfers)) { |
| 430 | next = list_next_entry(transfer, transfer_list); |
| 431 | |
| 432 | /* Sequencer can only do shift in (rx) after tx. */ |
| 433 | if (next->rx_buf) { |
| 434 | if (next->len > SPI_FSI_MAX_TRANSFER_SIZE) { |
| 435 | rc = -EINVAL; |
| 436 | goto error; |
| 437 | } |
| 438 | |
| 439 | dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n", |
| 440 | next->len); |
| 441 | |
| 442 | rc = fsi_spi_sequence_transfer(ctx, &seq, |
| 443 | next); |
| 444 | if (rc) |
| 445 | goto error; |
| 446 | } else { |
| 447 | next = NULL; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0)); |
| 452 | |
| 453 | rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data); |
| 454 | if (rc) |
| 455 | goto error; |
| 456 | |
| 457 | rc = fsi_spi_transfer_data(ctx, transfer); |
| 458 | if (rc) |
| 459 | goto error; |
| 460 | |
| 461 | if (next) { |
| 462 | rc = fsi_spi_transfer_data(ctx, next); |
| 463 | if (rc) |
| 464 | goto error; |
| 465 | |
| 466 | transfer = next; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | error: |
| 471 | mesg->status = rc; |
| 472 | spi_finalize_current_message(ctlr); |
| 473 | |
| 474 | return rc; |
| 475 | } |
| 476 | |
| 477 | static size_t fsi_spi_max_transfer_size(struct spi_device *spi) |
| 478 | { |
| 479 | return SPI_FSI_MAX_TRANSFER_SIZE; |
| 480 | } |
| 481 | |
| 482 | static int fsi_spi_probe(struct device *dev) |
| 483 | { |
| 484 | int rc; |
| 485 | u32 root_ctrl_8; |
| 486 | struct device_node *np; |
| 487 | int num_controllers_registered = 0; |
| 488 | struct fsi_device *fsi = to_fsi_dev(dev); |
| 489 | |
| 490 | /* |
| 491 | * Check the SPI mux before attempting to probe. If the mux isn't set |
| 492 | * then the SPI controllers can't access their slave devices. |
| 493 | */ |
| 494 | rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8, |
| 495 | sizeof(root_ctrl_8)); |
| 496 | if (rc) |
| 497 | return rc; |
| 498 | |
| 499 | if (!root_ctrl_8) { |
| 500 | dev_dbg(dev, "SPI mux not set, aborting probe.\n"); |
| 501 | return -ENODEV; |
| 502 | } |
| 503 | |
| 504 | for_each_available_child_of_node(dev->of_node, np) { |
| 505 | u32 base; |
| 506 | struct fsi_spi *ctx; |
| 507 | struct spi_controller *ctlr; |
| 508 | |
| 509 | if (of_property_read_u32(np, "reg", &base)) |
| 510 | continue; |
| 511 | |
| 512 | ctlr = spi_alloc_master(dev, sizeof(*ctx)); |
| 513 | if (!ctlr) |
| 514 | break; |
| 515 | |
| 516 | ctlr->dev.of_node = np; |
| 517 | ctlr->num_chipselect = of_get_available_child_count(np) ?: 1; |
| 518 | ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX; |
| 519 | ctlr->max_transfer_size = fsi_spi_max_transfer_size; |
| 520 | ctlr->transfer_one_message = fsi_spi_transfer_one_message; |
| 521 | |
| 522 | ctx = spi_controller_get_devdata(ctlr); |
| 523 | ctx->dev = &ctlr->dev; |
| 524 | ctx->fsi = fsi; |
| 525 | ctx->base = base + SPI_FSI_BASE; |
| 526 | |
| 527 | rc = devm_spi_register_controller(dev, ctlr); |
| 528 | if (rc) |
| 529 | spi_controller_put(ctlr); |
| 530 | else |
| 531 | num_controllers_registered++; |
| 532 | } |
| 533 | |
| 534 | if (!num_controllers_registered) |
| 535 | return -ENODEV; |
| 536 | |
| 537 | return 0; |
| 538 | } |
| 539 | |
| 540 | static const struct fsi_device_id fsi_spi_ids[] = { |
| 541 | { FSI_ENGID_SPI, FSI_VERSION_ANY }, |
| 542 | { } |
| 543 | }; |
| 544 | MODULE_DEVICE_TABLE(fsi, fsi_spi_ids); |
| 545 | |
| 546 | static struct fsi_driver fsi_spi_driver = { |
| 547 | .id_table = fsi_spi_ids, |
| 548 | .drv = { |
| 549 | .name = "spi-fsi", |
| 550 | .bus = &fsi_bus_type, |
| 551 | .probe = fsi_spi_probe, |
| 552 | }, |
| 553 | }; |
| 554 | module_fsi_driver(fsi_spi_driver); |
| 555 | |
| 556 | MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>"); |
| 557 | MODULE_DESCRIPTION("FSI attached SPI controller"); |
| 558 | MODULE_LICENSE("GPL"); |