Christoph Lameter | b20a350 | 2006-03-22 00:09:12 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Memory Migration functionality - linux/mm/migration.c |
| 3 | * |
| 4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter |
| 5 | * |
| 6 | * Page migration was first developed in the context of the memory hotplug |
| 7 | * project. The main authors of the migration code are: |
| 8 | * |
| 9 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> |
| 10 | * Hirokazu Takahashi <taka@valinux.co.jp> |
| 11 | * Dave Hansen <haveblue@us.ibm.com> |
| 12 | * Christoph Lameter <clameter@sgi.com> |
| 13 | */ |
| 14 | |
| 15 | #include <linux/migrate.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/swap.h> |
| 18 | #include <linux/pagemap.h> |
Christoph Lameter | e23ca00 | 2006-04-10 22:52:57 -0700 | [diff] [blame^] | 19 | #include <linux/buffer_head.h> |
Christoph Lameter | b20a350 | 2006-03-22 00:09:12 -0800 | [diff] [blame] | 20 | #include <linux/mm_inline.h> |
| 21 | #include <linux/pagevec.h> |
| 22 | #include <linux/rmap.h> |
| 23 | #include <linux/topology.h> |
| 24 | #include <linux/cpu.h> |
| 25 | #include <linux/cpuset.h> |
| 26 | #include <linux/swapops.h> |
| 27 | |
| 28 | #include "internal.h" |
| 29 | |
Christoph Lameter | b20a350 | 2006-03-22 00:09:12 -0800 | [diff] [blame] | 30 | /* The maximum number of pages to take off the LRU for migration */ |
| 31 | #define MIGRATE_CHUNK_SIZE 256 |
| 32 | |
| 33 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
| 34 | |
| 35 | /* |
| 36 | * Isolate one page from the LRU lists. If successful put it onto |
| 37 | * the indicated list with elevated page count. |
| 38 | * |
| 39 | * Result: |
| 40 | * -EBUSY: page not on LRU list |
| 41 | * 0: page removed from LRU list and added to the specified list. |
| 42 | */ |
| 43 | int isolate_lru_page(struct page *page, struct list_head *pagelist) |
| 44 | { |
| 45 | int ret = -EBUSY; |
| 46 | |
| 47 | if (PageLRU(page)) { |
| 48 | struct zone *zone = page_zone(page); |
| 49 | |
| 50 | spin_lock_irq(&zone->lru_lock); |
| 51 | if (PageLRU(page)) { |
| 52 | ret = 0; |
| 53 | get_page(page); |
| 54 | ClearPageLRU(page); |
| 55 | if (PageActive(page)) |
| 56 | del_page_from_active_list(zone, page); |
| 57 | else |
| 58 | del_page_from_inactive_list(zone, page); |
| 59 | list_add_tail(&page->lru, pagelist); |
| 60 | } |
| 61 | spin_unlock_irq(&zone->lru_lock); |
| 62 | } |
| 63 | return ret; |
| 64 | } |
| 65 | |
| 66 | /* |
| 67 | * migrate_prep() needs to be called after we have compiled the list of pages |
| 68 | * to be migrated using isolate_lru_page() but before we begin a series of calls |
| 69 | * to migrate_pages(). |
| 70 | */ |
| 71 | int migrate_prep(void) |
| 72 | { |
| 73 | /* Must have swap device for migration */ |
| 74 | if (nr_swap_pages <= 0) |
| 75 | return -ENODEV; |
| 76 | |
| 77 | /* |
| 78 | * Clear the LRU lists so pages can be isolated. |
| 79 | * Note that pages may be moved off the LRU after we have |
| 80 | * drained them. Those pages will fail to migrate like other |
| 81 | * pages that may be busy. |
| 82 | */ |
| 83 | lru_add_drain_all(); |
| 84 | |
| 85 | return 0; |
| 86 | } |
| 87 | |
| 88 | static inline void move_to_lru(struct page *page) |
| 89 | { |
| 90 | list_del(&page->lru); |
| 91 | if (PageActive(page)) { |
| 92 | /* |
| 93 | * lru_cache_add_active checks that |
| 94 | * the PG_active bit is off. |
| 95 | */ |
| 96 | ClearPageActive(page); |
| 97 | lru_cache_add_active(page); |
| 98 | } else { |
| 99 | lru_cache_add(page); |
| 100 | } |
| 101 | put_page(page); |
| 102 | } |
| 103 | |
| 104 | /* |
| 105 | * Add isolated pages on the list back to the LRU. |
| 106 | * |
| 107 | * returns the number of pages put back. |
| 108 | */ |
| 109 | int putback_lru_pages(struct list_head *l) |
| 110 | { |
| 111 | struct page *page; |
| 112 | struct page *page2; |
| 113 | int count = 0; |
| 114 | |
| 115 | list_for_each_entry_safe(page, page2, l, lru) { |
| 116 | move_to_lru(page); |
| 117 | count++; |
| 118 | } |
| 119 | return count; |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * Non migratable page |
| 124 | */ |
| 125 | int fail_migrate_page(struct page *newpage, struct page *page) |
| 126 | { |
| 127 | return -EIO; |
| 128 | } |
| 129 | EXPORT_SYMBOL(fail_migrate_page); |
| 130 | |
| 131 | /* |
| 132 | * swapout a single page |
| 133 | * page is locked upon entry, unlocked on exit |
| 134 | */ |
| 135 | static int swap_page(struct page *page) |
| 136 | { |
| 137 | struct address_space *mapping = page_mapping(page); |
| 138 | |
| 139 | if (page_mapped(page) && mapping) |
| 140 | if (try_to_unmap(page, 1) != SWAP_SUCCESS) |
| 141 | goto unlock_retry; |
| 142 | |
| 143 | if (PageDirty(page)) { |
| 144 | /* Page is dirty, try to write it out here */ |
| 145 | switch(pageout(page, mapping)) { |
| 146 | case PAGE_KEEP: |
| 147 | case PAGE_ACTIVATE: |
| 148 | goto unlock_retry; |
| 149 | |
| 150 | case PAGE_SUCCESS: |
| 151 | goto retry; |
| 152 | |
| 153 | case PAGE_CLEAN: |
| 154 | ; /* try to free the page below */ |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | if (PagePrivate(page)) { |
| 159 | if (!try_to_release_page(page, GFP_KERNEL) || |
| 160 | (!mapping && page_count(page) == 1)) |
| 161 | goto unlock_retry; |
| 162 | } |
| 163 | |
| 164 | if (remove_mapping(mapping, page)) { |
| 165 | /* Success */ |
| 166 | unlock_page(page); |
| 167 | return 0; |
| 168 | } |
| 169 | |
| 170 | unlock_retry: |
| 171 | unlock_page(page); |
| 172 | |
| 173 | retry: |
| 174 | return -EAGAIN; |
| 175 | } |
| 176 | EXPORT_SYMBOL(swap_page); |
| 177 | |
| 178 | /* |
| 179 | * Remove references for a page and establish the new page with the correct |
| 180 | * basic settings to be able to stop accesses to the page. |
| 181 | */ |
| 182 | int migrate_page_remove_references(struct page *newpage, |
| 183 | struct page *page, int nr_refs) |
| 184 | { |
| 185 | struct address_space *mapping = page_mapping(page); |
| 186 | struct page **radix_pointer; |
| 187 | |
| 188 | /* |
| 189 | * Avoid doing any of the following work if the page count |
| 190 | * indicates that the page is in use or truncate has removed |
| 191 | * the page. |
| 192 | */ |
| 193 | if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) |
| 194 | return -EAGAIN; |
| 195 | |
| 196 | /* |
| 197 | * Establish swap ptes for anonymous pages or destroy pte |
| 198 | * maps for files. |
| 199 | * |
| 200 | * In order to reestablish file backed mappings the fault handlers |
| 201 | * will take the radix tree_lock which may then be used to stop |
| 202 | * processses from accessing this page until the new page is ready. |
| 203 | * |
| 204 | * A process accessing via a swap pte (an anonymous page) will take a |
| 205 | * page_lock on the old page which will block the process until the |
| 206 | * migration attempt is complete. At that time the PageSwapCache bit |
| 207 | * will be examined. If the page was migrated then the PageSwapCache |
| 208 | * bit will be clear and the operation to retrieve the page will be |
| 209 | * retried which will find the new page in the radix tree. Then a new |
| 210 | * direct mapping may be generated based on the radix tree contents. |
| 211 | * |
| 212 | * If the page was not migrated then the PageSwapCache bit |
| 213 | * is still set and the operation may continue. |
| 214 | */ |
| 215 | if (try_to_unmap(page, 1) == SWAP_FAIL) |
| 216 | /* A vma has VM_LOCKED set -> permanent failure */ |
| 217 | return -EPERM; |
| 218 | |
| 219 | /* |
| 220 | * Give up if we were unable to remove all mappings. |
| 221 | */ |
| 222 | if (page_mapcount(page)) |
| 223 | return -EAGAIN; |
| 224 | |
| 225 | write_lock_irq(&mapping->tree_lock); |
| 226 | |
| 227 | radix_pointer = (struct page **)radix_tree_lookup_slot( |
| 228 | &mapping->page_tree, |
| 229 | page_index(page)); |
| 230 | |
| 231 | if (!page_mapping(page) || page_count(page) != nr_refs || |
| 232 | *radix_pointer != page) { |
| 233 | write_unlock_irq(&mapping->tree_lock); |
Christoph Lameter | e23ca00 | 2006-04-10 22:52:57 -0700 | [diff] [blame^] | 234 | return -EAGAIN; |
Christoph Lameter | b20a350 | 2006-03-22 00:09:12 -0800 | [diff] [blame] | 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Now we know that no one else is looking at the page. |
| 239 | * |
| 240 | * Certain minimal information about a page must be available |
| 241 | * in order for other subsystems to properly handle the page if they |
| 242 | * find it through the radix tree update before we are finished |
| 243 | * copying the page. |
| 244 | */ |
| 245 | get_page(newpage); |
| 246 | newpage->index = page->index; |
| 247 | newpage->mapping = page->mapping; |
| 248 | if (PageSwapCache(page)) { |
| 249 | SetPageSwapCache(newpage); |
| 250 | set_page_private(newpage, page_private(page)); |
| 251 | } |
| 252 | |
| 253 | *radix_pointer = newpage; |
| 254 | __put_page(page); |
| 255 | write_unlock_irq(&mapping->tree_lock); |
| 256 | |
| 257 | return 0; |
| 258 | } |
| 259 | EXPORT_SYMBOL(migrate_page_remove_references); |
| 260 | |
| 261 | /* |
| 262 | * Copy the page to its new location |
| 263 | */ |
| 264 | void migrate_page_copy(struct page *newpage, struct page *page) |
| 265 | { |
| 266 | copy_highpage(newpage, page); |
| 267 | |
| 268 | if (PageError(page)) |
| 269 | SetPageError(newpage); |
| 270 | if (PageReferenced(page)) |
| 271 | SetPageReferenced(newpage); |
| 272 | if (PageUptodate(page)) |
| 273 | SetPageUptodate(newpage); |
| 274 | if (PageActive(page)) |
| 275 | SetPageActive(newpage); |
| 276 | if (PageChecked(page)) |
| 277 | SetPageChecked(newpage); |
| 278 | if (PageMappedToDisk(page)) |
| 279 | SetPageMappedToDisk(newpage); |
| 280 | |
| 281 | if (PageDirty(page)) { |
| 282 | clear_page_dirty_for_io(page); |
| 283 | set_page_dirty(newpage); |
| 284 | } |
| 285 | |
| 286 | ClearPageSwapCache(page); |
| 287 | ClearPageActive(page); |
| 288 | ClearPagePrivate(page); |
| 289 | set_page_private(page, 0); |
| 290 | page->mapping = NULL; |
| 291 | |
| 292 | /* |
| 293 | * If any waiters have accumulated on the new page then |
| 294 | * wake them up. |
| 295 | */ |
| 296 | if (PageWriteback(newpage)) |
| 297 | end_page_writeback(newpage); |
| 298 | } |
| 299 | EXPORT_SYMBOL(migrate_page_copy); |
| 300 | |
| 301 | /* |
| 302 | * Common logic to directly migrate a single page suitable for |
| 303 | * pages that do not use PagePrivate. |
| 304 | * |
| 305 | * Pages are locked upon entry and exit. |
| 306 | */ |
| 307 | int migrate_page(struct page *newpage, struct page *page) |
| 308 | { |
| 309 | int rc; |
| 310 | |
| 311 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ |
| 312 | |
| 313 | rc = migrate_page_remove_references(newpage, page, 2); |
| 314 | |
| 315 | if (rc) |
| 316 | return rc; |
| 317 | |
| 318 | migrate_page_copy(newpage, page); |
| 319 | |
| 320 | /* |
| 321 | * Remove auxiliary swap entries and replace |
| 322 | * them with real ptes. |
| 323 | * |
| 324 | * Note that a real pte entry will allow processes that are not |
| 325 | * waiting on the page lock to use the new page via the page tables |
| 326 | * before the new page is unlocked. |
| 327 | */ |
| 328 | remove_from_swap(newpage); |
| 329 | return 0; |
| 330 | } |
| 331 | EXPORT_SYMBOL(migrate_page); |
| 332 | |
| 333 | /* |
| 334 | * migrate_pages |
| 335 | * |
| 336 | * Two lists are passed to this function. The first list |
| 337 | * contains the pages isolated from the LRU to be migrated. |
| 338 | * The second list contains new pages that the pages isolated |
| 339 | * can be moved to. If the second list is NULL then all |
| 340 | * pages are swapped out. |
| 341 | * |
| 342 | * The function returns after 10 attempts or if no pages |
| 343 | * are movable anymore because to has become empty |
| 344 | * or no retryable pages exist anymore. |
| 345 | * |
| 346 | * Return: Number of pages not migrated when "to" ran empty. |
| 347 | */ |
| 348 | int migrate_pages(struct list_head *from, struct list_head *to, |
| 349 | struct list_head *moved, struct list_head *failed) |
| 350 | { |
| 351 | int retry; |
| 352 | int nr_failed = 0; |
| 353 | int pass = 0; |
| 354 | struct page *page; |
| 355 | struct page *page2; |
| 356 | int swapwrite = current->flags & PF_SWAPWRITE; |
| 357 | int rc; |
| 358 | |
| 359 | if (!swapwrite) |
| 360 | current->flags |= PF_SWAPWRITE; |
| 361 | |
| 362 | redo: |
| 363 | retry = 0; |
| 364 | |
| 365 | list_for_each_entry_safe(page, page2, from, lru) { |
| 366 | struct page *newpage = NULL; |
| 367 | struct address_space *mapping; |
| 368 | |
| 369 | cond_resched(); |
| 370 | |
| 371 | rc = 0; |
| 372 | if (page_count(page) == 1) |
| 373 | /* page was freed from under us. So we are done. */ |
| 374 | goto next; |
| 375 | |
| 376 | if (to && list_empty(to)) |
| 377 | break; |
| 378 | |
| 379 | /* |
| 380 | * Skip locked pages during the first two passes to give the |
| 381 | * functions holding the lock time to release the page. Later we |
| 382 | * use lock_page() to have a higher chance of acquiring the |
| 383 | * lock. |
| 384 | */ |
| 385 | rc = -EAGAIN; |
| 386 | if (pass > 2) |
| 387 | lock_page(page); |
| 388 | else |
| 389 | if (TestSetPageLocked(page)) |
| 390 | goto next; |
| 391 | |
| 392 | /* |
| 393 | * Only wait on writeback if we have already done a pass where |
| 394 | * we we may have triggered writeouts for lots of pages. |
| 395 | */ |
| 396 | if (pass > 0) { |
| 397 | wait_on_page_writeback(page); |
| 398 | } else { |
| 399 | if (PageWriteback(page)) |
| 400 | goto unlock_page; |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * Anonymous pages must have swap cache references otherwise |
| 405 | * the information contained in the page maps cannot be |
| 406 | * preserved. |
| 407 | */ |
| 408 | if (PageAnon(page) && !PageSwapCache(page)) { |
| 409 | if (!add_to_swap(page, GFP_KERNEL)) { |
| 410 | rc = -ENOMEM; |
| 411 | goto unlock_page; |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | if (!to) { |
| 416 | rc = swap_page(page); |
| 417 | goto next; |
| 418 | } |
| 419 | |
| 420 | newpage = lru_to_page(to); |
| 421 | lock_page(newpage); |
| 422 | |
| 423 | /* |
| 424 | * Pages are properly locked and writeback is complete. |
| 425 | * Try to migrate the page. |
| 426 | */ |
| 427 | mapping = page_mapping(page); |
| 428 | if (!mapping) |
| 429 | goto unlock_both; |
| 430 | |
| 431 | if (mapping->a_ops->migratepage) { |
| 432 | /* |
| 433 | * Most pages have a mapping and most filesystems |
| 434 | * should provide a migration function. Anonymous |
| 435 | * pages are part of swap space which also has its |
| 436 | * own migration function. This is the most common |
| 437 | * path for page migration. |
| 438 | */ |
| 439 | rc = mapping->a_ops->migratepage(newpage, page); |
| 440 | goto unlock_both; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Default handling if a filesystem does not provide |
| 445 | * a migration function. We can only migrate clean |
| 446 | * pages so try to write out any dirty pages first. |
| 447 | */ |
| 448 | if (PageDirty(page)) { |
| 449 | switch (pageout(page, mapping)) { |
| 450 | case PAGE_KEEP: |
| 451 | case PAGE_ACTIVATE: |
| 452 | goto unlock_both; |
| 453 | |
| 454 | case PAGE_SUCCESS: |
| 455 | unlock_page(newpage); |
| 456 | goto next; |
| 457 | |
| 458 | case PAGE_CLEAN: |
| 459 | ; /* try to migrate the page below */ |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * Buffers are managed in a filesystem specific way. |
| 465 | * We must have no buffers or drop them. |
| 466 | */ |
| 467 | if (!page_has_buffers(page) || |
| 468 | try_to_release_page(page, GFP_KERNEL)) { |
| 469 | rc = migrate_page(newpage, page); |
| 470 | goto unlock_both; |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * On early passes with mapped pages simply |
| 475 | * retry. There may be a lock held for some |
| 476 | * buffers that may go away. Later |
| 477 | * swap them out. |
| 478 | */ |
| 479 | if (pass > 4) { |
| 480 | /* |
| 481 | * Persistently unable to drop buffers..... As a |
| 482 | * measure of last resort we fall back to |
| 483 | * swap_page(). |
| 484 | */ |
| 485 | unlock_page(newpage); |
| 486 | newpage = NULL; |
| 487 | rc = swap_page(page); |
| 488 | goto next; |
| 489 | } |
| 490 | |
| 491 | unlock_both: |
| 492 | unlock_page(newpage); |
| 493 | |
| 494 | unlock_page: |
| 495 | unlock_page(page); |
| 496 | |
| 497 | next: |
| 498 | if (rc == -EAGAIN) { |
| 499 | retry++; |
| 500 | } else if (rc) { |
| 501 | /* Permanent failure */ |
| 502 | list_move(&page->lru, failed); |
| 503 | nr_failed++; |
| 504 | } else { |
| 505 | if (newpage) { |
| 506 | /* Successful migration. Return page to LRU */ |
| 507 | move_to_lru(newpage); |
| 508 | } |
| 509 | list_move(&page->lru, moved); |
| 510 | } |
| 511 | } |
| 512 | if (retry && pass++ < 10) |
| 513 | goto redo; |
| 514 | |
| 515 | if (!swapwrite) |
| 516 | current->flags &= ~PF_SWAPWRITE; |
| 517 | |
| 518 | return nr_failed + retry; |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Migration function for pages with buffers. This function can only be used |
| 523 | * if the underlying filesystem guarantees that no other references to "page" |
| 524 | * exist. |
| 525 | */ |
| 526 | int buffer_migrate_page(struct page *newpage, struct page *page) |
| 527 | { |
| 528 | struct address_space *mapping = page->mapping; |
| 529 | struct buffer_head *bh, *head; |
| 530 | int rc; |
| 531 | |
| 532 | if (!mapping) |
| 533 | return -EAGAIN; |
| 534 | |
| 535 | if (!page_has_buffers(page)) |
| 536 | return migrate_page(newpage, page); |
| 537 | |
| 538 | head = page_buffers(page); |
| 539 | |
| 540 | rc = migrate_page_remove_references(newpage, page, 3); |
| 541 | |
| 542 | if (rc) |
| 543 | return rc; |
| 544 | |
| 545 | bh = head; |
| 546 | do { |
| 547 | get_bh(bh); |
| 548 | lock_buffer(bh); |
| 549 | bh = bh->b_this_page; |
| 550 | |
| 551 | } while (bh != head); |
| 552 | |
| 553 | ClearPagePrivate(page); |
| 554 | set_page_private(newpage, page_private(page)); |
| 555 | set_page_private(page, 0); |
| 556 | put_page(page); |
| 557 | get_page(newpage); |
| 558 | |
| 559 | bh = head; |
| 560 | do { |
| 561 | set_bh_page(bh, newpage, bh_offset(bh)); |
| 562 | bh = bh->b_this_page; |
| 563 | |
| 564 | } while (bh != head); |
| 565 | |
| 566 | SetPagePrivate(newpage); |
| 567 | |
| 568 | migrate_page_copy(newpage, page); |
| 569 | |
| 570 | bh = head; |
| 571 | do { |
| 572 | unlock_buffer(bh); |
| 573 | put_bh(bh); |
| 574 | bh = bh->b_this_page; |
| 575 | |
| 576 | } while (bh != head); |
| 577 | |
| 578 | return 0; |
| 579 | } |
| 580 | EXPORT_SYMBOL(buffer_migrate_page); |
| 581 | |
| 582 | /* |
| 583 | * Migrate the list 'pagelist' of pages to a certain destination. |
| 584 | * |
| 585 | * Specify destination with either non-NULL vma or dest_node >= 0 |
| 586 | * Return the number of pages not migrated or error code |
| 587 | */ |
| 588 | int migrate_pages_to(struct list_head *pagelist, |
| 589 | struct vm_area_struct *vma, int dest) |
| 590 | { |
| 591 | LIST_HEAD(newlist); |
| 592 | LIST_HEAD(moved); |
| 593 | LIST_HEAD(failed); |
| 594 | int err = 0; |
| 595 | unsigned long offset = 0; |
| 596 | int nr_pages; |
| 597 | struct page *page; |
| 598 | struct list_head *p; |
| 599 | |
| 600 | redo: |
| 601 | nr_pages = 0; |
| 602 | list_for_each(p, pagelist) { |
| 603 | if (vma) { |
| 604 | /* |
| 605 | * The address passed to alloc_page_vma is used to |
| 606 | * generate the proper interleave behavior. We fake |
| 607 | * the address here by an increasing offset in order |
| 608 | * to get the proper distribution of pages. |
| 609 | * |
| 610 | * No decision has been made as to which page |
| 611 | * a certain old page is moved to so we cannot |
| 612 | * specify the correct address. |
| 613 | */ |
| 614 | page = alloc_page_vma(GFP_HIGHUSER, vma, |
| 615 | offset + vma->vm_start); |
| 616 | offset += PAGE_SIZE; |
| 617 | } |
| 618 | else |
| 619 | page = alloc_pages_node(dest, GFP_HIGHUSER, 0); |
| 620 | |
| 621 | if (!page) { |
| 622 | err = -ENOMEM; |
| 623 | goto out; |
| 624 | } |
| 625 | list_add_tail(&page->lru, &newlist); |
| 626 | nr_pages++; |
| 627 | if (nr_pages > MIGRATE_CHUNK_SIZE) |
| 628 | break; |
| 629 | } |
| 630 | err = migrate_pages(pagelist, &newlist, &moved, &failed); |
| 631 | |
| 632 | putback_lru_pages(&moved); /* Call release pages instead ?? */ |
| 633 | |
| 634 | if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) |
| 635 | goto redo; |
| 636 | out: |
| 637 | /* Return leftover allocated pages */ |
| 638 | while (!list_empty(&newlist)) { |
| 639 | page = list_entry(newlist.next, struct page, lru); |
| 640 | list_del(&page->lru); |
| 641 | __free_page(page); |
| 642 | } |
| 643 | list_splice(&failed, pagelist); |
| 644 | if (err < 0) |
| 645 | return err; |
| 646 | |
| 647 | /* Calculate number of leftover pages */ |
| 648 | nr_pages = 0; |
| 649 | list_for_each(p, pagelist) |
| 650 | nr_pages++; |
| 651 | return nr_pages; |
| 652 | } |