blob: 12659ce5c1f38e2f166937b18957c4fbf5732c3d [file] [log] [blame]
Catalin Marinas17f57212011-09-05 17:41:02 +01001/*
2 * arch/arm/include/asm/pgtable-2level.h
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASM_PGTABLE_2LEVEL_H
11#define _ASM_PGTABLE_2LEVEL_H
12
Martin Schwidefskya8874e72018-10-31 12:11:48 +010013#define __PAGETABLE_PMD_FOLDED 1
Kirill A. Shutemov8aa76872015-02-11 15:26:47 -080014
Catalin Marinas17f57212011-09-05 17:41:02 +010015/*
16 * Hardware-wise, we have a two level page table structure, where the first
17 * level has 4096 entries, and the second level has 256 entries. Each entry
18 * is one 32-bit word. Most of the bits in the second level entry are used
19 * by hardware, and there aren't any "accessed" and "dirty" bits.
20 *
21 * Linux on the other hand has a three level page table structure, which can
22 * be wrapped to fit a two level page table structure easily - using the PGD
23 * and PTE only. However, Linux also expects one "PTE" table per page, and
24 * at least a "dirty" bit.
25 *
26 * Therefore, we tweak the implementation slightly - we tell Linux that we
27 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
28 * hardware pointers to the second level.) The second level contains two
29 * hardware PTE tables arranged contiguously, preceded by Linux versions
30 * which contain the state information Linux needs. We, therefore, end up
31 * with 512 entries in the "PTE" level.
32 *
33 * This leads to the page tables having the following layout:
34 *
35 * pgd pte
36 * | |
37 * +--------+
38 * | | +------------+ +0
39 * +- - - - + | Linux pt 0 |
40 * | | +------------+ +1024
41 * +--------+ +0 | Linux pt 1 |
42 * | |-----> +------------+ +2048
43 * +- - - - + +4 | h/w pt 0 |
44 * | |-----> +------------+ +3072
45 * +--------+ +8 | h/w pt 1 |
46 * | | +------------+ +4096
47 *
48 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
49 * PTE_xxx for definitions of bits appearing in the "h/w pt".
50 *
51 * PMD_xxx definitions refer to bits in the first level page table.
52 *
53 * The "dirty" bit is emulated by only granting hardware write permission
54 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
55 * means that a write to a clean page will cause a permission fault, and
56 * the Linux MM layer will mark the page dirty via handle_pte_fault().
57 * For the hardware to notice the permission change, the TLB entry must
58 * be flushed, and ptep_set_access_flags() does that for us.
59 *
60 * The "accessed" or "young" bit is emulated by a similar method; we only
61 * allow accesses to the page if the "young" bit is set. Accesses to the
62 * page will cause a fault, and handle_pte_fault() will set the young bit
63 * for us as long as the page is marked present in the corresponding Linux
64 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
65 * up to date.
66 *
67 * However, when the "young" bit is cleared, we deny access to the page
68 * by clearing the hardware PTE. Currently Linux does not flush the TLB
69 * for us in this case, which means the TLB will retain the transation
70 * until either the TLB entry is evicted under pressure, or a context
71 * switch which changes the user space mapping occurs.
72 */
73#define PTRS_PER_PTE 512
74#define PTRS_PER_PMD 1
75#define PTRS_PER_PGD 2048
76
77#define PTE_HWTABLE_PTRS (PTRS_PER_PTE)
78#define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t))
79#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32))
80
81/*
82 * PMD_SHIFT determines the size of the area a second-level page table can map
83 * PGDIR_SHIFT determines what a third-level page table entry can map
84 */
85#define PMD_SHIFT 21
86#define PGDIR_SHIFT 21
87
88#define PMD_SIZE (1UL << PMD_SHIFT)
89#define PMD_MASK (~(PMD_SIZE-1))
90#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
91#define PGDIR_MASK (~(PGDIR_SIZE-1))
92
93/*
94 * section address mask and size definitions.
95 */
96#define SECTION_SHIFT 20
97#define SECTION_SIZE (1UL << SECTION_SHIFT)
98#define SECTION_MASK (~(SECTION_SIZE-1))
99
100/*
101 * ARMv6 supersection address mask and size definitions.
102 */
103#define SUPERSECTION_SHIFT 24
104#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
105#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
106
107#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
108
109/*
110 * "Linux" PTE definitions.
111 *
112 * We keep two sets of PTEs - the hardware and the linux version.
113 * This allows greater flexibility in the way we map the Linux bits
114 * onto the hardware tables, and allows us to have YOUNG and DIRTY
115 * bits.
116 *
117 * The PTE table pointer refers to the hardware entries; the "Linux"
118 * entries are stored 1024 bytes below.
119 */
Will Deacondbf62d52012-07-19 11:51:05 +0100120#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
Catalin Marinas17f57212011-09-05 17:41:02 +0100121#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
122#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
Catalin Marinas17f57212011-09-05 17:41:02 +0100123#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
124#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7)
125#define L_PTE_USER (_AT(pteval_t, 1) << 8)
126#define L_PTE_XN (_AT(pteval_t, 1) << 9)
127#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
Will Deacon26ffd0d2012-09-01 05:22:12 +0100128#define L_PTE_NONE (_AT(pteval_t, 1) << 11)
Catalin Marinas17f57212011-09-05 17:41:02 +0100129
130/*
131 * These are the memory types, defined to be compatible with
Russell King9ab79bb2015-07-01 15:23:10 +0100132 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
133 * ARMv6+ without TEX remapping, they are a table index.
134 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
135 *
136 * MT type Pre-ARMv6 ARMv6+ type / cacheable status
137 * UNCACHED Uncached Strongly ordered
138 * BUFFERABLE Bufferable Normal memory / non-cacheable
139 * WRITETHROUGH Writethrough Normal memory / write through
140 * WRITEBACK Writeback Normal memory / write back, read alloc
141 * MINICACHE Minicache N/A
142 * WRITEALLOC Writeback Normal memory / write back, write alloc
143 * DEV_SHARED Uncached Device memory (shared)
144 * DEV_NONSHARED Uncached Device memory (non-shared)
145 * DEV_WC Bufferable Normal memory / non-cacheable
146 * DEV_CACHED Writeback Normal memory / write back, read alloc
147 * VECTORS Variable Normal memory / variable
148 *
149 * All normal memory mappings have the following properties:
150 * - reads can be repeated with no side effects
151 * - repeated reads return the last value written
152 * - reads can fetch additional locations without side effects
153 * - writes can be repeated (in certain cases) with no side effects
154 * - writes can be merged before accessing the target
155 * - unaligned accesses can be supported
156 *
157 * All device mappings have the following properties:
158 * - no access speculation
159 * - no repetition (eg, on return from an exception)
160 * - number, order and size of accesses are maintained
161 * - unaligned accesses are "unpredictable"
Catalin Marinas17f57212011-09-05 17:41:02 +0100162 */
163#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
164#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
165#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
166#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
167#define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
168#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
169#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
170#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
171#define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
172#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
Will Deaconb6ccb982014-02-07 19:12:27 +0100173#define L_PTE_MT_VECTORS (_AT(pteval_t, 0x0f) << 2) /* 1111 */
Catalin Marinas17f57212011-09-05 17:41:02 +0100174#define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
175
Catalin Marinase0c03132011-11-22 17:30:28 +0000176#ifndef __ASSEMBLY__
177
178/*
179 * The "pud_xxx()" functions here are trivial when the pmd is folded into
180 * the pud: the pud entry is never bad, always exists, and can't be set or
181 * cleared.
182 */
183#define pud_none(pud) (0)
184#define pud_bad(pud) (0)
185#define pud_present(pud) (1)
186#define pud_clear(pudp) do { } while (0)
187#define set_pud(pud,pudp) do { } while (0)
188
189static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
190{
191 return (pmd_t *)pud;
192}
193
Russell King1fd15b82013-10-23 16:13:02 +0100194#define pmd_large(pmd) (pmd_val(pmd) & 2)
Catalin Marinase0c03132011-11-22 17:30:28 +0000195#define pmd_bad(pmd) (pmd_val(pmd) & 2)
Will Deacon62453182016-06-07 17:57:54 +0100196#define pmd_present(pmd) (pmd_val(pmd))
Catalin Marinase0c03132011-11-22 17:30:28 +0000197
198#define copy_pmd(pmdpd,pmdps) \
199 do { \
200 pmdpd[0] = pmdps[0]; \
201 pmdpd[1] = pmdps[1]; \
202 flush_pmd_entry(pmdpd); \
203 } while (0)
204
205#define pmd_clear(pmdp) \
206 do { \
207 pmdp[0] = __pmd(0); \
208 pmdp[1] = __pmd(0); \
209 clean_pmd_entry(pmdp); \
210 } while (0)
211
212/* we don't need complex calculations here as the pmd is folded into the pgd */
213#define pmd_addr_end(addr,end) (end)
214
215#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
Steve Capperbd951302014-10-09 15:29:16 -0700216#define pte_special(pte) (0)
217static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
Catalin Marinase0c03132011-11-22 17:30:28 +0000218
Steven Cappera3a9ea62013-10-14 09:49:10 +0100219/*
220 * We don't have huge page support for short descriptors, for the moment
221 * define empty stubs for use by pin_page_for_write.
222 */
223#define pmd_hugewillfault(pmd) (0)
224#define pmd_thp_or_huge(pmd) (0)
225
Catalin Marinase0c03132011-11-22 17:30:28 +0000226#endif /* __ASSEMBLY__ */
227
Catalin Marinas17f57212011-09-05 17:41:02 +0100228#endif /* _ASM_PGTABLE_2LEVEL_H */