blob: 0099044e2c8605ce58d19c68bd887c78956c03d0 [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Hendrik Brueckner19c93782015-04-28 12:29:06 +02002/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of CRC-32 checksums.
7 *
8 * This CRC-32 implementation algorithm processes the most-significant
9 * bit first (BE).
10 *
11 * Copyright IBM Corp. 2015
12 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13 */
14
15#include <linux/linkage.h>
Martin Schwidefsky467a3bf2018-04-23 14:31:36 +020016#include <asm/nospec-insn.h>
Hendrik Brueckner19c93782015-04-28 12:29:06 +020017#include <asm/vx-insn.h>
18
19/* Vector register range containing CRC-32 constants */
20#define CONST_R1R2 %v9
21#define CONST_R3R4 %v10
22#define CONST_R5 %v11
23#define CONST_R6 %v12
24#define CONST_RU_POLY %v13
25#define CONST_CRC_POLY %v14
26
27.data
28.align 8
29
30/*
31 * The CRC-32 constant block contains reduction constants to fold and
32 * process particular chunks of the input data stream in parallel.
33 *
34 * For the CRC-32 variants, the constants are precomputed according to
35 * these defintions:
36 *
37 * R1 = x4*128+64 mod P(x)
38 * R2 = x4*128 mod P(x)
39 * R3 = x128+64 mod P(x)
40 * R4 = x128 mod P(x)
41 * R5 = x96 mod P(x)
42 * R6 = x64 mod P(x)
43 *
44 * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
45 *
46 * where P(x) is the polynomial in the normal domain and the P'(x) is the
47 * polynomial in the reversed (bitreflected) domain.
48 *
49 * Note that the constant definitions below are extended in order to compute
50 * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
51 * The righmost doubleword can be 0 to prevent contribution to the result or
52 * can be multiplied by 1 to perform an XOR without the need for a separate
53 * VECTOR EXCLUSIVE OR instruction.
54 *
55 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
56 *
57 * P(x) = 0x04C11DB7
58 * P'(x) = 0xEDB88320
59 */
60
61.Lconstants_CRC_32_BE:
62 .quad 0x08833794c, 0x0e6228b11 # R1, R2
63 .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
64 .quad 0x0f200aa66, 1 << 32 # R5, x32
65 .quad 0x0490d678d, 1 # R6, 1
66 .quad 0x104d101df, 0 # u
67 .quad 0x104C11DB7, 0 # P(x)
68
69.previous
70
Martin Schwidefsky467a3bf2018-04-23 14:31:36 +020071 GEN_BR_THUNK %r14
72
Hendrik Brueckner19c93782015-04-28 12:29:06 +020073.text
74/*
75 * The CRC-32 function(s) use these calling conventions:
76 *
77 * Parameters:
78 *
79 * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
80 * %r3: Input buffer pointer, performance might be improved if the
81 * buffer is on a doubleword boundary.
82 * %r4: Length of the buffer, must be 64 bytes or greater.
83 *
84 * Register usage:
85 *
86 * %r5: CRC-32 constant pool base pointer.
87 * V0: Initial CRC value and intermediate constants and results.
88 * V1..V4: Data for CRC computation.
89 * V5..V8: Next data chunks that are fetched from the input buffer.
90 *
91 * V9..V14: CRC-32 constants.
92 */
93ENTRY(crc32_be_vgfm_16)
94 /* Load CRC-32 constants */
95 larl %r5,.Lconstants_CRC_32_BE
96 VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
97
98 /* Load the initial CRC value into the leftmost word of V0. */
99 VZERO %v0
100 VLVGF %v0,%r2,0
101
102 /* Load a 64-byte data chunk and XOR with CRC */
103 VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
104 VX %v1,%v0,%v1 /* V1 ^= CRC */
105 aghi %r3,64 /* BUF = BUF + 64 */
106 aghi %r4,-64 /* LEN = LEN - 64 */
107
108 /* Check remaining buffer size and jump to proper folding method */
109 cghi %r4,64
110 jl .Lless_than_64bytes
111
112.Lfold_64bytes_loop:
113 /* Load the next 64-byte data chunk into V5 to V8 */
114 VLM %v5,%v8,0,%r3
115
116 /*
117 * Perform a GF(2) multiplication of the doublewords in V1 with
118 * the reduction constants in V0. The intermediate result is
119 * then folded (accumulated) with the next data chunk in V5 and
120 * stored in V1. Repeat this step for the register contents
121 * in V2, V3, and V4 respectively.
122 */
123 VGFMAG %v1,CONST_R1R2,%v1,%v5
124 VGFMAG %v2,CONST_R1R2,%v2,%v6
125 VGFMAG %v3,CONST_R1R2,%v3,%v7
126 VGFMAG %v4,CONST_R1R2,%v4,%v8
127
128 /* Adjust buffer pointer and length for next loop */
129 aghi %r3,64 /* BUF = BUF + 64 */
130 aghi %r4,-64 /* LEN = LEN - 64 */
131
132 cghi %r4,64
133 jnl .Lfold_64bytes_loop
134
135.Lless_than_64bytes:
136 /* Fold V1 to V4 into a single 128-bit value in V1 */
137 VGFMAG %v1,CONST_R3R4,%v1,%v2
138 VGFMAG %v1,CONST_R3R4,%v1,%v3
139 VGFMAG %v1,CONST_R3R4,%v1,%v4
140
141 /* Check whether to continue with 64-bit folding */
142 cghi %r4,16
143 jl .Lfinal_fold
144
145.Lfold_16bytes_loop:
146
147 VL %v2,0,,%r3 /* Load next data chunk */
148 VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
149
150 /* Adjust buffer pointer and size for folding next data chunk */
151 aghi %r3,16
152 aghi %r4,-16
153
154 /* Process remaining data chunks */
155 cghi %r4,16
156 jnl .Lfold_16bytes_loop
157
158.Lfinal_fold:
159 /*
160 * The R5 constant is used to fold a 128-bit value into an 96-bit value
161 * that is XORed with the next 96-bit input data chunk. To use a single
162 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
163 * form an intermediate 96-bit value (with appended zeros) which is then
164 * XORed with the intermediate reduction result.
165 */
166 VGFMG %v1,CONST_R5,%v1
167
168 /*
169 * Further reduce the remaining 96-bit value to a 64-bit value using a
170 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
171 * intermediate result is then XORed with the product of the leftmost
172 * doubleword with R6. The result is a 64-bit value and is subject to
173 * the Barret reduction.
174 */
175 VGFMG %v1,CONST_R6,%v1
176
177 /*
178 * The input values to the Barret reduction are the degree-63 polynomial
179 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
180 * constant u. The Barret reduction result is the CRC value of R(x) mod
181 * P(x).
182 *
183 * The Barret reduction algorithm is defined as:
184 *
185 * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
186 * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
187 * 3. C(x) = R(x) XOR T2(x) mod x^32
188 *
189 * Note: To compensate the division by x^32, use the vector unpack
190 * instruction to move the leftmost word into the leftmost doubleword
191 * of the vector register. The rightmost doubleword is multiplied
192 * with zero to not contribute to the intermedate results.
193 */
194
195 /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
196 VUPLLF %v2,%v1
197 VGFMG %v2,CONST_RU_POLY,%v2
198
199 /*
200 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
201 * V2 and XOR the intermediate result, T2(x), with the value in V1.
202 * The final result is in the rightmost word of V2.
203 */
204 VUPLLF %v2,%v2
205 VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
206
207.Ldone:
208 VLGVF %r2,%v2,3
Martin Schwidefsky467a3bf2018-04-23 14:31:36 +0200209 BR_EX %r14
Martin Schwidefsky26a374a2019-01-17 10:02:22 +0100210ENDPROC(crc32_be_vgfm_16)
Hendrik Brueckner19c93782015-04-28 12:29:06 +0200211
212.previous