blob: 7ae2183ff1f4be76ed039e140185d50c8ac9b918 [file] [log] [blame]
Alexander Potapenko5015a302019-07-16 16:27:27 -07001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Test cases for SL[AOU]B/page initialization at alloc/free time.
4 */
5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/mm.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/string.h>
13#include <linux/vmalloc.h>
14
15#define GARBAGE_INT (0x09A7BA9E)
16#define GARBAGE_BYTE (0x9E)
17
18#define REPORT_FAILURES_IN_FN() \
19 do { \
20 if (failures) \
21 pr_info("%s failed %d out of %d times\n", \
22 __func__, failures, num_tests); \
23 else \
24 pr_info("all %d tests in %s passed\n", \
25 num_tests, __func__); \
26 } while (0)
27
28/* Calculate the number of uninitialized bytes in the buffer. */
29static int __init count_nonzero_bytes(void *ptr, size_t size)
30{
31 int i, ret = 0;
32 unsigned char *p = (unsigned char *)ptr;
33
34 for (i = 0; i < size; i++)
35 if (p[i])
36 ret++;
37 return ret;
38}
39
40/* Fill a buffer with garbage, skipping |skip| first bytes. */
41static void __init fill_with_garbage_skip(void *ptr, size_t size, size_t skip)
42{
43 unsigned int *p = (unsigned int *)ptr;
44 int i = 0;
45
46 if (skip) {
47 WARN_ON(skip > size);
48 p += skip;
49 }
50 while (size >= sizeof(*p)) {
51 p[i] = GARBAGE_INT;
52 i++;
53 size -= sizeof(*p);
54 }
55 if (size)
56 memset(&p[i], GARBAGE_BYTE, size);
57}
58
59static void __init fill_with_garbage(void *ptr, size_t size)
60{
61 fill_with_garbage_skip(ptr, size, 0);
62}
63
64static int __init do_alloc_pages_order(int order, int *total_failures)
65{
66 struct page *page;
67 void *buf;
68 size_t size = PAGE_SIZE << order;
69
70 page = alloc_pages(GFP_KERNEL, order);
71 buf = page_address(page);
72 fill_with_garbage(buf, size);
73 __free_pages(page, order);
74
75 page = alloc_pages(GFP_KERNEL, order);
76 buf = page_address(page);
77 if (count_nonzero_bytes(buf, size))
78 (*total_failures)++;
79 fill_with_garbage(buf, size);
80 __free_pages(page, order);
81 return 1;
82}
83
84/* Test the page allocator by calling alloc_pages with different orders. */
85static int __init test_pages(int *total_failures)
86{
87 int failures = 0, num_tests = 0;
88 int i;
89
90 for (i = 0; i < 10; i++)
91 num_tests += do_alloc_pages_order(i, &failures);
92
93 REPORT_FAILURES_IN_FN();
94 *total_failures += failures;
95 return num_tests;
96}
97
98/* Test kmalloc() with given parameters. */
99static int __init do_kmalloc_size(size_t size, int *total_failures)
100{
101 void *buf;
102
103 buf = kmalloc(size, GFP_KERNEL);
104 fill_with_garbage(buf, size);
105 kfree(buf);
106
107 buf = kmalloc(size, GFP_KERNEL);
108 if (count_nonzero_bytes(buf, size))
109 (*total_failures)++;
110 fill_with_garbage(buf, size);
111 kfree(buf);
112 return 1;
113}
114
115/* Test vmalloc() with given parameters. */
116static int __init do_vmalloc_size(size_t size, int *total_failures)
117{
118 void *buf;
119
120 buf = vmalloc(size);
121 fill_with_garbage(buf, size);
122 vfree(buf);
123
124 buf = vmalloc(size);
125 if (count_nonzero_bytes(buf, size))
126 (*total_failures)++;
127 fill_with_garbage(buf, size);
128 vfree(buf);
129 return 1;
130}
131
132/* Test kmalloc()/vmalloc() by allocating objects of different sizes. */
133static int __init test_kvmalloc(int *total_failures)
134{
135 int failures = 0, num_tests = 0;
136 int i, size;
137
138 for (i = 0; i < 20; i++) {
139 size = 1 << i;
140 num_tests += do_kmalloc_size(size, &failures);
141 num_tests += do_vmalloc_size(size, &failures);
142 }
143
144 REPORT_FAILURES_IN_FN();
145 *total_failures += failures;
146 return num_tests;
147}
148
149#define CTOR_BYTES (sizeof(unsigned int))
150#define CTOR_PATTERN (0x41414141)
151/* Initialize the first 4 bytes of the object. */
152static void test_ctor(void *obj)
153{
154 *(unsigned int *)obj = CTOR_PATTERN;
155}
156
157/*
158 * Check the invariants for the buffer allocated from a slab cache.
159 * If the cache has a test constructor, the first 4 bytes of the object must
160 * always remain equal to CTOR_PATTERN.
161 * If the cache isn't an RCU-typesafe one, or if the allocation is done with
162 * __GFP_ZERO, then the object contents must be zeroed after allocation.
163 * If the cache is an RCU-typesafe one, the object contents must never be
164 * zeroed after the first use. This is checked by memcmp() in
165 * do_kmem_cache_size().
166 */
167static bool __init check_buf(void *buf, int size, bool want_ctor,
168 bool want_rcu, bool want_zero)
169{
170 int bytes;
171 bool fail = false;
172
173 bytes = count_nonzero_bytes(buf, size);
174 WARN_ON(want_ctor && want_zero);
175 if (want_zero)
176 return bytes;
177 if (want_ctor) {
178 if (*(unsigned int *)buf != CTOR_PATTERN)
179 fail = 1;
180 } else {
181 if (bytes)
182 fail = !want_rcu;
183 }
184 return fail;
185}
186
187/*
188 * Test kmem_cache with given parameters:
189 * want_ctor - use a constructor;
190 * want_rcu - use SLAB_TYPESAFE_BY_RCU;
191 * want_zero - use __GFP_ZERO.
192 */
193static int __init do_kmem_cache_size(size_t size, bool want_ctor,
194 bool want_rcu, bool want_zero,
195 int *total_failures)
196{
197 struct kmem_cache *c;
198 int iter;
199 bool fail = false;
200 gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0);
201 void *buf, *buf_copy;
202
203 c = kmem_cache_create("test_cache", size, 1,
204 want_rcu ? SLAB_TYPESAFE_BY_RCU : 0,
205 want_ctor ? test_ctor : NULL);
206 for (iter = 0; iter < 10; iter++) {
207 buf = kmem_cache_alloc(c, alloc_mask);
208 /* Check that buf is zeroed, if it must be. */
209 fail = check_buf(buf, size, want_ctor, want_rcu, want_zero);
210 fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0);
Arnd Bergmannd3a81162019-07-16 16:27:39 -0700211
212 if (!want_rcu) {
213 kmem_cache_free(c, buf);
214 continue;
215 }
216
Alexander Potapenko5015a302019-07-16 16:27:27 -0700217 /*
218 * If this is an RCU cache, use a critical section to ensure we
219 * can touch objects after they're freed.
220 */
Arnd Bergmannd3a81162019-07-16 16:27:39 -0700221 rcu_read_lock();
222 /*
223 * Copy the buffer to check that it's not wiped on
224 * free().
225 */
226 buf_copy = kmalloc(size, GFP_KERNEL);
227 if (buf_copy)
228 memcpy(buf_copy, buf, size);
229
230 /*
231 * Check that |buf| is intact after kmem_cache_free().
232 * |want_zero| is false, because we wrote garbage to
233 * the buffer already.
234 */
235 fail |= check_buf(buf, size, want_ctor, want_rcu,
236 false);
237 if (buf_copy) {
238 fail |= (bool)memcmp(buf, buf_copy, size);
239 kfree(buf_copy);
Alexander Potapenko5015a302019-07-16 16:27:27 -0700240 }
Arnd Bergmannd3a81162019-07-16 16:27:39 -0700241 rcu_read_unlock();
Alexander Potapenko5015a302019-07-16 16:27:27 -0700242 }
243 kmem_cache_destroy(c);
244
245 *total_failures += fail;
246 return 1;
247}
248
249/*
250 * Check that the data written to an RCU-allocated object survives
251 * reallocation.
252 */
253static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures)
254{
255 struct kmem_cache *c;
256 void *buf, *buf_contents, *saved_ptr;
257 void **used_objects;
258 int i, iter, maxiter = 1024;
259 bool fail = false;
260
261 c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU,
262 NULL);
263 buf = kmem_cache_alloc(c, GFP_KERNEL);
264 saved_ptr = buf;
265 fill_with_garbage(buf, size);
266 buf_contents = kmalloc(size, GFP_KERNEL);
267 if (!buf_contents)
268 goto out;
269 used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL);
270 if (!used_objects) {
271 kfree(buf_contents);
272 goto out;
273 }
274 memcpy(buf_contents, buf, size);
275 kmem_cache_free(c, buf);
276 /*
277 * Run for a fixed number of iterations. If we never hit saved_ptr,
278 * assume the test passes.
279 */
280 for (iter = 0; iter < maxiter; iter++) {
281 buf = kmem_cache_alloc(c, GFP_KERNEL);
282 used_objects[iter] = buf;
283 if (buf == saved_ptr) {
284 fail = memcmp(buf_contents, buf, size);
285 for (i = 0; i <= iter; i++)
286 kmem_cache_free(c, used_objects[i]);
287 goto free_out;
288 }
289 }
290
291free_out:
292 kmem_cache_destroy(c);
293 kfree(buf_contents);
294 kfree(used_objects);
295out:
296 *total_failures += fail;
297 return 1;
298}
299
300/*
301 * Test kmem_cache allocation by creating caches of different sizes, with and
302 * without constructors, with and without SLAB_TYPESAFE_BY_RCU.
303 */
304static int __init test_kmemcache(int *total_failures)
305{
306 int failures = 0, num_tests = 0;
307 int i, flags, size;
308 bool ctor, rcu, zero;
309
310 for (i = 0; i < 10; i++) {
311 size = 8 << i;
312 for (flags = 0; flags < 8; flags++) {
313 ctor = flags & 1;
314 rcu = flags & 2;
315 zero = flags & 4;
316 if (ctor & zero)
317 continue;
318 num_tests += do_kmem_cache_size(size, ctor, rcu, zero,
319 &failures);
320 }
321 }
322 REPORT_FAILURES_IN_FN();
323 *total_failures += failures;
324 return num_tests;
325}
326
327/* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */
328static int __init test_rcu_persistent(int *total_failures)
329{
330 int failures = 0, num_tests = 0;
331 int i, size;
332
333 for (i = 0; i < 10; i++) {
334 size = 8 << i;
335 num_tests += do_kmem_cache_rcu_persistent(size, &failures);
336 }
337 REPORT_FAILURES_IN_FN();
338 *total_failures += failures;
339 return num_tests;
340}
341
342/*
343 * Run the tests. Each test function returns the number of executed tests and
344 * updates |failures| with the number of failed tests.
345 */
346static int __init test_meminit_init(void)
347{
348 int failures = 0, num_tests = 0;
349
350 num_tests += test_pages(&failures);
351 num_tests += test_kvmalloc(&failures);
352 num_tests += test_kmemcache(&failures);
353 num_tests += test_rcu_persistent(&failures);
354
355 if (failures == 0)
356 pr_info("all %d tests passed!\n", num_tests);
357 else
358 pr_info("failures: %d out of %d\n", failures, num_tests);
359
360 return failures ? -EINVAL : 0;
361}
362module_init(test_meminit_init);
363
364MODULE_LICENSE("GPL");