blob: 02deec3ec264dabc3c50868574ccbac4f35f6db3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +00005 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07006 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
Thomas Gleixner61b03bd2005-11-07 11:15:49 +00009 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070010 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000017 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
Linus Torvalds1da177e2005-04-16 15:20:36 -070019 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20 */
21
22#include <linux/delay.h>
23#include <linux/kernel.h>
24#include <linux/init.h>
25#include <linux/slab.h>
26#include <linux/rslib.h>
Adrian Bunk1605cd32006-11-22 05:38:11 +010027#include <linux/bitrev.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#include <linux/module.h>
29#include <linux/mtd/compatmac.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/partitions.h>
33#include <asm/io.h>
34
35/*
36 * MTD structure for Renesas board
37 */
38static struct mtd_info *rtc_from4_mtd = NULL;
39
40#define RTC_FROM4_MAX_CHIPS 2
41
42/* HS77x9 processor register defines */
43#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
44#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
45#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
46#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
47#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
48#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
49#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
50
51/*
52 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
53 */
54/* Address where flash is mapped */
55#define RTC_FROM4_FIO_BASE 0x14000000
56
57/* CLE and ALE are tied to address lines 5 & 4, respectively */
58#define RTC_FROM4_CLE (1 << 5)
59#define RTC_FROM4_ALE (1 << 4)
60
61/* address lines A24-A22 used for chip selection */
62#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
63#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
64#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
65/* mask address lines A24-A22 used for chip selection */
66#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
67
68/* FPGA status register for checking device ready (bit zero) */
69#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
70#define RTC_FROM4_DEVICE_READY 0x0001
71
72/* FPGA Reed-Solomon ECC Control register */
73
74#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
75#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
76#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
77#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
78
79/* FPGA Reed-Solomon ECC code base */
80#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
81#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
82
83/* FPGA Reed-Solomon ECC check register */
84#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
85#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
86
David A. Marlined3786a2005-01-24 20:40:15 +000087#define ERR_STAT_ECC_AVAILABLE 0x20
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089/* Undefine for software ECC */
90#define RTC_FROM4_HWECC 1
91
David A. Marlined3786a2005-01-24 20:40:15 +000092/* Define as 1 for no virtual erase blocks (in JFFS2) */
93#define RTC_FROM4_NO_VIRTBLOCKS 0
94
Linus Torvalds1da177e2005-04-16 15:20:36 -070095/*
96 * Module stuff
97 */
David A. Marlin97f1a082005-01-17 19:44:39 +000098static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099
Jesper Juhl3c6bee12006-01-09 20:54:01 -0800100static const struct mtd_partition partition_info[] = {
David Woodhousee0c7d762006-05-13 18:07:53 +0100101 {
102 .name = "Renesas flash partition 1",
103 .offset = 0,
104 .size = MTDPART_SIZ_FULL},
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105};
David Woodhousee0c7d762006-05-13 18:07:53 +0100106
Linus Torvalds1da177e2005-04-16 15:20:36 -0700107#define NUM_PARTITIONS 1
108
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000109/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110 * hardware specific flash bbt decriptors
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000111 * Note: this is to allow debugging by disabling
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
113 *
114 */
David Woodhousee0c7d762006-05-13 18:07:53 +0100115static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
116static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117
118static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
119 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
120 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
121 .offs = 40,
122 .len = 4,
123 .veroffs = 44,
124 .maxblocks = 4,
125 .pattern = bbt_pattern
126};
127
128static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
129 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
130 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
131 .offs = 40,
132 .len = 4,
133 .veroffs = 44,
134 .maxblocks = 4,
135 .pattern = mirror_pattern
136};
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138#ifdef RTC_FROM4_HWECC
139
140/* the Reed Solomon control structure */
141static struct rs_control *rs_decoder;
142
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000143/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700144 * hardware specific Out Of Band information
145 */
Thomas Gleixner5bd34c02006-05-27 22:16:10 +0200146static struct nand_ecclayout rtc_from4_nand_oobinfo = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147 .eccbytes = 32,
148 .eccpos = {
David Woodhousee0c7d762006-05-13 18:07:53 +0100149 0, 1, 2, 3, 4, 5, 6, 7,
150 8, 9, 10, 11, 12, 13, 14, 15,
151 16, 17, 18, 19, 20, 21, 22, 23,
152 24, 25, 26, 27, 28, 29, 30, 31},
153 .oobfree = {{32, 32}}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154};
155
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156#endif
157
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000158/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159 * rtc_from4_hwcontrol - hardware specific access to control-lines
160 * @mtd: MTD device structure
161 * @cmd: hardware control command
162 *
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000163 * Address lines (A5 and A4) are used to control Command and Address Latch
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 * Enable on this board, so set the read/write address appropriately.
165 *
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000166 * Chip Enable is also controlled by the Chip Select (CS5) and
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167 * Address lines (A24-A22), so no action is required here.
168 *
169 */
Thomas Gleixner7abd3ef2006-05-23 23:25:53 +0200170static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
171 unsigned int ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172{
Thomas Gleixner7abd3ef2006-05-23 23:25:53 +0200173 struct nand_chip *chip = (mtd->priv);
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000174
Thomas Gleixner7abd3ef2006-05-23 23:25:53 +0200175 if (cmd == NAND_CMD_NONE)
176 return;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000177
Thomas Gleixner7abd3ef2006-05-23 23:25:53 +0200178 if (ctrl & NAND_CLE)
179 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
180 else
181 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182}
183
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184/*
185 * rtc_from4_nand_select_chip - hardware specific chip select
186 * @mtd: MTD device structure
187 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
188 *
189 * The chip select is based on address lines A24-A22.
190 * This driver uses flash slots 3 and 4 (A23-A22).
191 *
192 */
193static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
194{
David Woodhousee0c7d762006-05-13 18:07:53 +0100195 struct nand_chip *this = mtd->priv;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196
197 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
198 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
199
David Woodhousee0c7d762006-05-13 18:07:53 +0100200 switch (chip) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201
David Woodhousee0c7d762006-05-13 18:07:53 +0100202 case 0: /* select slot 3 chip */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
204 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
David Woodhousee0c7d762006-05-13 18:07:53 +0100205 break;
206 case 1: /* select slot 4 chip */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
208 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
David Woodhousee0c7d762006-05-13 18:07:53 +0100209 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700210
David Woodhousee0c7d762006-05-13 18:07:53 +0100211 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212}
213
Linus Torvalds1da177e2005-04-16 15:20:36 -0700214/*
215 * rtc_from4_nand_device_ready - hardware specific ready/busy check
216 * @mtd: MTD device structure
217 *
218 * This board provides the Ready/Busy state in the status register
219 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
220 *
221 */
222static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
223{
224 unsigned short status;
225
226 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
227
228 return (status & RTC_FROM4_DEVICE_READY);
229
230}
231
David A. Marlin97f1a082005-01-17 19:44:39 +0000232/*
233 * deplete - code to perform device recovery in case there was a power loss
234 * @mtd: MTD device structure
235 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
236 *
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000237 * If there was a sudden loss of power during an erase operation, a
David A. Marlin97f1a082005-01-17 19:44:39 +0000238 * "device recovery" operation must be performed when power is restored
239 * to ensure correct operation. This routine performs the required steps
240 * for the requested chip.
241 *
242 * See page 86 of the data sheet for details.
243 *
244 */
245static void deplete(struct mtd_info *mtd, int chip)
246{
David Woodhousee0c7d762006-05-13 18:07:53 +0100247 struct nand_chip *this = mtd->priv;
David A. Marlin97f1a082005-01-17 19:44:39 +0000248
David Woodhousee0c7d762006-05-13 18:07:53 +0100249 /* wait until device is ready */
250 while (!this->dev_ready(mtd)) ;
David A. Marlin97f1a082005-01-17 19:44:39 +0000251
252 this->select_chip(mtd, chip);
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000253
David A. Marlin97f1a082005-01-17 19:44:39 +0000254 /* Send the commands for device recovery, phase 1 */
David Woodhousee0c7d762006-05-13 18:07:53 +0100255 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
256 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
David A. Marlin97f1a082005-01-17 19:44:39 +0000257
258 /* Send the commands for device recovery, phase 2 */
David Woodhousee0c7d762006-05-13 18:07:53 +0100259 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
260 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
David A. Marlin97f1a082005-01-17 19:44:39 +0000261
262}
263
Linus Torvalds1da177e2005-04-16 15:20:36 -0700264#ifdef RTC_FROM4_HWECC
265/*
266 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
267 * @mtd: MTD device structure
268 * @mode: I/O mode; read or write
269 *
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000270 * enable hardware ECC for data read or write
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271 *
272 */
273static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
274{
David Woodhousee0c7d762006-05-13 18:07:53 +0100275 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276 unsigned short status;
277
278 switch (mode) {
David Woodhousee0c7d762006-05-13 18:07:53 +0100279 case NAND_ECC_READ:
280 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281
282 *rs_ecc_ctl = status;
283 break;
284
David Woodhousee0c7d762006-05-13 18:07:53 +0100285 case NAND_ECC_READSYN:
286 status = 0x00;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287
288 *rs_ecc_ctl = status;
289 break;
290
David Woodhousee0c7d762006-05-13 18:07:53 +0100291 case NAND_ECC_WRITE:
292 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293
294 *rs_ecc_ctl = status;
295 break;
296
David Woodhousee0c7d762006-05-13 18:07:53 +0100297 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298 BUG();
299 break;
300 }
301
302}
303
304/*
305 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
306 * @mtd: MTD device structure
307 * @dat: buffer containing the data to generate ECC codes
308 * @ecc_code ECC codes calculated
309 *
310 * The ECC code is calculated by the FPGA. All we have to do is read the values
311 * from the FPGA registers.
312 *
313 * Note: We read from the inverted registers, since data is inverted before
314 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
315 *
316 */
317static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
318{
David Woodhousee0c7d762006-05-13 18:07:53 +0100319 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700320 unsigned short value;
321 int i;
322
323 for (i = 0; i < 8; i++) {
324 value = *rs_eccn;
325 ecc_code[i] = (unsigned char)value;
326 rs_eccn++;
327 }
328 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
329}
330
331/*
332 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
333 * @mtd: MTD device structure
334 * @buf: buffer containing the data to generate ECC codes
335 * @ecc1 ECC codes read
336 * @ecc2 ECC codes calculated
337 *
338 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
339 * else we read the ecc results from the fpga and call the rs library to decode
David A. Marlined3786a2005-01-24 20:40:15 +0000340 * and hopefully correct the error.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700342 */
343static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
344{
345 int i, j, res;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000346 unsigned short status;
David A. Marlin97f1a082005-01-17 19:44:39 +0000347 uint16_t par[6], syn[6];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348 uint8_t ecc[8];
David Woodhousee0c7d762006-05-13 18:07:53 +0100349 volatile unsigned short *rs_ecc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700350
351 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
352
353 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
354 return 0;
355 }
356
357 /* Read the syndrom pattern from the FPGA and correct the bitorder */
358 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
David Woodhousee0c7d762006-05-13 18:07:53 +0100359 for (i = 0; i < 8; i++) {
Andrew Mortonce106042006-11-29 00:19:14 +0000360 ecc[i] = bitrev8(*rs_ecc);
David Woodhousee0c7d762006-05-13 18:07:53 +0100361 rs_ecc++;
362 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363
364 /* convert into 6 10bit syndrome fields */
David Woodhousee0c7d762006-05-13 18:07:53 +0100365 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
366 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
367 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
368 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
369 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
370 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371
372 /* Convert to computable syndrome */
373 for (i = 0; i < 6; i++) {
374 syn[i] = par[0];
375 for (j = 1; j < 6; j++)
376 if (par[j] != rs_decoder->nn)
377 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
378
379 /* Convert to index form */
380 syn[i] = rs_decoder->index_of[syn[i]];
381 }
382
David Woodhousee0c7d762006-05-13 18:07:53 +0100383 /* Let the library code do its magic. */
384 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385 if (res > 0) {
David Woodhousee0c7d762006-05-13 18:07:53 +0100386 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700387 }
388 return res;
389}
David A. Marlined3786a2005-01-24 20:40:15 +0000390
David A. Marlined3786a2005-01-24 20:40:15 +0000391/**
392 * rtc_from4_errstat - perform additional error status checks
393 * @mtd: MTD device structure
394 * @this: NAND chip structure
395 * @state: state or the operation
396 * @status: status code returned from read status
397 * @page: startpage inside the chip, must be called with (page & this->pagemask)
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000398 *
399 * Perform additional error status checks on erase and write failures
400 * to determine if errors are correctable. For this device, correctable
David A. Marlined3786a2005-01-24 20:40:15 +0000401 * 1-bit errors on erase and write are considered acceptable.
402 *
403 * note: see pages 34..37 of data sheet for details.
404 *
405 */
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200406static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
407 int state, int status, int page)
David A. Marlined3786a2005-01-24 20:40:15 +0000408{
David Woodhousee0c7d762006-05-13 18:07:53 +0100409 int er_stat = 0;
410 int rtn, retlen;
411 size_t len;
David A. Marlined3786a2005-01-24 20:40:15 +0000412 uint8_t *buf;
David Woodhousee0c7d762006-05-13 18:07:53 +0100413 int i;
David A. Marlined3786a2005-01-24 20:40:15 +0000414
David Woodhousee0c7d762006-05-13 18:07:53 +0100415 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
David A. Marlined3786a2005-01-24 20:40:15 +0000416
David Woodhousee0c7d762006-05-13 18:07:53 +0100417 if (state == FL_ERASING) {
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200418
David Woodhousee0c7d762006-05-13 18:07:53 +0100419 for (i = 0; i < 4; i++) {
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200420 if (!(status & 1 << (i + 1)))
421 continue;
422 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
423 -1, -1);
424 rtn = this->read_byte(mtd);
425 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
426
427 /* err_ecc_not_avail */
428 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
429 er_stat |= 1 << (i + 1);
David A. Marlined3786a2005-01-24 20:40:15 +0000430 }
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200431
David A. Marlined3786a2005-01-24 20:40:15 +0000432 } else if (state == FL_WRITING) {
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200433
434 unsigned long corrected = mtd->ecc_stats.corrected;
435
David A. Marlined3786a2005-01-24 20:40:15 +0000436 /* single bank write logic */
David Woodhousee0c7d762006-05-13 18:07:53 +0100437 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
David A. Marlined3786a2005-01-24 20:40:15 +0000438 rtn = this->read_byte(mtd);
David Woodhousee0c7d762006-05-13 18:07:53 +0100439 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200440
David A. Marlined3786a2005-01-24 20:40:15 +0000441 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200442 /* err_ecc_not_avail */
443 er_stat |= 1 << 1;
444 goto out;
David A. Marlined3786a2005-01-24 20:40:15 +0000445 }
Thomas Gleixnerf5bbdac2006-05-25 10:07:16 +0200446
447 len = mtd->writesize;
448 buf = kmalloc(len, GFP_KERNEL);
449 if (!buf) {
450 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
451 er_stat = 1;
452 goto out;
453 }
454
455 /* recovery read */
456 rtn = nand_do_read(mtd, page, len, &retlen, buf);
457
458 /* if read failed or > 1-bit error corrected */
459 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) {
460 er_stat |= 1 << 1;
461 kfree(buf);
David A. Marlined3786a2005-01-24 20:40:15 +0000462 }
463
464 rtn = status;
David Woodhousee0c7d762006-05-13 18:07:53 +0100465 if (er_stat == 0) { /* if ECC is available */
David A. Marlined3786a2005-01-24 20:40:15 +0000466 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
467 }
468
469 return rtn;
470}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471#endif
472
473/*
474 * Main initialization routine
475 */
David Woodhousecead4db2006-05-16 13:54:50 +0100476static int __init rtc_from4_init(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477{
478 struct nand_chip *this;
479 unsigned short bcr1, bcr2, wcr2;
David A. Marlin97f1a082005-01-17 19:44:39 +0000480 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481
482 /* Allocate memory for MTD device structure and private data */
David Woodhousee0c7d762006-05-13 18:07:53 +0100483 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484 if (!rtc_from4_mtd) {
David Woodhousee0c7d762006-05-13 18:07:53 +0100485 printk("Unable to allocate Renesas NAND MTD device structure.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486 return -ENOMEM;
487 }
488
489 /* Get pointer to private data */
David Woodhousee0c7d762006-05-13 18:07:53 +0100490 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491
492 /* Initialize structures */
David Woodhousee0c7d762006-05-13 18:07:53 +0100493 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
494 memset(this, 0, sizeof(struct nand_chip));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495
496 /* Link the private data with the MTD structure */
497 rtc_from4_mtd->priv = this;
David Woodhouse552d9202006-05-14 01:20:46 +0100498 rtc_from4_mtd->owner = THIS_MODULE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499
500 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
501 bcr1 = *SH77X9_BCR1 & ~0x0002;
502 bcr1 |= 0x0002;
503 *SH77X9_BCR1 = bcr1;
504
505 /* set */
506 bcr2 = *SH77X9_BCR2 & ~0x0c00;
507 bcr2 |= 0x0800;
508 *SH77X9_BCR2 = bcr2;
509
510 /* set area 5 wait states */
511 wcr2 = *SH77X9_WCR2 & ~0x1c00;
512 wcr2 |= 0x1c00;
513 *SH77X9_WCR2 = wcr2;
514
515 /* Set address of NAND IO lines */
516 this->IO_ADDR_R = rtc_from4_fio_base;
517 this->IO_ADDR_W = rtc_from4_fio_base;
518 /* Set address of hardware control function */
Thomas Gleixner7abd3ef2006-05-23 23:25:53 +0200519 this->cmd_ctrl = rtc_from4_hwcontrol;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520 /* Set address of chip select function */
David Woodhousee0c7d762006-05-13 18:07:53 +0100521 this->select_chip = rtc_from4_nand_select_chip;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522 /* command delay time (in us) */
523 this->chip_delay = 100;
524 /* return the status of the Ready/Busy line */
525 this->dev_ready = rtc_from4_nand_device_ready;
526
527#ifdef RTC_FROM4_HWECC
528 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
529
Thomas Gleixner6dfc6d22006-05-23 12:00:46 +0200530 this->ecc.mode = NAND_ECC_HW_SYNDROME;
531 this->ecc.size = 512;
532 this->ecc.bytes = 8;
David A. Marlined3786a2005-01-24 20:40:15 +0000533 /* return the status of extra status and ECC checks */
534 this->errstat = rtc_from4_errstat;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535 /* set the nand_oobinfo to support FPGA H/W error detection */
Thomas Gleixner5bd34c02006-05-27 22:16:10 +0200536 this->ecc.layout = &rtc_from4_nand_oobinfo;
Thomas Gleixner6dfc6d22006-05-23 12:00:46 +0200537 this->ecc.hwctl = rtc_from4_enable_hwecc;
538 this->ecc.calculate = rtc_from4_calculate_ecc;
539 this->ecc.correct = rtc_from4_correct_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540#else
541 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
542
Thomas Gleixner6dfc6d22006-05-23 12:00:46 +0200543 this->ecc.mode = NAND_ECC_SOFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544#endif
545
546 /* set the bad block tables to support debugging */
547 this->bbt_td = &rtc_from4_bbt_main_descr;
548 this->bbt_md = &rtc_from4_bbt_mirror_descr;
549
550 /* Scan to find existence of the device */
551 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
552 kfree(rtc_from4_mtd);
553 return -ENXIO;
554 }
555
David A. Marlin97f1a082005-01-17 19:44:39 +0000556 /* Perform 'device recovery' for each chip in case there was a power loss. */
David Woodhousee0c7d762006-05-13 18:07:53 +0100557 for (i = 0; i < this->numchips; i++) {
David A. Marlin97f1a082005-01-17 19:44:39 +0000558 deplete(rtc_from4_mtd, i);
559 }
560
David A. Marlined3786a2005-01-24 20:40:15 +0000561#if RTC_FROM4_NO_VIRTBLOCKS
562 /* use a smaller erase block to minimize wasted space when a block is bad */
563 /* note: this uses eight times as much RAM as using the default and makes */
564 /* mounts take four times as long. */
565 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
566#endif
567
Linus Torvalds1da177e2005-04-16 15:20:36 -0700568 /* Register the partitions */
569 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
570
571#ifdef RTC_FROM4_HWECC
572 /* We could create the decoder on demand, if memory is a concern.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000573 * This way we have it handy, if an error happens
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574 *
575 * Symbolsize is 10 (bits)
576 * Primitve polynomial is x^10+x^3+1
577 * first consecutive root is 0
578 * primitve element to generate roots = 1
579 * generator polinomial degree = 6
580 */
581 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
582 if (!rs_decoder) {
David Woodhousee0c7d762006-05-13 18:07:53 +0100583 printk(KERN_ERR "Could not create a RS decoder\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584 nand_release(rtc_from4_mtd);
585 kfree(rtc_from4_mtd);
586 return -ENOMEM;
587 }
588#endif
589 /* Return happy */
590 return 0;
591}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700592
David Woodhousee0c7d762006-05-13 18:07:53 +0100593module_init(rtc_from4_init);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700594
595/*
596 * Clean up routine
597 */
David Woodhousee0c7d762006-05-13 18:07:53 +0100598static void __exit rtc_from4_cleanup(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599{
600 /* Release resource, unregister partitions */
601 nand_release(rtc_from4_mtd);
602
603 /* Free the MTD device structure */
David Woodhousee0c7d762006-05-13 18:07:53 +0100604 kfree(rtc_from4_mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700605
606#ifdef RTC_FROM4_HWECC
607 /* Free the reed solomon resources */
608 if (rs_decoder) {
609 free_rs(rs_decoder);
610 }
611#endif
612}
David Woodhousee0c7d762006-05-13 18:07:53 +0100613
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614module_exit(rtc_from4_cleanup);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615
616MODULE_LICENSE("GPL");
617MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
618MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");