blob: 3397902e4040a30f566ff4b84555f17d7150d8f8 [file] [log] [blame]
Mark Salter3c7f2552014-04-15 22:47:52 -04001/*
2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
4 *
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
9 *
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
12 *
13 */
14
Ard Biesheuvelbd669472014-07-02 14:54:42 +020015#include <linux/efi.h>
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +010016#include <linux/sort.h>
Ard Biesheuvelbd669472014-07-02 14:54:42 +020017#include <asm/efi.h>
18
19#include "efistub.h"
20
Ard Biesheuvelddeeefe2015-01-12 20:28:20 +000021static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg)
Ard Biesheuvel345c7362014-04-03 17:46:58 +020022{
Ard Biesheuvelddeeefe2015-01-12 20:28:20 +000023 static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID;
24 static efi_char16_t const var_name[] = {
Ard Biesheuvel345c7362014-04-03 17:46:58 +020025 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
26
27 efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
28 unsigned long size = sizeof(u8);
29 efi_status_t status;
30 u8 val;
31
32 status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid,
33 NULL, &size, &val);
34
35 switch (status) {
36 case EFI_SUCCESS:
37 return val;
38 case EFI_NOT_FOUND:
39 return 0;
40 default:
41 return 1;
42 }
43}
44
Ard Biesheuvelbd669472014-07-02 14:54:42 +020045efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
46 void *__image, void **__fh)
Mark Salter3c7f2552014-04-15 22:47:52 -040047{
48 efi_file_io_interface_t *io;
49 efi_loaded_image_t *image = __image;
50 efi_file_handle_t *fh;
51 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
52 efi_status_t status;
53 void *handle = (void *)(unsigned long)image->device_handle;
54
55 status = sys_table_arg->boottime->handle_protocol(handle,
56 &fs_proto, (void **)&io);
57 if (status != EFI_SUCCESS) {
58 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
59 return status;
60 }
61
62 status = io->open_volume(io, &fh);
63 if (status != EFI_SUCCESS)
64 efi_printk(sys_table_arg, "Failed to open volume\n");
65
66 *__fh = fh;
67 return status;
68}
Ard Biesheuvelbd669472014-07-02 14:54:42 +020069
70efi_status_t efi_file_close(void *handle)
Mark Salter3c7f2552014-04-15 22:47:52 -040071{
72 efi_file_handle_t *fh = handle;
73
74 return fh->close(handle);
75}
76
Ard Biesheuvelbd669472014-07-02 14:54:42 +020077efi_status_t
Mark Salter3c7f2552014-04-15 22:47:52 -040078efi_file_read(void *handle, unsigned long *size, void *addr)
79{
80 efi_file_handle_t *fh = handle;
81
82 return fh->read(handle, size, addr);
83}
84
85
Ard Biesheuvelbd669472014-07-02 14:54:42 +020086efi_status_t
Mark Salter3c7f2552014-04-15 22:47:52 -040087efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
88 efi_char16_t *filename_16, void **handle, u64 *file_sz)
89{
90 efi_file_handle_t *h, *fh = __fh;
91 efi_file_info_t *info;
92 efi_status_t status;
93 efi_guid_t info_guid = EFI_FILE_INFO_ID;
94 unsigned long info_sz;
95
96 status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
97 if (status != EFI_SUCCESS) {
98 efi_printk(sys_table_arg, "Failed to open file: ");
99 efi_char16_printk(sys_table_arg, filename_16);
100 efi_printk(sys_table_arg, "\n");
101 return status;
102 }
103
104 *handle = h;
105
106 info_sz = 0;
107 status = h->get_info(h, &info_guid, &info_sz, NULL);
108 if (status != EFI_BUFFER_TOO_SMALL) {
109 efi_printk(sys_table_arg, "Failed to get file info size\n");
110 return status;
111 }
112
113grow:
114 status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
115 info_sz, (void **)&info);
116 if (status != EFI_SUCCESS) {
117 efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
118 return status;
119 }
120
121 status = h->get_info(h, &info_guid, &info_sz,
122 info);
123 if (status == EFI_BUFFER_TOO_SMALL) {
124 sys_table_arg->boottime->free_pool(info);
125 goto grow;
126 }
127
128 *file_sz = info->file_size;
129 sys_table_arg->boottime->free_pool(info);
130
131 if (status != EFI_SUCCESS)
132 efi_printk(sys_table_arg, "Failed to get initrd info\n");
133
134 return status;
135}
136
137
138
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200139void efi_char16_printk(efi_system_table_t *sys_table_arg,
Mark Salter3c7f2552014-04-15 22:47:52 -0400140 efi_char16_t *str)
141{
142 struct efi_simple_text_output_protocol *out;
143
144 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
145 out->output_string(out, str);
146}
147
148
149/*
150 * This function handles the architcture specific differences between arm and
151 * arm64 regarding where the kernel image must be loaded and any memory that
152 * must be reserved. On failure it is required to free all
153 * all allocations it has made.
154 */
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200155efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
156 unsigned long *image_addr,
157 unsigned long *image_size,
158 unsigned long *reserve_addr,
159 unsigned long *reserve_size,
160 unsigned long dram_base,
161 efi_loaded_image_t *image);
Mark Salter3c7f2552014-04-15 22:47:52 -0400162/*
163 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
164 * that is described in the PE/COFF header. Most of the code is the same
165 * for both archictectures, with the arch-specific code provided in the
166 * handle_kernel_image() function.
167 */
Ard Biesheuvelddeeefe2015-01-12 20:28:20 +0000168unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
Mark Salter3c7f2552014-04-15 22:47:52 -0400169 unsigned long *image_addr)
170{
171 efi_loaded_image_t *image;
172 efi_status_t status;
173 unsigned long image_size = 0;
174 unsigned long dram_base;
175 /* addr/point and size pairs for memory management*/
176 unsigned long initrd_addr;
177 u64 initrd_size = 0;
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200178 unsigned long fdt_addr = 0; /* Original DTB */
Ard Biesheuvela6433752015-03-04 13:02:29 +0100179 unsigned long fdt_size = 0;
Mark Salter3c7f2552014-04-15 22:47:52 -0400180 char *cmdline_ptr = NULL;
181 int cmdline_size = 0;
182 unsigned long new_fdt_addr;
183 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
184 unsigned long reserve_addr = 0;
185 unsigned long reserve_size = 0;
186
187 /* Check if we were booted by the EFI firmware */
188 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
189 goto fail;
190
191 pr_efi(sys_table, "Booting Linux Kernel...\n");
192
193 /*
194 * Get a handle to the loaded image protocol. This is used to get
195 * information about the running image, such as size and the command
196 * line.
197 */
198 status = sys_table->boottime->handle_protocol(handle,
199 &loaded_image_proto, (void *)&image);
200 if (status != EFI_SUCCESS) {
201 pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
202 goto fail;
203 }
204
205 dram_base = get_dram_base(sys_table);
206 if (dram_base == EFI_ERROR) {
207 pr_efi_err(sys_table, "Failed to find DRAM base\n");
208 goto fail;
209 }
210 status = handle_kernel_image(sys_table, image_addr, &image_size,
211 &reserve_addr,
212 &reserve_size,
213 dram_base, image);
214 if (status != EFI_SUCCESS) {
215 pr_efi_err(sys_table, "Failed to relocate kernel\n");
216 goto fail;
217 }
218
219 /*
220 * Get the command line from EFI, using the LOADED_IMAGE
221 * protocol. We are going to copy the command line into the
222 * device tree, so this can be allocated anywhere.
223 */
224 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
225 if (!cmdline_ptr) {
226 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
227 goto fail_free_image;
228 }
229
Matt Fleming5a17dae2014-08-05 11:52:11 +0100230 status = efi_parse_options(cmdline_ptr);
231 if (status != EFI_SUCCESS)
232 pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
233
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200234 /*
235 * Unauthenticated device tree data is a security hazard, so
236 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
237 */
238 if (efi_secureboot_enabled(sys_table)) {
239 pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
240 } else {
Mark Salter3c7f2552014-04-15 22:47:52 -0400241 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
242 "dtb=",
Ard Biesheuvela6433752015-03-04 13:02:29 +0100243 ~0UL, &fdt_addr, &fdt_size);
Mark Salter3c7f2552014-04-15 22:47:52 -0400244
245 if (status != EFI_SUCCESS) {
246 pr_efi_err(sys_table, "Failed to load device tree!\n");
247 goto fail_free_cmdline;
248 }
249 }
Mark Rutland0bcaa902014-10-23 16:33:33 +0100250
251 if (fdt_addr) {
252 pr_efi(sys_table, "Using DTB from command line\n");
253 } else {
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200254 /* Look for a device tree configuration table entry. */
Ard Biesheuvela6433752015-03-04 13:02:29 +0100255 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
Mark Rutland0bcaa902014-10-23 16:33:33 +0100256 if (fdt_addr)
257 pr_efi(sys_table, "Using DTB from configuration table\n");
258 }
259
260 if (!fdt_addr)
261 pr_efi(sys_table, "Generating empty DTB\n");
Mark Salter3c7f2552014-04-15 22:47:52 -0400262
263 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
264 "initrd=", dram_base + SZ_512M,
265 (unsigned long *)&initrd_addr,
266 (unsigned long *)&initrd_size);
267 if (status != EFI_SUCCESS)
268 pr_efi_err(sys_table, "Failed initrd from command line!\n");
269
270 new_fdt_addr = fdt_addr;
271 status = allocate_new_fdt_and_exit_boot(sys_table, handle,
272 &new_fdt_addr, dram_base + MAX_FDT_OFFSET,
273 initrd_addr, initrd_size, cmdline_ptr,
274 fdt_addr, fdt_size);
275
276 /*
277 * If all went well, we need to return the FDT address to the
278 * calling function so it can be passed to kernel as part of
279 * the kernel boot protocol.
280 */
281 if (status == EFI_SUCCESS)
282 return new_fdt_addr;
283
284 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
285
286 efi_free(sys_table, initrd_size, initrd_addr);
287 efi_free(sys_table, fdt_size, fdt_addr);
288
289fail_free_cmdline:
290 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
291
292fail_free_image:
293 efi_free(sys_table, image_size, *image_addr);
294 efi_free(sys_table, reserve_size, reserve_addr);
295fail:
296 return EFI_ERROR;
297}
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200298
299/*
300 * This is the base address at which to start allocating virtual memory ranges
301 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
302 * any allocation we choose, and eliminate the risk of a conflict after kexec.
303 * The value chosen is the largest non-zero power of 2 suitable for this purpose
304 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
305 * be mapped efficiently.
Roy Franz81a0bc32015-09-23 20:17:54 -0700306 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
307 * map everything below 1 GB.
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200308 */
Roy Franz81a0bc32015-09-23 20:17:54 -0700309#define EFI_RT_VIRTUAL_BASE SZ_512M
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200310
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100311static int cmp_mem_desc(const void *l, const void *r)
312{
313 const efi_memory_desc_t *left = l, *right = r;
314
315 return (left->phys_addr > right->phys_addr) ? 1 : -1;
316}
317
318/*
319 * Returns whether region @left ends exactly where region @right starts,
320 * or false if either argument is NULL.
321 */
322static bool regions_are_adjacent(efi_memory_desc_t *left,
323 efi_memory_desc_t *right)
324{
325 u64 left_end;
326
327 if (left == NULL || right == NULL)
328 return false;
329
330 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
331
332 return left_end == right->phys_addr;
333}
334
335/*
336 * Returns whether region @left and region @right have compatible memory type
337 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
338 */
339static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
340 efi_memory_desc_t *right)
341{
342 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
343 EFI_MEMORY_WC | EFI_MEMORY_UC |
344 EFI_MEMORY_RUNTIME;
345
346 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
347}
348
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200349/*
350 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
351 *
352 * This function populates the virt_addr fields of all memory region descriptors
353 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
354 * are also copied to @runtime_map, and their total count is returned in @count.
355 */
356void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
357 unsigned long desc_size, efi_memory_desc_t *runtime_map,
358 int *count)
359{
360 u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100361 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200362 int l;
363
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100364 /*
365 * To work around potential issues with the Properties Table feature
366 * introduced in UEFI 2.5, which may split PE/COFF executable images
367 * in memory into several RuntimeServicesCode and RuntimeServicesData
368 * regions, we need to preserve the relative offsets between adjacent
369 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
370 * The easiest way to find adjacent regions is to sort the memory map
371 * before traversing it.
372 */
373 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
374
375 for (l = 0; l < map_size; l += desc_size, prev = in) {
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200376 u64 paddr, size;
377
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100378 in = (void *)memory_map + l;
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200379 if (!(in->attribute & EFI_MEMORY_RUNTIME))
380 continue;
381
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100382 paddr = in->phys_addr;
383 size = in->num_pages * EFI_PAGE_SIZE;
384
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200385 /*
386 * Make the mapping compatible with 64k pages: this allows
387 * a 4k page size kernel to kexec a 64k page size kernel and
388 * vice versa.
389 */
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100390 if (!regions_are_adjacent(prev, in) ||
391 !regions_have_compatible_memory_type_attrs(prev, in)) {
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200392
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100393 paddr = round_down(in->phys_addr, SZ_64K);
394 size += in->phys_addr - paddr;
395
396 /*
397 * Avoid wasting memory on PTEs by choosing a virtual
398 * base that is compatible with section mappings if this
399 * region has the appropriate size and physical
400 * alignment. (Sections are 2 MB on 4k granule kernels)
401 */
402 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
403 efi_virt_base = round_up(efi_virt_base, SZ_2M);
404 else
405 efi_virt_base = round_up(efi_virt_base, SZ_64K);
406 }
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200407
408 in->virt_addr = efi_virt_base + in->phys_addr - paddr;
409 efi_virt_base += size;
410
411 memcpy(out, in, desc_size);
412 out = (void *)out + desc_size;
413 ++*count;
414 }
415}