Russell King | 89c0b8e | 2011-05-08 18:47:58 +0100 | [diff] [blame] | 1 | /* |
| 2 | * i8253 PIT clocksource |
| 3 | */ |
Thomas Gleixner | e6220bd | 2011-06-09 13:08:25 +0000 | [diff] [blame^] | 4 | #include <linux/clockchips.h> |
Russell King | 89c0b8e | 2011-05-08 18:47:58 +0100 | [diff] [blame] | 5 | #include <linux/init.h> |
| 6 | #include <linux/io.h> |
| 7 | #include <linux/spinlock.h> |
| 8 | #include <linux/timex.h> |
Ralf Baechle | 15f304b | 2011-06-01 19:04:59 +0100 | [diff] [blame] | 9 | #include <linux/module.h> |
Ralf Baechle | 334955e | 2011-06-01 19:04:57 +0100 | [diff] [blame] | 10 | #include <linux/i8253.h> |
Thomas Gleixner | e6220bd | 2011-06-09 13:08:25 +0000 | [diff] [blame^] | 11 | #include <linux/smp.h> |
Russell King | 89c0b8e | 2011-05-08 18:47:58 +0100 | [diff] [blame] | 12 | |
| 13 | /* |
Ralf Baechle | 15f304b | 2011-06-01 19:04:59 +0100 | [diff] [blame] | 14 | * Protects access to I/O ports |
| 15 | * |
| 16 | * 0040-0043 : timer0, i8253 / i8254 |
| 17 | * 0061-0061 : NMI Control Register which contains two speaker control bits. |
| 18 | */ |
| 19 | DEFINE_RAW_SPINLOCK(i8253_lock); |
| 20 | EXPORT_SYMBOL(i8253_lock); |
| 21 | |
| 22 | #ifdef CONFIG_CLKSRC_I8253 |
| 23 | /* |
Russell King | 89c0b8e | 2011-05-08 18:47:58 +0100 | [diff] [blame] | 24 | * Since the PIT overflows every tick, its not very useful |
| 25 | * to just read by itself. So use jiffies to emulate a free |
| 26 | * running counter: |
| 27 | */ |
| 28 | static cycle_t i8253_read(struct clocksource *cs) |
| 29 | { |
| 30 | static int old_count; |
| 31 | static u32 old_jifs; |
| 32 | unsigned long flags; |
| 33 | int count; |
| 34 | u32 jifs; |
| 35 | |
| 36 | raw_spin_lock_irqsave(&i8253_lock, flags); |
| 37 | /* |
| 38 | * Although our caller may have the read side of xtime_lock, |
| 39 | * this is now a seqlock, and we are cheating in this routine |
| 40 | * by having side effects on state that we cannot undo if |
| 41 | * there is a collision on the seqlock and our caller has to |
| 42 | * retry. (Namely, old_jifs and old_count.) So we must treat |
| 43 | * jiffies as volatile despite the lock. We read jiffies |
| 44 | * before latching the timer count to guarantee that although |
| 45 | * the jiffies value might be older than the count (that is, |
| 46 | * the counter may underflow between the last point where |
| 47 | * jiffies was incremented and the point where we latch the |
| 48 | * count), it cannot be newer. |
| 49 | */ |
| 50 | jifs = jiffies; |
Thomas Gleixner | e6220bd | 2011-06-09 13:08:25 +0000 | [diff] [blame^] | 51 | outb_p(0x00, PIT_MODE); /* latch the count ASAP */ |
| 52 | count = inb_p(PIT_CH0); /* read the latched count */ |
| 53 | count |= inb_p(PIT_CH0) << 8; |
Russell King | 89c0b8e | 2011-05-08 18:47:58 +0100 | [diff] [blame] | 54 | |
| 55 | /* VIA686a test code... reset the latch if count > max + 1 */ |
| 56 | if (count > LATCH) { |
Thomas Gleixner | e6220bd | 2011-06-09 13:08:25 +0000 | [diff] [blame^] | 57 | outb_p(0x34, PIT_MODE); |
| 58 | outb_p(PIT_LATCH & 0xff, PIT_CH0); |
| 59 | outb_p(PIT_LATCH >> 8, PIT_CH0); |
Russell King | 89c0b8e | 2011-05-08 18:47:58 +0100 | [diff] [blame] | 60 | count = PIT_LATCH - 1; |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * It's possible for count to appear to go the wrong way for a |
| 65 | * couple of reasons: |
| 66 | * |
| 67 | * 1. The timer counter underflows, but we haven't handled the |
| 68 | * resulting interrupt and incremented jiffies yet. |
| 69 | * 2. Hardware problem with the timer, not giving us continuous time, |
| 70 | * the counter does small "jumps" upwards on some Pentium systems, |
| 71 | * (see c't 95/10 page 335 for Neptun bug.) |
| 72 | * |
| 73 | * Previous attempts to handle these cases intelligently were |
| 74 | * buggy, so we just do the simple thing now. |
| 75 | */ |
| 76 | if (count > old_count && jifs == old_jifs) |
| 77 | count = old_count; |
| 78 | |
| 79 | old_count = count; |
| 80 | old_jifs = jifs; |
| 81 | |
| 82 | raw_spin_unlock_irqrestore(&i8253_lock, flags); |
| 83 | |
| 84 | count = (PIT_LATCH - 1) - count; |
| 85 | |
| 86 | return (cycle_t)(jifs * PIT_LATCH) + count; |
| 87 | } |
| 88 | |
| 89 | static struct clocksource i8253_cs = { |
| 90 | .name = "pit", |
| 91 | .rating = 110, |
| 92 | .read = i8253_read, |
| 93 | .mask = CLOCKSOURCE_MASK(32), |
| 94 | }; |
| 95 | |
| 96 | int __init clocksource_i8253_init(void) |
| 97 | { |
| 98 | return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); |
| 99 | } |
Ralf Baechle | 15f304b | 2011-06-01 19:04:59 +0100 | [diff] [blame] | 100 | #endif |
Thomas Gleixner | e6220bd | 2011-06-09 13:08:25 +0000 | [diff] [blame^] | 101 | |
| 102 | #ifdef CONFIG_CLKEVT_I8253 |
| 103 | /* |
| 104 | * Initialize the PIT timer. |
| 105 | * |
| 106 | * This is also called after resume to bring the PIT into operation again. |
| 107 | */ |
| 108 | static void init_pit_timer(enum clock_event_mode mode, |
| 109 | struct clock_event_device *evt) |
| 110 | { |
| 111 | raw_spin_lock(&i8253_lock); |
| 112 | |
| 113 | switch (mode) { |
| 114 | case CLOCK_EVT_MODE_PERIODIC: |
| 115 | /* binary, mode 2, LSB/MSB, ch 0 */ |
| 116 | outb_p(0x34, PIT_MODE); |
| 117 | outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ |
| 118 | outb_p(LATCH >> 8 , PIT_CH0); /* MSB */ |
| 119 | break; |
| 120 | |
| 121 | case CLOCK_EVT_MODE_SHUTDOWN: |
| 122 | case CLOCK_EVT_MODE_UNUSED: |
| 123 | if (evt->mode == CLOCK_EVT_MODE_PERIODIC || |
| 124 | evt->mode == CLOCK_EVT_MODE_ONESHOT) { |
| 125 | outb_p(0x30, PIT_MODE); |
| 126 | outb_p(0, PIT_CH0); |
| 127 | outb_p(0, PIT_CH0); |
| 128 | } |
| 129 | break; |
| 130 | |
| 131 | case CLOCK_EVT_MODE_ONESHOT: |
| 132 | /* One shot setup */ |
| 133 | outb_p(0x38, PIT_MODE); |
| 134 | break; |
| 135 | |
| 136 | case CLOCK_EVT_MODE_RESUME: |
| 137 | /* Nothing to do here */ |
| 138 | break; |
| 139 | } |
| 140 | raw_spin_unlock(&i8253_lock); |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * Program the next event in oneshot mode |
| 145 | * |
| 146 | * Delta is given in PIT ticks |
| 147 | */ |
| 148 | static int pit_next_event(unsigned long delta, struct clock_event_device *evt) |
| 149 | { |
| 150 | raw_spin_lock(&i8253_lock); |
| 151 | outb_p(delta & 0xff , PIT_CH0); /* LSB */ |
| 152 | outb_p(delta >> 8 , PIT_CH0); /* MSB */ |
| 153 | raw_spin_unlock(&i8253_lock); |
| 154 | |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * On UP the PIT can serve all of the possible timer functions. On SMP systems |
| 160 | * it can be solely used for the global tick. |
| 161 | */ |
| 162 | struct clock_event_device i8253_clockevent = { |
| 163 | .name = "pit", |
| 164 | .features = CLOCK_EVT_FEAT_PERIODIC, |
| 165 | .set_mode = init_pit_timer, |
| 166 | .set_next_event = pit_next_event, |
| 167 | }; |
| 168 | |
| 169 | /* |
| 170 | * Initialize the conversion factor and the min/max deltas of the clock event |
| 171 | * structure and register the clock event source with the framework. |
| 172 | */ |
| 173 | void __init clockevent_i8253_init(bool oneshot) |
| 174 | { |
| 175 | if (oneshot) |
| 176 | i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; |
| 177 | /* |
| 178 | * Start pit with the boot cpu mask. x86 might make it global |
| 179 | * when it is used as broadcast device later. |
| 180 | */ |
| 181 | i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); |
| 182 | |
| 183 | clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, |
| 184 | 0xF, 0x7FFF); |
| 185 | } |
| 186 | #endif |