Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 1 | /* |
| 2 | * arch/arm/include/asm/pgtable-2level.h |
| 3 | * |
| 4 | * Copyright (C) 1995-2002 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | */ |
| 10 | #ifndef _ASM_PGTABLE_2LEVEL_H |
| 11 | #define _ASM_PGTABLE_2LEVEL_H |
| 12 | |
Martin Schwidefsky | a8874e7 | 2018-10-31 12:11:48 +0100 | [diff] [blame] | 13 | #define __PAGETABLE_PMD_FOLDED 1 |
Kirill A. Shutemov | 8aa7687 | 2015-02-11 15:26:47 -0800 | [diff] [blame] | 14 | |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 15 | /* |
| 16 | * Hardware-wise, we have a two level page table structure, where the first |
| 17 | * level has 4096 entries, and the second level has 256 entries. Each entry |
| 18 | * is one 32-bit word. Most of the bits in the second level entry are used |
| 19 | * by hardware, and there aren't any "accessed" and "dirty" bits. |
| 20 | * |
| 21 | * Linux on the other hand has a three level page table structure, which can |
| 22 | * be wrapped to fit a two level page table structure easily - using the PGD |
| 23 | * and PTE only. However, Linux also expects one "PTE" table per page, and |
| 24 | * at least a "dirty" bit. |
| 25 | * |
| 26 | * Therefore, we tweak the implementation slightly - we tell Linux that we |
| 27 | * have 2048 entries in the first level, each of which is 8 bytes (iow, two |
| 28 | * hardware pointers to the second level.) The second level contains two |
| 29 | * hardware PTE tables arranged contiguously, preceded by Linux versions |
| 30 | * which contain the state information Linux needs. We, therefore, end up |
| 31 | * with 512 entries in the "PTE" level. |
| 32 | * |
| 33 | * This leads to the page tables having the following layout: |
| 34 | * |
| 35 | * pgd pte |
| 36 | * | | |
| 37 | * +--------+ |
| 38 | * | | +------------+ +0 |
| 39 | * +- - - - + | Linux pt 0 | |
| 40 | * | | +------------+ +1024 |
| 41 | * +--------+ +0 | Linux pt 1 | |
| 42 | * | |-----> +------------+ +2048 |
| 43 | * +- - - - + +4 | h/w pt 0 | |
| 44 | * | |-----> +------------+ +3072 |
| 45 | * +--------+ +8 | h/w pt 1 | |
| 46 | * | | +------------+ +4096 |
| 47 | * |
| 48 | * See L_PTE_xxx below for definitions of bits in the "Linux pt", and |
| 49 | * PTE_xxx for definitions of bits appearing in the "h/w pt". |
| 50 | * |
| 51 | * PMD_xxx definitions refer to bits in the first level page table. |
| 52 | * |
| 53 | * The "dirty" bit is emulated by only granting hardware write permission |
| 54 | * iff the page is marked "writable" and "dirty" in the Linux PTE. This |
| 55 | * means that a write to a clean page will cause a permission fault, and |
| 56 | * the Linux MM layer will mark the page dirty via handle_pte_fault(). |
| 57 | * For the hardware to notice the permission change, the TLB entry must |
| 58 | * be flushed, and ptep_set_access_flags() does that for us. |
| 59 | * |
| 60 | * The "accessed" or "young" bit is emulated by a similar method; we only |
| 61 | * allow accesses to the page if the "young" bit is set. Accesses to the |
| 62 | * page will cause a fault, and handle_pte_fault() will set the young bit |
| 63 | * for us as long as the page is marked present in the corresponding Linux |
| 64 | * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is |
| 65 | * up to date. |
| 66 | * |
| 67 | * However, when the "young" bit is cleared, we deny access to the page |
| 68 | * by clearing the hardware PTE. Currently Linux does not flush the TLB |
| 69 | * for us in this case, which means the TLB will retain the transation |
| 70 | * until either the TLB entry is evicted under pressure, or a context |
| 71 | * switch which changes the user space mapping occurs. |
| 72 | */ |
| 73 | #define PTRS_PER_PTE 512 |
| 74 | #define PTRS_PER_PMD 1 |
| 75 | #define PTRS_PER_PGD 2048 |
| 76 | |
| 77 | #define PTE_HWTABLE_PTRS (PTRS_PER_PTE) |
| 78 | #define PTE_HWTABLE_OFF (PTE_HWTABLE_PTRS * sizeof(pte_t)) |
| 79 | #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u32)) |
| 80 | |
| 81 | /* |
| 82 | * PMD_SHIFT determines the size of the area a second-level page table can map |
| 83 | * PGDIR_SHIFT determines what a third-level page table entry can map |
| 84 | */ |
| 85 | #define PMD_SHIFT 21 |
| 86 | #define PGDIR_SHIFT 21 |
| 87 | |
| 88 | #define PMD_SIZE (1UL << PMD_SHIFT) |
| 89 | #define PMD_MASK (~(PMD_SIZE-1)) |
| 90 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| 91 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| 92 | |
| 93 | /* |
| 94 | * section address mask and size definitions. |
| 95 | */ |
| 96 | #define SECTION_SHIFT 20 |
| 97 | #define SECTION_SIZE (1UL << SECTION_SHIFT) |
| 98 | #define SECTION_MASK (~(SECTION_SIZE-1)) |
| 99 | |
| 100 | /* |
| 101 | * ARMv6 supersection address mask and size definitions. |
| 102 | */ |
| 103 | #define SUPERSECTION_SHIFT 24 |
| 104 | #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) |
| 105 | #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) |
| 106 | |
| 107 | #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| 108 | |
| 109 | /* |
| 110 | * "Linux" PTE definitions. |
| 111 | * |
| 112 | * We keep two sets of PTEs - the hardware and the linux version. |
| 113 | * This allows greater flexibility in the way we map the Linux bits |
| 114 | * onto the hardware tables, and allows us to have YOUNG and DIRTY |
| 115 | * bits. |
| 116 | * |
| 117 | * The PTE table pointer refers to the hardware entries; the "Linux" |
| 118 | * entries are stored 1024 bytes below. |
| 119 | */ |
Will Deacon | dbf62d5 | 2012-07-19 11:51:05 +0100 | [diff] [blame] | 120 | #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */ |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 121 | #define L_PTE_PRESENT (_AT(pteval_t, 1) << 0) |
| 122 | #define L_PTE_YOUNG (_AT(pteval_t, 1) << 1) |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 123 | #define L_PTE_DIRTY (_AT(pteval_t, 1) << 6) |
| 124 | #define L_PTE_RDONLY (_AT(pteval_t, 1) << 7) |
| 125 | #define L_PTE_USER (_AT(pteval_t, 1) << 8) |
| 126 | #define L_PTE_XN (_AT(pteval_t, 1) << 9) |
| 127 | #define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */ |
Will Deacon | 26ffd0d | 2012-09-01 05:22:12 +0100 | [diff] [blame] | 128 | #define L_PTE_NONE (_AT(pteval_t, 1) << 11) |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 129 | |
| 130 | /* |
| 131 | * These are the memory types, defined to be compatible with |
Russell King | 9ab79bb | 2015-07-01 15:23:10 +0100 | [diff] [blame] | 132 | * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B |
| 133 | * ARMv6+ without TEX remapping, they are a table index. |
| 134 | * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B |
| 135 | * |
| 136 | * MT type Pre-ARMv6 ARMv6+ type / cacheable status |
| 137 | * UNCACHED Uncached Strongly ordered |
| 138 | * BUFFERABLE Bufferable Normal memory / non-cacheable |
| 139 | * WRITETHROUGH Writethrough Normal memory / write through |
| 140 | * WRITEBACK Writeback Normal memory / write back, read alloc |
| 141 | * MINICACHE Minicache N/A |
| 142 | * WRITEALLOC Writeback Normal memory / write back, write alloc |
| 143 | * DEV_SHARED Uncached Device memory (shared) |
| 144 | * DEV_NONSHARED Uncached Device memory (non-shared) |
| 145 | * DEV_WC Bufferable Normal memory / non-cacheable |
| 146 | * DEV_CACHED Writeback Normal memory / write back, read alloc |
| 147 | * VECTORS Variable Normal memory / variable |
| 148 | * |
| 149 | * All normal memory mappings have the following properties: |
| 150 | * - reads can be repeated with no side effects |
| 151 | * - repeated reads return the last value written |
| 152 | * - reads can fetch additional locations without side effects |
| 153 | * - writes can be repeated (in certain cases) with no side effects |
| 154 | * - writes can be merged before accessing the target |
| 155 | * - unaligned accesses can be supported |
| 156 | * |
| 157 | * All device mappings have the following properties: |
| 158 | * - no access speculation |
| 159 | * - no repetition (eg, on return from an exception) |
| 160 | * - number, order and size of accesses are maintained |
| 161 | * - unaligned accesses are "unpredictable" |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 162 | */ |
| 163 | #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */ |
| 164 | #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */ |
| 165 | #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */ |
| 166 | #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */ |
| 167 | #define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */ |
| 168 | #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */ |
| 169 | #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */ |
| 170 | #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */ |
| 171 | #define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */ |
| 172 | #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */ |
Will Deacon | b6ccb98 | 2014-02-07 19:12:27 +0100 | [diff] [blame] | 173 | #define L_PTE_MT_VECTORS (_AT(pteval_t, 0x0f) << 2) /* 1111 */ |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 174 | #define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2) |
| 175 | |
Catalin Marinas | e0c0313 | 2011-11-22 17:30:28 +0000 | [diff] [blame] | 176 | #ifndef __ASSEMBLY__ |
| 177 | |
| 178 | /* |
| 179 | * The "pud_xxx()" functions here are trivial when the pmd is folded into |
| 180 | * the pud: the pud entry is never bad, always exists, and can't be set or |
| 181 | * cleared. |
| 182 | */ |
| 183 | #define pud_none(pud) (0) |
| 184 | #define pud_bad(pud) (0) |
| 185 | #define pud_present(pud) (1) |
| 186 | #define pud_clear(pudp) do { } while (0) |
| 187 | #define set_pud(pud,pudp) do { } while (0) |
| 188 | |
| 189 | static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr) |
| 190 | { |
| 191 | return (pmd_t *)pud; |
| 192 | } |
| 193 | |
Russell King | 1fd15b8 | 2013-10-23 16:13:02 +0100 | [diff] [blame] | 194 | #define pmd_large(pmd) (pmd_val(pmd) & 2) |
Catalin Marinas | e0c0313 | 2011-11-22 17:30:28 +0000 | [diff] [blame] | 195 | #define pmd_bad(pmd) (pmd_val(pmd) & 2) |
Will Deacon | 6245318 | 2016-06-07 17:57:54 +0100 | [diff] [blame] | 196 | #define pmd_present(pmd) (pmd_val(pmd)) |
Catalin Marinas | e0c0313 | 2011-11-22 17:30:28 +0000 | [diff] [blame] | 197 | |
| 198 | #define copy_pmd(pmdpd,pmdps) \ |
| 199 | do { \ |
| 200 | pmdpd[0] = pmdps[0]; \ |
| 201 | pmdpd[1] = pmdps[1]; \ |
| 202 | flush_pmd_entry(pmdpd); \ |
| 203 | } while (0) |
| 204 | |
| 205 | #define pmd_clear(pmdp) \ |
| 206 | do { \ |
| 207 | pmdp[0] = __pmd(0); \ |
| 208 | pmdp[1] = __pmd(0); \ |
| 209 | clean_pmd_entry(pmdp); \ |
| 210 | } while (0) |
| 211 | |
| 212 | /* we don't need complex calculations here as the pmd is folded into the pgd */ |
| 213 | #define pmd_addr_end(addr,end) (end) |
| 214 | |
| 215 | #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext) |
Steve Capper | bd95130 | 2014-10-09 15:29:16 -0700 | [diff] [blame] | 216 | #define pte_special(pte) (0) |
| 217 | static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
Catalin Marinas | e0c0313 | 2011-11-22 17:30:28 +0000 | [diff] [blame] | 218 | |
Steven Capper | a3a9ea6 | 2013-10-14 09:49:10 +0100 | [diff] [blame] | 219 | /* |
| 220 | * We don't have huge page support for short descriptors, for the moment |
| 221 | * define empty stubs for use by pin_page_for_write. |
| 222 | */ |
| 223 | #define pmd_hugewillfault(pmd) (0) |
| 224 | #define pmd_thp_or_huge(pmd) (0) |
| 225 | |
Catalin Marinas | e0c0313 | 2011-11-22 17:30:28 +0000 | [diff] [blame] | 226 | #endif /* __ASSEMBLY__ */ |
| 227 | |
Catalin Marinas | 17f5721 | 2011-09-05 17:41:02 +0100 | [diff] [blame] | 228 | #endif /* _ASM_PGTABLE_2LEVEL_H */ |