Jens Axboe | e34cbd3 | 2016-11-09 12:36:15 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * buffered writeback throttling. loosely based on CoDel. We can't drop |
| 3 | * packets for IO scheduling, so the logic is something like this: |
| 4 | * |
| 5 | * - Monitor latencies in a defined window of time. |
| 6 | * - If the minimum latency in the above window exceeds some target, increment |
| 7 | * scaling step and scale down queue depth by a factor of 2x. The monitoring |
| 8 | * window is then shrunk to 100 / sqrt(scaling step + 1). |
| 9 | * - For any window where we don't have solid data on what the latencies |
| 10 | * look like, retain status quo. |
| 11 | * - If latencies look good, decrement scaling step. |
| 12 | * - If we're only doing writes, allow the scaling step to go negative. This |
| 13 | * will temporarily boost write performance, snapping back to a stable |
| 14 | * scaling step of 0 if reads show up or the heavy writers finish. Unlike |
| 15 | * positive scaling steps where we shrink the monitoring window, a negative |
| 16 | * scaling step retains the default step==0 window size. |
| 17 | * |
| 18 | * Copyright (C) 2016 Jens Axboe |
| 19 | * |
| 20 | */ |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/blk_types.h> |
| 23 | #include <linux/slab.h> |
| 24 | #include <linux/backing-dev.h> |
| 25 | #include <linux/swap.h> |
| 26 | |
| 27 | #include "blk-wbt.h" |
| 28 | |
| 29 | #define CREATE_TRACE_POINTS |
| 30 | #include <trace/events/wbt.h> |
| 31 | |
| 32 | enum { |
| 33 | /* |
| 34 | * Default setting, we'll scale up (to 75% of QD max) or down (min 1) |
| 35 | * from here depending on device stats |
| 36 | */ |
| 37 | RWB_DEF_DEPTH = 16, |
| 38 | |
| 39 | /* |
| 40 | * 100msec window |
| 41 | */ |
| 42 | RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, |
| 43 | |
| 44 | /* |
| 45 | * Disregard stats, if we don't meet this minimum |
| 46 | */ |
| 47 | RWB_MIN_WRITE_SAMPLES = 3, |
| 48 | |
| 49 | /* |
| 50 | * If we have this number of consecutive windows with not enough |
| 51 | * information to scale up or down, scale up. |
| 52 | */ |
| 53 | RWB_UNKNOWN_BUMP = 5, |
| 54 | }; |
| 55 | |
| 56 | static inline bool rwb_enabled(struct rq_wb *rwb) |
| 57 | { |
| 58 | return rwb && rwb->wb_normal != 0; |
| 59 | } |
| 60 | |
| 61 | /* |
| 62 | * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded, |
| 63 | * false if 'v' + 1 would be bigger than 'below'. |
| 64 | */ |
| 65 | static bool atomic_inc_below(atomic_t *v, int below) |
| 66 | { |
| 67 | int cur = atomic_read(v); |
| 68 | |
| 69 | for (;;) { |
| 70 | int old; |
| 71 | |
| 72 | if (cur >= below) |
| 73 | return false; |
| 74 | old = atomic_cmpxchg(v, cur, cur + 1); |
| 75 | if (old == cur) |
| 76 | break; |
| 77 | cur = old; |
| 78 | } |
| 79 | |
| 80 | return true; |
| 81 | } |
| 82 | |
| 83 | static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) |
| 84 | { |
| 85 | if (rwb_enabled(rwb)) { |
| 86 | const unsigned long cur = jiffies; |
| 87 | |
| 88 | if (cur != *var) |
| 89 | *var = cur; |
| 90 | } |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * If a task was rate throttled in balance_dirty_pages() within the last |
| 95 | * second or so, use that to indicate a higher cleaning rate. |
| 96 | */ |
| 97 | static bool wb_recent_wait(struct rq_wb *rwb) |
| 98 | { |
| 99 | struct bdi_writeback *wb = &rwb->bdi->wb; |
| 100 | |
| 101 | return time_before(jiffies, wb->dirty_sleep + HZ); |
| 102 | } |
| 103 | |
| 104 | static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, bool is_kswapd) |
| 105 | { |
| 106 | return &rwb->rq_wait[is_kswapd]; |
| 107 | } |
| 108 | |
| 109 | static void rwb_wake_all(struct rq_wb *rwb) |
| 110 | { |
| 111 | int i; |
| 112 | |
| 113 | for (i = 0; i < WBT_NUM_RWQ; i++) { |
| 114 | struct rq_wait *rqw = &rwb->rq_wait[i]; |
| 115 | |
| 116 | if (waitqueue_active(&rqw->wait)) |
| 117 | wake_up_all(&rqw->wait); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | void __wbt_done(struct rq_wb *rwb, enum wbt_flags wb_acct) |
| 122 | { |
| 123 | struct rq_wait *rqw; |
| 124 | int inflight, limit; |
| 125 | |
| 126 | if (!(wb_acct & WBT_TRACKED)) |
| 127 | return; |
| 128 | |
| 129 | rqw = get_rq_wait(rwb, wb_acct & WBT_KSWAPD); |
| 130 | inflight = atomic_dec_return(&rqw->inflight); |
| 131 | |
| 132 | /* |
| 133 | * wbt got disabled with IO in flight. Wake up any potential |
| 134 | * waiters, we don't have to do more than that. |
| 135 | */ |
| 136 | if (unlikely(!rwb_enabled(rwb))) { |
| 137 | rwb_wake_all(rwb); |
| 138 | return; |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * If the device does write back caching, drop further down |
| 143 | * before we wake people up. |
| 144 | */ |
| 145 | if (rwb->wc && !wb_recent_wait(rwb)) |
| 146 | limit = 0; |
| 147 | else |
| 148 | limit = rwb->wb_normal; |
| 149 | |
| 150 | /* |
| 151 | * Don't wake anyone up if we are above the normal limit. |
| 152 | */ |
| 153 | if (inflight && inflight >= limit) |
| 154 | return; |
| 155 | |
| 156 | if (waitqueue_active(&rqw->wait)) { |
| 157 | int diff = limit - inflight; |
| 158 | |
| 159 | if (!inflight || diff >= rwb->wb_background / 2) |
| 160 | wake_up_all(&rqw->wait); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * Called on completion of a request. Note that it's also called when |
| 166 | * a request is merged, when the request gets freed. |
| 167 | */ |
| 168 | void wbt_done(struct rq_wb *rwb, struct blk_issue_stat *stat) |
| 169 | { |
| 170 | if (!rwb) |
| 171 | return; |
| 172 | |
| 173 | if (!wbt_is_tracked(stat)) { |
| 174 | if (rwb->sync_cookie == stat) { |
| 175 | rwb->sync_issue = 0; |
| 176 | rwb->sync_cookie = NULL; |
| 177 | } |
| 178 | |
| 179 | if (wbt_is_read(stat)) |
| 180 | wb_timestamp(rwb, &rwb->last_comp); |
| 181 | wbt_clear_state(stat); |
| 182 | } else { |
| 183 | WARN_ON_ONCE(stat == rwb->sync_cookie); |
| 184 | __wbt_done(rwb, wbt_stat_to_mask(stat)); |
| 185 | wbt_clear_state(stat); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Return true, if we can't increase the depth further by scaling |
| 191 | */ |
| 192 | static bool calc_wb_limits(struct rq_wb *rwb) |
| 193 | { |
| 194 | unsigned int depth; |
| 195 | bool ret = false; |
| 196 | |
| 197 | if (!rwb->min_lat_nsec) { |
| 198 | rwb->wb_max = rwb->wb_normal = rwb->wb_background = 0; |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * For QD=1 devices, this is a special case. It's important for those |
| 204 | * to have one request ready when one completes, so force a depth of |
| 205 | * 2 for those devices. On the backend, it'll be a depth of 1 anyway, |
| 206 | * since the device can't have more than that in flight. If we're |
| 207 | * scaling down, then keep a setting of 1/1/1. |
| 208 | */ |
| 209 | if (rwb->queue_depth == 1) { |
| 210 | if (rwb->scale_step > 0) |
| 211 | rwb->wb_max = rwb->wb_normal = 1; |
| 212 | else { |
| 213 | rwb->wb_max = rwb->wb_normal = 2; |
| 214 | ret = true; |
| 215 | } |
| 216 | rwb->wb_background = 1; |
| 217 | } else { |
| 218 | /* |
| 219 | * scale_step == 0 is our default state. If we have suffered |
| 220 | * latency spikes, step will be > 0, and we shrink the |
| 221 | * allowed write depths. If step is < 0, we're only doing |
| 222 | * writes, and we allow a temporarily higher depth to |
| 223 | * increase performance. |
| 224 | */ |
| 225 | depth = min_t(unsigned int, RWB_DEF_DEPTH, rwb->queue_depth); |
| 226 | if (rwb->scale_step > 0) |
| 227 | depth = 1 + ((depth - 1) >> min(31, rwb->scale_step)); |
| 228 | else if (rwb->scale_step < 0) { |
| 229 | unsigned int maxd = 3 * rwb->queue_depth / 4; |
| 230 | |
| 231 | depth = 1 + ((depth - 1) << -rwb->scale_step); |
| 232 | if (depth > maxd) { |
| 233 | depth = maxd; |
| 234 | ret = true; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * Set our max/normal/bg queue depths based on how far |
| 240 | * we have scaled down (->scale_step). |
| 241 | */ |
| 242 | rwb->wb_max = depth; |
| 243 | rwb->wb_normal = (rwb->wb_max + 1) / 2; |
| 244 | rwb->wb_background = (rwb->wb_max + 3) / 4; |
| 245 | } |
| 246 | |
| 247 | return ret; |
| 248 | } |
| 249 | |
| 250 | static bool inline stat_sample_valid(struct blk_rq_stat *stat) |
| 251 | { |
| 252 | /* |
| 253 | * We need at least one read sample, and a minimum of |
| 254 | * RWB_MIN_WRITE_SAMPLES. We require some write samples to know |
| 255 | * that it's writes impacting us, and not just some sole read on |
| 256 | * a device that is in a lower power state. |
| 257 | */ |
| 258 | return stat[0].nr_samples >= 1 && |
| 259 | stat[1].nr_samples >= RWB_MIN_WRITE_SAMPLES; |
| 260 | } |
| 261 | |
| 262 | static u64 rwb_sync_issue_lat(struct rq_wb *rwb) |
| 263 | { |
| 264 | u64 now, issue = ACCESS_ONCE(rwb->sync_issue); |
| 265 | |
| 266 | if (!issue || !rwb->sync_cookie) |
| 267 | return 0; |
| 268 | |
| 269 | now = ktime_to_ns(ktime_get()); |
| 270 | return now - issue; |
| 271 | } |
| 272 | |
| 273 | enum { |
| 274 | LAT_OK = 1, |
| 275 | LAT_UNKNOWN, |
| 276 | LAT_UNKNOWN_WRITES, |
| 277 | LAT_EXCEEDED, |
| 278 | }; |
| 279 | |
| 280 | static int __latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) |
| 281 | { |
| 282 | u64 thislat; |
| 283 | |
| 284 | /* |
| 285 | * If our stored sync issue exceeds the window size, or it |
| 286 | * exceeds our min target AND we haven't logged any entries, |
| 287 | * flag the latency as exceeded. wbt works off completion latencies, |
| 288 | * but for a flooded device, a single sync IO can take a long time |
| 289 | * to complete after being issued. If this time exceeds our |
| 290 | * monitoring window AND we didn't see any other completions in that |
| 291 | * window, then count that sync IO as a violation of the latency. |
| 292 | */ |
| 293 | thislat = rwb_sync_issue_lat(rwb); |
| 294 | if (thislat > rwb->cur_win_nsec || |
| 295 | (thislat > rwb->min_lat_nsec && !stat[0].nr_samples)) { |
| 296 | trace_wbt_lat(rwb->bdi, thislat); |
| 297 | return LAT_EXCEEDED; |
| 298 | } |
| 299 | |
| 300 | /* |
| 301 | * No read/write mix, if stat isn't valid |
| 302 | */ |
| 303 | if (!stat_sample_valid(stat)) { |
| 304 | /* |
| 305 | * If we had writes in this stat window and the window is |
| 306 | * current, we're only doing writes. If a task recently |
| 307 | * waited or still has writes in flights, consider us doing |
| 308 | * just writes as well. |
| 309 | */ |
| 310 | if ((stat[1].nr_samples && rwb->stat_ops->is_current(stat)) || |
| 311 | wb_recent_wait(rwb) || wbt_inflight(rwb)) |
| 312 | return LAT_UNKNOWN_WRITES; |
| 313 | return LAT_UNKNOWN; |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * If the 'min' latency exceeds our target, step down. |
| 318 | */ |
| 319 | if (stat[0].min > rwb->min_lat_nsec) { |
| 320 | trace_wbt_lat(rwb->bdi, stat[0].min); |
| 321 | trace_wbt_stat(rwb->bdi, stat); |
| 322 | return LAT_EXCEEDED; |
| 323 | } |
| 324 | |
| 325 | if (rwb->scale_step) |
| 326 | trace_wbt_stat(rwb->bdi, stat); |
| 327 | |
| 328 | return LAT_OK; |
| 329 | } |
| 330 | |
| 331 | static int latency_exceeded(struct rq_wb *rwb) |
| 332 | { |
| 333 | struct blk_rq_stat stat[2]; |
| 334 | |
| 335 | rwb->stat_ops->get(rwb->ops_data, stat); |
| 336 | return __latency_exceeded(rwb, stat); |
| 337 | } |
| 338 | |
| 339 | static void rwb_trace_step(struct rq_wb *rwb, const char *msg) |
| 340 | { |
| 341 | trace_wbt_step(rwb->bdi, msg, rwb->scale_step, rwb->cur_win_nsec, |
| 342 | rwb->wb_background, rwb->wb_normal, rwb->wb_max); |
| 343 | } |
| 344 | |
| 345 | static void scale_up(struct rq_wb *rwb) |
| 346 | { |
| 347 | /* |
| 348 | * Hit max in previous round, stop here |
| 349 | */ |
| 350 | if (rwb->scaled_max) |
| 351 | return; |
| 352 | |
| 353 | rwb->scale_step--; |
| 354 | rwb->unknown_cnt = 0; |
| 355 | rwb->stat_ops->clear(rwb->ops_data); |
| 356 | |
| 357 | rwb->scaled_max = calc_wb_limits(rwb); |
| 358 | |
| 359 | rwb_wake_all(rwb); |
| 360 | |
| 361 | rwb_trace_step(rwb, "step up"); |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we |
| 366 | * had a latency violation. |
| 367 | */ |
| 368 | static void scale_down(struct rq_wb *rwb, bool hard_throttle) |
| 369 | { |
| 370 | /* |
| 371 | * Stop scaling down when we've hit the limit. This also prevents |
| 372 | * ->scale_step from going to crazy values, if the device can't |
| 373 | * keep up. |
| 374 | */ |
| 375 | if (rwb->wb_max == 1) |
| 376 | return; |
| 377 | |
| 378 | if (rwb->scale_step < 0 && hard_throttle) |
| 379 | rwb->scale_step = 0; |
| 380 | else |
| 381 | rwb->scale_step++; |
| 382 | |
| 383 | rwb->scaled_max = false; |
| 384 | rwb->unknown_cnt = 0; |
| 385 | rwb->stat_ops->clear(rwb->ops_data); |
| 386 | calc_wb_limits(rwb); |
| 387 | rwb_trace_step(rwb, "step down"); |
| 388 | } |
| 389 | |
| 390 | static void rwb_arm_timer(struct rq_wb *rwb) |
| 391 | { |
| 392 | unsigned long expires; |
| 393 | |
| 394 | if (rwb->scale_step > 0) { |
| 395 | /* |
| 396 | * We should speed this up, using some variant of a fast |
| 397 | * integer inverse square root calculation. Since we only do |
| 398 | * this for every window expiration, it's not a huge deal, |
| 399 | * though. |
| 400 | */ |
| 401 | rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, |
| 402 | int_sqrt((rwb->scale_step + 1) << 8)); |
| 403 | } else { |
| 404 | /* |
| 405 | * For step < 0, we don't want to increase/decrease the |
| 406 | * window size. |
| 407 | */ |
| 408 | rwb->cur_win_nsec = rwb->win_nsec; |
| 409 | } |
| 410 | |
| 411 | expires = jiffies + nsecs_to_jiffies(rwb->cur_win_nsec); |
| 412 | mod_timer(&rwb->window_timer, expires); |
| 413 | } |
| 414 | |
| 415 | static void wb_timer_fn(unsigned long data) |
| 416 | { |
| 417 | struct rq_wb *rwb = (struct rq_wb *) data; |
| 418 | unsigned int inflight = wbt_inflight(rwb); |
| 419 | int status; |
| 420 | |
| 421 | status = latency_exceeded(rwb); |
| 422 | |
| 423 | trace_wbt_timer(rwb->bdi, status, rwb->scale_step, inflight); |
| 424 | |
| 425 | /* |
| 426 | * If we exceeded the latency target, step down. If we did not, |
| 427 | * step one level up. If we don't know enough to say either exceeded |
| 428 | * or ok, then don't do anything. |
| 429 | */ |
| 430 | switch (status) { |
| 431 | case LAT_EXCEEDED: |
| 432 | scale_down(rwb, true); |
| 433 | break; |
| 434 | case LAT_OK: |
| 435 | scale_up(rwb); |
| 436 | break; |
| 437 | case LAT_UNKNOWN_WRITES: |
| 438 | /* |
| 439 | * We started a the center step, but don't have a valid |
| 440 | * read/write sample, but we do have writes going on. |
| 441 | * Allow step to go negative, to increase write perf. |
| 442 | */ |
| 443 | scale_up(rwb); |
| 444 | break; |
| 445 | case LAT_UNKNOWN: |
| 446 | if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) |
| 447 | break; |
| 448 | /* |
| 449 | * We get here when previously scaled reduced depth, and we |
| 450 | * currently don't have a valid read/write sample. For that |
| 451 | * case, slowly return to center state (step == 0). |
| 452 | */ |
| 453 | if (rwb->scale_step > 0) |
| 454 | scale_up(rwb); |
| 455 | else if (rwb->scale_step < 0) |
| 456 | scale_down(rwb, false); |
| 457 | break; |
| 458 | default: |
| 459 | break; |
| 460 | } |
| 461 | |
| 462 | /* |
| 463 | * Re-arm timer, if we have IO in flight |
| 464 | */ |
| 465 | if (rwb->scale_step || inflight) |
| 466 | rwb_arm_timer(rwb); |
| 467 | } |
| 468 | |
| 469 | void wbt_update_limits(struct rq_wb *rwb) |
| 470 | { |
| 471 | rwb->scale_step = 0; |
| 472 | rwb->scaled_max = false; |
| 473 | calc_wb_limits(rwb); |
| 474 | |
| 475 | rwb_wake_all(rwb); |
| 476 | } |
| 477 | |
| 478 | static bool close_io(struct rq_wb *rwb) |
| 479 | { |
| 480 | const unsigned long now = jiffies; |
| 481 | |
| 482 | return time_before(now, rwb->last_issue + HZ / 10) || |
| 483 | time_before(now, rwb->last_comp + HZ / 10); |
| 484 | } |
| 485 | |
| 486 | #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO) |
| 487 | |
| 488 | static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw) |
| 489 | { |
| 490 | unsigned int limit; |
| 491 | |
| 492 | /* |
| 493 | * At this point we know it's a buffered write. If this is |
| 494 | * kswapd trying to free memory, or REQ_SYNC is set, set, then |
| 495 | * it's WB_SYNC_ALL writeback, and we'll use the max limit for |
| 496 | * that. If the write is marked as a background write, then use |
| 497 | * the idle limit, or go to normal if we haven't had competing |
| 498 | * IO for a bit. |
| 499 | */ |
| 500 | if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd()) |
| 501 | limit = rwb->wb_max; |
| 502 | else if ((rw & REQ_BACKGROUND) || close_io(rwb)) { |
| 503 | /* |
| 504 | * If less than 100ms since we completed unrelated IO, |
| 505 | * limit us to half the depth for background writeback. |
| 506 | */ |
| 507 | limit = rwb->wb_background; |
| 508 | } else |
| 509 | limit = rwb->wb_normal; |
| 510 | |
| 511 | return limit; |
| 512 | } |
| 513 | |
| 514 | static inline bool may_queue(struct rq_wb *rwb, struct rq_wait *rqw, |
| 515 | wait_queue_t *wait, unsigned long rw) |
| 516 | { |
| 517 | /* |
| 518 | * inc it here even if disabled, since we'll dec it at completion. |
| 519 | * this only happens if the task was sleeping in __wbt_wait(), |
| 520 | * and someone turned it off at the same time. |
| 521 | */ |
| 522 | if (!rwb_enabled(rwb)) { |
| 523 | atomic_inc(&rqw->inflight); |
| 524 | return true; |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * If the waitqueue is already active and we are not the next |
| 529 | * in line to be woken up, wait for our turn. |
| 530 | */ |
| 531 | if (waitqueue_active(&rqw->wait) && |
| 532 | rqw->wait.task_list.next != &wait->task_list) |
| 533 | return false; |
| 534 | |
| 535 | return atomic_inc_below(&rqw->inflight, get_limit(rwb, rw)); |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * Block if we will exceed our limit, or if we are currently waiting for |
| 540 | * the timer to kick off queuing again. |
| 541 | */ |
| 542 | static void __wbt_wait(struct rq_wb *rwb, unsigned long rw, spinlock_t *lock) |
| 543 | { |
| 544 | struct rq_wait *rqw = get_rq_wait(rwb, current_is_kswapd()); |
| 545 | DEFINE_WAIT(wait); |
| 546 | |
| 547 | if (may_queue(rwb, rqw, &wait, rw)) |
| 548 | return; |
| 549 | |
| 550 | do { |
| 551 | prepare_to_wait_exclusive(&rqw->wait, &wait, |
| 552 | TASK_UNINTERRUPTIBLE); |
| 553 | |
| 554 | if (may_queue(rwb, rqw, &wait, rw)) |
| 555 | break; |
| 556 | |
| 557 | if (lock) |
| 558 | spin_unlock_irq(lock); |
| 559 | |
| 560 | io_schedule(); |
| 561 | |
| 562 | if (lock) |
| 563 | spin_lock_irq(lock); |
| 564 | } while (1); |
| 565 | |
| 566 | finish_wait(&rqw->wait, &wait); |
| 567 | } |
| 568 | |
| 569 | static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio) |
| 570 | { |
| 571 | const int op = bio_op(bio); |
| 572 | |
| 573 | /* |
| 574 | * If not a WRITE (or a discard), do nothing |
| 575 | */ |
| 576 | if (!(op == REQ_OP_WRITE || op == REQ_OP_DISCARD)) |
| 577 | return false; |
| 578 | |
| 579 | /* |
| 580 | * Don't throttle WRITE_ODIRECT |
| 581 | */ |
| 582 | if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE)) |
| 583 | return false; |
| 584 | |
| 585 | return true; |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * Returns true if the IO request should be accounted, false if not. |
| 590 | * May sleep, if we have exceeded the writeback limits. Caller can pass |
| 591 | * in an irq held spinlock, if it holds one when calling this function. |
| 592 | * If we do sleep, we'll release and re-grab it. |
| 593 | */ |
| 594 | unsigned int wbt_wait(struct rq_wb *rwb, struct bio *bio, spinlock_t *lock) |
| 595 | { |
| 596 | unsigned int ret = 0; |
| 597 | |
| 598 | if (!rwb_enabled(rwb)) |
| 599 | return 0; |
| 600 | |
| 601 | if (bio_op(bio) == REQ_OP_READ) |
| 602 | ret = WBT_READ; |
| 603 | |
| 604 | if (!wbt_should_throttle(rwb, bio)) { |
| 605 | if (ret & WBT_READ) |
| 606 | wb_timestamp(rwb, &rwb->last_issue); |
| 607 | return ret; |
| 608 | } |
| 609 | |
| 610 | __wbt_wait(rwb, bio->bi_opf, lock); |
| 611 | |
| 612 | if (!timer_pending(&rwb->window_timer)) |
| 613 | rwb_arm_timer(rwb); |
| 614 | |
| 615 | if (current_is_kswapd()) |
| 616 | ret |= WBT_KSWAPD; |
| 617 | |
| 618 | return ret | WBT_TRACKED; |
| 619 | } |
| 620 | |
| 621 | void wbt_issue(struct rq_wb *rwb, struct blk_issue_stat *stat) |
| 622 | { |
| 623 | if (!rwb_enabled(rwb)) |
| 624 | return; |
| 625 | |
| 626 | /* |
| 627 | * Track sync issue, in case it takes a long time to complete. Allows |
| 628 | * us to react quicker, if a sync IO takes a long time to complete. |
| 629 | * Note that this is just a hint. 'stat' can go away when the |
| 630 | * request completes, so it's important we never dereference it. We |
| 631 | * only use the address to compare with, which is why we store the |
| 632 | * sync_issue time locally. |
| 633 | */ |
| 634 | if (wbt_is_read(stat) && !rwb->sync_issue) { |
| 635 | rwb->sync_cookie = stat; |
| 636 | rwb->sync_issue = blk_stat_time(stat); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | void wbt_requeue(struct rq_wb *rwb, struct blk_issue_stat *stat) |
| 641 | { |
| 642 | if (!rwb_enabled(rwb)) |
| 643 | return; |
| 644 | if (stat == rwb->sync_cookie) { |
| 645 | rwb->sync_issue = 0; |
| 646 | rwb->sync_cookie = NULL; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | void wbt_set_queue_depth(struct rq_wb *rwb, unsigned int depth) |
| 651 | { |
| 652 | if (rwb) { |
| 653 | rwb->queue_depth = depth; |
| 654 | wbt_update_limits(rwb); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | void wbt_set_write_cache(struct rq_wb *rwb, bool write_cache_on) |
| 659 | { |
| 660 | if (rwb) |
| 661 | rwb->wc = write_cache_on; |
| 662 | } |
| 663 | |
| 664 | void wbt_disable(struct rq_wb *rwb) |
| 665 | { |
| 666 | if (rwb) { |
| 667 | del_timer_sync(&rwb->window_timer); |
| 668 | rwb->win_nsec = rwb->min_lat_nsec = 0; |
| 669 | wbt_update_limits(rwb); |
| 670 | } |
| 671 | } |
| 672 | EXPORT_SYMBOL_GPL(wbt_disable); |
| 673 | |
| 674 | int wbt_init(struct request_queue *q, struct wb_stat_ops *ops) |
| 675 | { |
| 676 | struct rq_wb *rwb; |
| 677 | int i; |
| 678 | |
| 679 | /* |
| 680 | * For now, we depend on the stats window being larger than |
| 681 | * our monitoring window. Ensure that this isn't inadvertently |
| 682 | * violated. |
| 683 | */ |
| 684 | BUILD_BUG_ON(RWB_WINDOW_NSEC > BLK_STAT_NSEC); |
| 685 | BUILD_BUG_ON(WBT_NR_BITS > BLK_STAT_RES_BITS); |
| 686 | |
| 687 | if (!ops->get || !ops->is_current || !ops->clear) |
| 688 | return -EINVAL; |
| 689 | |
| 690 | rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); |
| 691 | if (!rwb) |
| 692 | return -ENOMEM; |
| 693 | |
| 694 | for (i = 0; i < WBT_NUM_RWQ; i++) { |
| 695 | atomic_set(&rwb->rq_wait[i].inflight, 0); |
| 696 | init_waitqueue_head(&rwb->rq_wait[i].wait); |
| 697 | } |
| 698 | |
| 699 | setup_timer(&rwb->window_timer, wb_timer_fn, (unsigned long) rwb); |
| 700 | rwb->wc = 1; |
| 701 | rwb->queue_depth = RWB_DEF_DEPTH; |
| 702 | rwb->last_comp = rwb->last_issue = jiffies; |
| 703 | rwb->bdi = &q->backing_dev_info; |
| 704 | rwb->win_nsec = RWB_WINDOW_NSEC; |
| 705 | rwb->stat_ops = ops; |
| 706 | rwb->ops_data = q; |
| 707 | wbt_update_limits(rwb); |
| 708 | |
| 709 | /* |
| 710 | * Assign rwb, and turn on stats tracking for this queue |
| 711 | */ |
| 712 | q->rq_wb = rwb; |
| 713 | blk_stat_enable(q); |
| 714 | |
| 715 | if (blk_queue_nonrot(q)) |
| 716 | rwb->min_lat_nsec = 2000000ULL; |
| 717 | else |
| 718 | rwb->min_lat_nsec = 75000000ULL; |
| 719 | |
| 720 | wbt_set_queue_depth(rwb, blk_queue_depth(q)); |
| 721 | wbt_set_write_cache(rwb, test_bit(QUEUE_FLAG_WC, &q->queue_flags)); |
| 722 | |
| 723 | return 0; |
| 724 | } |
| 725 | |
| 726 | void wbt_exit(struct request_queue *q) |
| 727 | { |
| 728 | struct rq_wb *rwb = q->rq_wb; |
| 729 | |
| 730 | if (rwb) { |
| 731 | del_timer_sync(&rwb->window_timer); |
| 732 | q->rq_wb = NULL; |
| 733 | kfree(rwb); |
| 734 | } |
| 735 | } |