Jacob Pan | d6d71ee | 2013-01-21 04:37:57 -0800 | [diff] [blame] | 1 | /* |
| 2 | * intel_powerclamp.c - package c-state idle injection |
| 3 | * |
| 4 | * Copyright (c) 2012, Intel Corporation. |
| 5 | * |
| 6 | * Authors: |
| 7 | * Arjan van de Ven <arjan@linux.intel.com> |
| 8 | * Jacob Pan <jacob.jun.pan@linux.intel.com> |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify it |
| 11 | * under the terms and conditions of the GNU General Public License, |
| 12 | * version 2, as published by the Free Software Foundation. |
| 13 | * |
| 14 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 17 | * more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along with |
| 20 | * this program; if not, write to the Free Software Foundation, Inc., |
| 21 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 22 | * |
| 23 | * |
| 24 | * TODO: |
| 25 | * 1. better handle wakeup from external interrupts, currently a fixed |
| 26 | * compensation is added to clamping duration when excessive amount |
| 27 | * of wakeups are observed during idle time. the reason is that in |
| 28 | * case of external interrupts without need for ack, clamping down |
| 29 | * cpu in non-irq context does not reduce irq. for majority of the |
| 30 | * cases, clamping down cpu does help reduce irq as well, we should |
| 31 | * be able to differenciate the two cases and give a quantitative |
| 32 | * solution for the irqs that we can control. perhaps based on |
| 33 | * get_cpu_iowait_time_us() |
| 34 | * |
| 35 | * 2. synchronization with other hw blocks |
| 36 | * |
| 37 | * |
| 38 | */ |
| 39 | |
| 40 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 41 | |
| 42 | #include <linux/module.h> |
| 43 | #include <linux/kernel.h> |
| 44 | #include <linux/delay.h> |
| 45 | #include <linux/kthread.h> |
| 46 | #include <linux/freezer.h> |
| 47 | #include <linux/cpu.h> |
| 48 | #include <linux/thermal.h> |
| 49 | #include <linux/slab.h> |
| 50 | #include <linux/tick.h> |
| 51 | #include <linux/debugfs.h> |
| 52 | #include <linux/seq_file.h> |
| 53 | |
| 54 | #include <asm/nmi.h> |
| 55 | #include <asm/msr.h> |
| 56 | #include <asm/mwait.h> |
| 57 | #include <asm/cpu_device_id.h> |
| 58 | #include <asm/idle.h> |
| 59 | #include <asm/hardirq.h> |
| 60 | |
| 61 | #define MAX_TARGET_RATIO (50U) |
| 62 | /* For each undisturbed clamping period (no extra wake ups during idle time), |
| 63 | * we increment the confidence counter for the given target ratio. |
| 64 | * CONFIDENCE_OK defines the level where runtime calibration results are |
| 65 | * valid. |
| 66 | */ |
| 67 | #define CONFIDENCE_OK (3) |
| 68 | /* Default idle injection duration, driver adjust sleep time to meet target |
| 69 | * idle ratio. Similar to frequency modulation. |
| 70 | */ |
| 71 | #define DEFAULT_DURATION_JIFFIES (6) |
| 72 | |
| 73 | static unsigned int target_mwait; |
| 74 | static struct dentry *debug_dir; |
| 75 | |
| 76 | /* user selected target */ |
| 77 | static unsigned int set_target_ratio; |
| 78 | static unsigned int current_ratio; |
| 79 | static bool should_skip; |
| 80 | static bool reduce_irq; |
| 81 | static atomic_t idle_wakeup_counter; |
| 82 | static unsigned int control_cpu; /* The cpu assigned to collect stat and update |
| 83 | * control parameters. default to BSP but BSP |
| 84 | * can be offlined. |
| 85 | */ |
| 86 | static bool clamping; |
| 87 | |
| 88 | |
| 89 | static struct task_struct * __percpu *powerclamp_thread; |
| 90 | static struct thermal_cooling_device *cooling_dev; |
| 91 | static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu |
| 92 | * clamping thread |
| 93 | */ |
| 94 | |
| 95 | static unsigned int duration; |
| 96 | static unsigned int pkg_cstate_ratio_cur; |
| 97 | static unsigned int window_size; |
| 98 | |
| 99 | static int duration_set(const char *arg, const struct kernel_param *kp) |
| 100 | { |
| 101 | int ret = 0; |
| 102 | unsigned long new_duration; |
| 103 | |
| 104 | ret = kstrtoul(arg, 10, &new_duration); |
| 105 | if (ret) |
| 106 | goto exit; |
| 107 | if (new_duration > 25 || new_duration < 6) { |
| 108 | pr_err("Out of recommended range %lu, between 6-25ms\n", |
| 109 | new_duration); |
| 110 | ret = -EINVAL; |
| 111 | } |
| 112 | |
| 113 | duration = clamp(new_duration, 6ul, 25ul); |
| 114 | smp_mb(); |
| 115 | |
| 116 | exit: |
| 117 | |
| 118 | return ret; |
| 119 | } |
| 120 | |
| 121 | static struct kernel_param_ops duration_ops = { |
| 122 | .set = duration_set, |
| 123 | .get = param_get_int, |
| 124 | }; |
| 125 | |
| 126 | |
| 127 | module_param_cb(duration, &duration_ops, &duration, 0644); |
| 128 | MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); |
| 129 | |
| 130 | struct powerclamp_calibration_data { |
| 131 | unsigned long confidence; /* used for calibration, basically a counter |
| 132 | * gets incremented each time a clamping |
| 133 | * period is completed without extra wakeups |
| 134 | * once that counter is reached given level, |
| 135 | * compensation is deemed usable. |
| 136 | */ |
| 137 | unsigned long steady_comp; /* steady state compensation used when |
| 138 | * no extra wakeups occurred. |
| 139 | */ |
| 140 | unsigned long dynamic_comp; /* compensate excessive wakeup from idle |
| 141 | * mostly from external interrupts. |
| 142 | */ |
| 143 | }; |
| 144 | |
| 145 | static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; |
| 146 | |
| 147 | static int window_size_set(const char *arg, const struct kernel_param *kp) |
| 148 | { |
| 149 | int ret = 0; |
| 150 | unsigned long new_window_size; |
| 151 | |
| 152 | ret = kstrtoul(arg, 10, &new_window_size); |
| 153 | if (ret) |
| 154 | goto exit_win; |
| 155 | if (new_window_size > 10 || new_window_size < 2) { |
| 156 | pr_err("Out of recommended window size %lu, between 2-10\n", |
| 157 | new_window_size); |
| 158 | ret = -EINVAL; |
| 159 | } |
| 160 | |
| 161 | window_size = clamp(new_window_size, 2ul, 10ul); |
| 162 | smp_mb(); |
| 163 | |
| 164 | exit_win: |
| 165 | |
| 166 | return ret; |
| 167 | } |
| 168 | |
| 169 | static struct kernel_param_ops window_size_ops = { |
| 170 | .set = window_size_set, |
| 171 | .get = param_get_int, |
| 172 | }; |
| 173 | |
| 174 | module_param_cb(window_size, &window_size_ops, &window_size, 0644); |
| 175 | MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" |
| 176 | "\tpowerclamp controls idle ratio within this window. larger\n" |
| 177 | "\twindow size results in slower response time but more smooth\n" |
| 178 | "\tclamping results. default to 2."); |
| 179 | |
| 180 | static void find_target_mwait(void) |
| 181 | { |
| 182 | unsigned int eax, ebx, ecx, edx; |
| 183 | unsigned int highest_cstate = 0; |
| 184 | unsigned int highest_subcstate = 0; |
| 185 | int i; |
| 186 | |
| 187 | if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) |
| 188 | return; |
| 189 | |
| 190 | cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); |
| 191 | |
| 192 | if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || |
| 193 | !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) |
| 194 | return; |
| 195 | |
| 196 | edx >>= MWAIT_SUBSTATE_SIZE; |
| 197 | for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { |
| 198 | if (edx & MWAIT_SUBSTATE_MASK) { |
| 199 | highest_cstate = i; |
| 200 | highest_subcstate = edx & MWAIT_SUBSTATE_MASK; |
| 201 | } |
| 202 | } |
| 203 | target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | |
| 204 | (highest_subcstate - 1); |
| 205 | |
| 206 | } |
| 207 | |
| 208 | static u64 pkg_state_counter(void) |
| 209 | { |
| 210 | u64 val; |
| 211 | u64 count = 0; |
| 212 | |
| 213 | static bool skip_c2; |
| 214 | static bool skip_c3; |
| 215 | static bool skip_c6; |
| 216 | static bool skip_c7; |
| 217 | |
| 218 | if (!skip_c2) { |
| 219 | if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val)) |
| 220 | count += val; |
| 221 | else |
| 222 | skip_c2 = true; |
| 223 | } |
| 224 | |
| 225 | if (!skip_c3) { |
| 226 | if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val)) |
| 227 | count += val; |
| 228 | else |
| 229 | skip_c3 = true; |
| 230 | } |
| 231 | |
| 232 | if (!skip_c6) { |
| 233 | if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val)) |
| 234 | count += val; |
| 235 | else |
| 236 | skip_c6 = true; |
| 237 | } |
| 238 | |
| 239 | if (!skip_c7) { |
| 240 | if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val)) |
| 241 | count += val; |
| 242 | else |
| 243 | skip_c7 = true; |
| 244 | } |
| 245 | |
| 246 | return count; |
| 247 | } |
| 248 | |
| 249 | static void noop_timer(unsigned long foo) |
| 250 | { |
| 251 | /* empty... just the fact that we get the interrupt wakes us up */ |
| 252 | } |
| 253 | |
| 254 | static unsigned int get_compensation(int ratio) |
| 255 | { |
| 256 | unsigned int comp = 0; |
| 257 | |
| 258 | /* we only use compensation if all adjacent ones are good */ |
| 259 | if (ratio == 1 && |
| 260 | cal_data[ratio].confidence >= CONFIDENCE_OK && |
| 261 | cal_data[ratio + 1].confidence >= CONFIDENCE_OK && |
| 262 | cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { |
| 263 | comp = (cal_data[ratio].steady_comp + |
| 264 | cal_data[ratio + 1].steady_comp + |
| 265 | cal_data[ratio + 2].steady_comp) / 3; |
| 266 | } else if (ratio == MAX_TARGET_RATIO - 1 && |
| 267 | cal_data[ratio].confidence >= CONFIDENCE_OK && |
| 268 | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && |
| 269 | cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { |
| 270 | comp = (cal_data[ratio].steady_comp + |
| 271 | cal_data[ratio - 1].steady_comp + |
| 272 | cal_data[ratio - 2].steady_comp) / 3; |
| 273 | } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && |
| 274 | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && |
| 275 | cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { |
| 276 | comp = (cal_data[ratio].steady_comp + |
| 277 | cal_data[ratio - 1].steady_comp + |
| 278 | cal_data[ratio + 1].steady_comp) / 3; |
| 279 | } |
| 280 | |
| 281 | /* REVISIT: simple penalty of double idle injection */ |
| 282 | if (reduce_irq) |
| 283 | comp = ratio; |
| 284 | /* do not exceed limit */ |
| 285 | if (comp + ratio >= MAX_TARGET_RATIO) |
| 286 | comp = MAX_TARGET_RATIO - ratio - 1; |
| 287 | |
| 288 | return comp; |
| 289 | } |
| 290 | |
| 291 | static void adjust_compensation(int target_ratio, unsigned int win) |
| 292 | { |
| 293 | int delta; |
| 294 | struct powerclamp_calibration_data *d = &cal_data[target_ratio]; |
| 295 | |
| 296 | /* |
| 297 | * adjust compensations if confidence level has not been reached or |
| 298 | * there are too many wakeups during the last idle injection period, we |
| 299 | * cannot trust the data for compensation. |
| 300 | */ |
| 301 | if (d->confidence >= CONFIDENCE_OK || |
| 302 | atomic_read(&idle_wakeup_counter) > |
| 303 | win * num_online_cpus()) |
| 304 | return; |
| 305 | |
| 306 | delta = set_target_ratio - current_ratio; |
| 307 | /* filter out bad data */ |
| 308 | if (delta >= 0 && delta <= (1+target_ratio/10)) { |
| 309 | if (d->steady_comp) |
| 310 | d->steady_comp = |
| 311 | roundup(delta+d->steady_comp, 2)/2; |
| 312 | else |
| 313 | d->steady_comp = delta; |
| 314 | d->confidence++; |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | static bool powerclamp_adjust_controls(unsigned int target_ratio, |
| 319 | unsigned int guard, unsigned int win) |
| 320 | { |
| 321 | static u64 msr_last, tsc_last; |
| 322 | u64 msr_now, tsc_now; |
| 323 | u64 val64; |
| 324 | |
| 325 | /* check result for the last window */ |
| 326 | msr_now = pkg_state_counter(); |
| 327 | rdtscll(tsc_now); |
| 328 | |
| 329 | /* calculate pkg cstate vs tsc ratio */ |
| 330 | if (!msr_last || !tsc_last) |
| 331 | current_ratio = 1; |
| 332 | else if (tsc_now-tsc_last) { |
| 333 | val64 = 100*(msr_now-msr_last); |
| 334 | do_div(val64, (tsc_now-tsc_last)); |
| 335 | current_ratio = val64; |
| 336 | } |
| 337 | |
| 338 | /* update record */ |
| 339 | msr_last = msr_now; |
| 340 | tsc_last = tsc_now; |
| 341 | |
| 342 | adjust_compensation(target_ratio, win); |
| 343 | /* |
| 344 | * too many external interrupts, set flag such |
| 345 | * that we can take measure later. |
| 346 | */ |
| 347 | reduce_irq = atomic_read(&idle_wakeup_counter) >= |
| 348 | 2 * win * num_online_cpus(); |
| 349 | |
| 350 | atomic_set(&idle_wakeup_counter, 0); |
| 351 | /* if we are above target+guard, skip */ |
| 352 | return set_target_ratio + guard <= current_ratio; |
| 353 | } |
| 354 | |
| 355 | static int clamp_thread(void *arg) |
| 356 | { |
| 357 | int cpunr = (unsigned long)arg; |
| 358 | DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0); |
| 359 | static const struct sched_param param = { |
| 360 | .sched_priority = MAX_USER_RT_PRIO/2, |
| 361 | }; |
| 362 | unsigned int count = 0; |
| 363 | unsigned int target_ratio; |
| 364 | |
| 365 | set_bit(cpunr, cpu_clamping_mask); |
| 366 | set_freezable(); |
| 367 | init_timer_on_stack(&wakeup_timer); |
| 368 | sched_setscheduler(current, SCHED_FIFO, ¶m); |
| 369 | |
| 370 | while (true == clamping && !kthread_should_stop() && |
| 371 | cpu_online(cpunr)) { |
| 372 | int sleeptime; |
| 373 | unsigned long target_jiffies; |
| 374 | unsigned int guard; |
| 375 | unsigned int compensation = 0; |
| 376 | int interval; /* jiffies to sleep for each attempt */ |
| 377 | unsigned int duration_jiffies = msecs_to_jiffies(duration); |
| 378 | unsigned int window_size_now; |
| 379 | |
| 380 | try_to_freeze(); |
| 381 | /* |
| 382 | * make sure user selected ratio does not take effect until |
| 383 | * the next round. adjust target_ratio if user has changed |
| 384 | * target such that we can converge quickly. |
| 385 | */ |
| 386 | target_ratio = set_target_ratio; |
| 387 | guard = 1 + target_ratio/20; |
| 388 | window_size_now = window_size; |
| 389 | count++; |
| 390 | |
| 391 | /* |
| 392 | * systems may have different ability to enter package level |
| 393 | * c-states, thus we need to compensate the injected idle ratio |
| 394 | * to achieve the actual target reported by the HW. |
| 395 | */ |
| 396 | compensation = get_compensation(target_ratio); |
| 397 | interval = duration_jiffies*100/(target_ratio+compensation); |
| 398 | |
| 399 | /* align idle time */ |
| 400 | target_jiffies = roundup(jiffies, interval); |
| 401 | sleeptime = target_jiffies - jiffies; |
| 402 | if (sleeptime <= 0) |
| 403 | sleeptime = 1; |
| 404 | schedule_timeout_interruptible(sleeptime); |
| 405 | /* |
| 406 | * only elected controlling cpu can collect stats and update |
| 407 | * control parameters. |
| 408 | */ |
| 409 | if (cpunr == control_cpu && !(count%window_size_now)) { |
| 410 | should_skip = |
| 411 | powerclamp_adjust_controls(target_ratio, |
| 412 | guard, window_size_now); |
| 413 | smp_mb(); |
| 414 | } |
| 415 | |
| 416 | if (should_skip) |
| 417 | continue; |
| 418 | |
| 419 | target_jiffies = jiffies + duration_jiffies; |
| 420 | mod_timer(&wakeup_timer, target_jiffies); |
| 421 | if (unlikely(local_softirq_pending())) |
| 422 | continue; |
| 423 | /* |
| 424 | * stop tick sched during idle time, interrupts are still |
| 425 | * allowed. thus jiffies are updated properly. |
| 426 | */ |
| 427 | preempt_disable(); |
| 428 | tick_nohz_idle_enter(); |
| 429 | /* mwait until target jiffies is reached */ |
| 430 | while (time_before(jiffies, target_jiffies)) { |
| 431 | unsigned long ecx = 1; |
| 432 | unsigned long eax = target_mwait; |
| 433 | |
| 434 | /* |
| 435 | * REVISIT: may call enter_idle() to notify drivers who |
| 436 | * can save power during cpu idle. same for exit_idle() |
| 437 | */ |
| 438 | local_touch_nmi(); |
| 439 | stop_critical_timings(); |
| 440 | __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| 441 | cpu_relax(); /* allow HT sibling to run */ |
| 442 | __mwait(eax, ecx); |
| 443 | start_critical_timings(); |
| 444 | atomic_inc(&idle_wakeup_counter); |
| 445 | } |
| 446 | tick_nohz_idle_exit(); |
| 447 | preempt_enable_no_resched(); |
| 448 | } |
| 449 | del_timer_sync(&wakeup_timer); |
| 450 | clear_bit(cpunr, cpu_clamping_mask); |
| 451 | |
| 452 | return 0; |
| 453 | } |
| 454 | |
| 455 | /* |
| 456 | * 1 HZ polling while clamping is active, useful for userspace |
| 457 | * to monitor actual idle ratio. |
| 458 | */ |
| 459 | static void poll_pkg_cstate(struct work_struct *dummy); |
| 460 | static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); |
| 461 | static void poll_pkg_cstate(struct work_struct *dummy) |
| 462 | { |
| 463 | static u64 msr_last; |
| 464 | static u64 tsc_last; |
| 465 | static unsigned long jiffies_last; |
| 466 | |
| 467 | u64 msr_now; |
| 468 | unsigned long jiffies_now; |
| 469 | u64 tsc_now; |
| 470 | u64 val64; |
| 471 | |
| 472 | msr_now = pkg_state_counter(); |
| 473 | rdtscll(tsc_now); |
| 474 | jiffies_now = jiffies; |
| 475 | |
| 476 | /* calculate pkg cstate vs tsc ratio */ |
| 477 | if (!msr_last || !tsc_last) |
| 478 | pkg_cstate_ratio_cur = 1; |
| 479 | else { |
| 480 | if (tsc_now - tsc_last) { |
| 481 | val64 = 100 * (msr_now - msr_last); |
| 482 | do_div(val64, (tsc_now - tsc_last)); |
| 483 | pkg_cstate_ratio_cur = val64; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | /* update record */ |
| 488 | msr_last = msr_now; |
| 489 | jiffies_last = jiffies_now; |
| 490 | tsc_last = tsc_now; |
| 491 | |
| 492 | if (true == clamping) |
| 493 | schedule_delayed_work(&poll_pkg_cstate_work, HZ); |
| 494 | } |
| 495 | |
| 496 | static int start_power_clamp(void) |
| 497 | { |
| 498 | unsigned long cpu; |
| 499 | struct task_struct *thread; |
| 500 | |
| 501 | /* check if pkg cstate counter is completely 0, abort in this case */ |
| 502 | if (!pkg_state_counter()) { |
| 503 | pr_err("pkg cstate counter not functional, abort\n"); |
| 504 | return -EINVAL; |
| 505 | } |
| 506 | |
Dan Carpenter | c8165dc | 2013-01-24 08:51:22 +0000 | [diff] [blame^] | 507 | set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1); |
Jacob Pan | d6d71ee | 2013-01-21 04:37:57 -0800 | [diff] [blame] | 508 | /* prevent cpu hotplug */ |
| 509 | get_online_cpus(); |
| 510 | |
| 511 | /* prefer BSP */ |
| 512 | control_cpu = 0; |
| 513 | if (!cpu_online(control_cpu)) |
| 514 | control_cpu = smp_processor_id(); |
| 515 | |
| 516 | clamping = true; |
| 517 | schedule_delayed_work(&poll_pkg_cstate_work, 0); |
| 518 | |
| 519 | /* start one thread per online cpu */ |
| 520 | for_each_online_cpu(cpu) { |
| 521 | struct task_struct **p = |
| 522 | per_cpu_ptr(powerclamp_thread, cpu); |
| 523 | |
| 524 | thread = kthread_create_on_node(clamp_thread, |
| 525 | (void *) cpu, |
| 526 | cpu_to_node(cpu), |
| 527 | "kidle_inject/%ld", cpu); |
| 528 | /* bind to cpu here */ |
| 529 | if (likely(!IS_ERR(thread))) { |
| 530 | kthread_bind(thread, cpu); |
| 531 | wake_up_process(thread); |
| 532 | *p = thread; |
| 533 | } |
| 534 | |
| 535 | } |
| 536 | put_online_cpus(); |
| 537 | |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | static void end_power_clamp(void) |
| 542 | { |
| 543 | int i; |
| 544 | struct task_struct *thread; |
| 545 | |
| 546 | clamping = false; |
| 547 | /* |
| 548 | * make clamping visible to other cpus and give per cpu clamping threads |
| 549 | * sometime to exit, or gets killed later. |
| 550 | */ |
| 551 | smp_mb(); |
| 552 | msleep(20); |
| 553 | if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { |
| 554 | for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { |
| 555 | pr_debug("clamping thread for cpu %d alive, kill\n", i); |
| 556 | thread = *per_cpu_ptr(powerclamp_thread, i); |
| 557 | kthread_stop(thread); |
| 558 | } |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | static int powerclamp_cpu_callback(struct notifier_block *nfb, |
| 563 | unsigned long action, void *hcpu) |
| 564 | { |
| 565 | unsigned long cpu = (unsigned long)hcpu; |
| 566 | struct task_struct *thread; |
| 567 | struct task_struct **percpu_thread = |
| 568 | per_cpu_ptr(powerclamp_thread, cpu); |
| 569 | |
| 570 | if (false == clamping) |
| 571 | goto exit_ok; |
| 572 | |
| 573 | switch (action) { |
| 574 | case CPU_ONLINE: |
| 575 | thread = kthread_create_on_node(clamp_thread, |
| 576 | (void *) cpu, |
| 577 | cpu_to_node(cpu), |
| 578 | "kidle_inject/%lu", cpu); |
| 579 | if (likely(!IS_ERR(thread))) { |
| 580 | kthread_bind(thread, cpu); |
| 581 | wake_up_process(thread); |
| 582 | *percpu_thread = thread; |
| 583 | } |
| 584 | /* prefer BSP as controlling CPU */ |
| 585 | if (cpu == 0) { |
| 586 | control_cpu = 0; |
| 587 | smp_mb(); |
| 588 | } |
| 589 | break; |
| 590 | case CPU_DEAD: |
| 591 | if (test_bit(cpu, cpu_clamping_mask)) { |
| 592 | pr_err("cpu %lu dead but powerclamping thread is not\n", |
| 593 | cpu); |
| 594 | kthread_stop(*percpu_thread); |
| 595 | } |
| 596 | if (cpu == control_cpu) { |
| 597 | control_cpu = smp_processor_id(); |
| 598 | smp_mb(); |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | exit_ok: |
| 603 | return NOTIFY_OK; |
| 604 | } |
| 605 | |
| 606 | static struct notifier_block powerclamp_cpu_notifier = { |
| 607 | .notifier_call = powerclamp_cpu_callback, |
| 608 | }; |
| 609 | |
| 610 | static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, |
| 611 | unsigned long *state) |
| 612 | { |
| 613 | *state = MAX_TARGET_RATIO; |
| 614 | |
| 615 | return 0; |
| 616 | } |
| 617 | |
| 618 | static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, |
| 619 | unsigned long *state) |
| 620 | { |
| 621 | if (true == clamping) |
| 622 | *state = pkg_cstate_ratio_cur; |
| 623 | else |
| 624 | /* to save power, do not poll idle ratio while not clamping */ |
| 625 | *state = -1; /* indicates invalid state */ |
| 626 | |
| 627 | return 0; |
| 628 | } |
| 629 | |
| 630 | static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, |
| 631 | unsigned long new_target_ratio) |
| 632 | { |
| 633 | int ret = 0; |
| 634 | |
| 635 | new_target_ratio = clamp(new_target_ratio, 0UL, |
| 636 | (unsigned long) (MAX_TARGET_RATIO-1)); |
| 637 | if (set_target_ratio == 0 && new_target_ratio > 0) { |
| 638 | pr_info("Start idle injection to reduce power\n"); |
| 639 | set_target_ratio = new_target_ratio; |
| 640 | ret = start_power_clamp(); |
| 641 | goto exit_set; |
| 642 | } else if (set_target_ratio > 0 && new_target_ratio == 0) { |
| 643 | pr_info("Stop forced idle injection\n"); |
| 644 | set_target_ratio = 0; |
| 645 | end_power_clamp(); |
| 646 | } else /* adjust currently running */ { |
| 647 | set_target_ratio = new_target_ratio; |
| 648 | /* make new set_target_ratio visible to other cpus */ |
| 649 | smp_mb(); |
| 650 | } |
| 651 | |
| 652 | exit_set: |
| 653 | return ret; |
| 654 | } |
| 655 | |
| 656 | /* bind to generic thermal layer as cooling device*/ |
| 657 | static struct thermal_cooling_device_ops powerclamp_cooling_ops = { |
| 658 | .get_max_state = powerclamp_get_max_state, |
| 659 | .get_cur_state = powerclamp_get_cur_state, |
| 660 | .set_cur_state = powerclamp_set_cur_state, |
| 661 | }; |
| 662 | |
| 663 | /* runs on Nehalem and later */ |
| 664 | static const struct x86_cpu_id intel_powerclamp_ids[] = { |
| 665 | { X86_VENDOR_INTEL, 6, 0x1a}, |
| 666 | { X86_VENDOR_INTEL, 6, 0x1c}, |
| 667 | { X86_VENDOR_INTEL, 6, 0x1e}, |
| 668 | { X86_VENDOR_INTEL, 6, 0x1f}, |
| 669 | { X86_VENDOR_INTEL, 6, 0x25}, |
| 670 | { X86_VENDOR_INTEL, 6, 0x26}, |
| 671 | { X86_VENDOR_INTEL, 6, 0x2a}, |
| 672 | { X86_VENDOR_INTEL, 6, 0x2c}, |
| 673 | { X86_VENDOR_INTEL, 6, 0x2d}, |
| 674 | { X86_VENDOR_INTEL, 6, 0x2e}, |
| 675 | { X86_VENDOR_INTEL, 6, 0x2f}, |
| 676 | { X86_VENDOR_INTEL, 6, 0x3a}, |
| 677 | {} |
| 678 | }; |
| 679 | MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); |
| 680 | |
| 681 | static int powerclamp_probe(void) |
| 682 | { |
| 683 | if (!x86_match_cpu(intel_powerclamp_ids)) { |
| 684 | pr_err("Intel powerclamp does not run on family %d model %d\n", |
| 685 | boot_cpu_data.x86, boot_cpu_data.x86_model); |
| 686 | return -ENODEV; |
| 687 | } |
| 688 | if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || |
| 689 | !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) || |
| 690 | !boot_cpu_has(X86_FEATURE_MWAIT) || |
| 691 | !boot_cpu_has(X86_FEATURE_ARAT)) |
| 692 | return -ENODEV; |
| 693 | |
| 694 | /* find the deepest mwait value */ |
| 695 | find_target_mwait(); |
| 696 | |
| 697 | return 0; |
| 698 | } |
| 699 | |
| 700 | static int powerclamp_debug_show(struct seq_file *m, void *unused) |
| 701 | { |
| 702 | int i = 0; |
| 703 | |
| 704 | seq_printf(m, "controlling cpu: %d\n", control_cpu); |
| 705 | seq_printf(m, "pct confidence steady dynamic (compensation)\n"); |
| 706 | for (i = 0; i < MAX_TARGET_RATIO; i++) { |
| 707 | seq_printf(m, "%d\t%lu\t%lu\t%lu\n", |
| 708 | i, |
| 709 | cal_data[i].confidence, |
| 710 | cal_data[i].steady_comp, |
| 711 | cal_data[i].dynamic_comp); |
| 712 | } |
| 713 | |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | static int powerclamp_debug_open(struct inode *inode, |
| 718 | struct file *file) |
| 719 | { |
| 720 | return single_open(file, powerclamp_debug_show, inode->i_private); |
| 721 | } |
| 722 | |
| 723 | static const struct file_operations powerclamp_debug_fops = { |
| 724 | .open = powerclamp_debug_open, |
| 725 | .read = seq_read, |
| 726 | .llseek = seq_lseek, |
| 727 | .release = single_release, |
| 728 | .owner = THIS_MODULE, |
| 729 | }; |
| 730 | |
| 731 | static inline void powerclamp_create_debug_files(void) |
| 732 | { |
| 733 | debug_dir = debugfs_create_dir("intel_powerclamp", NULL); |
| 734 | if (!debug_dir) |
| 735 | return; |
| 736 | |
| 737 | if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, |
| 738 | cal_data, &powerclamp_debug_fops)) |
| 739 | goto file_error; |
| 740 | |
| 741 | return; |
| 742 | |
| 743 | file_error: |
| 744 | debugfs_remove_recursive(debug_dir); |
| 745 | } |
| 746 | |
| 747 | static int powerclamp_init(void) |
| 748 | { |
| 749 | int retval; |
| 750 | int bitmap_size; |
| 751 | |
| 752 | bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); |
| 753 | cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); |
| 754 | if (!cpu_clamping_mask) |
| 755 | return -ENOMEM; |
| 756 | |
| 757 | /* probe cpu features and ids here */ |
| 758 | retval = powerclamp_probe(); |
| 759 | if (retval) |
| 760 | return retval; |
| 761 | /* set default limit, maybe adjusted during runtime based on feedback */ |
| 762 | window_size = 2; |
| 763 | register_hotcpu_notifier(&powerclamp_cpu_notifier); |
| 764 | powerclamp_thread = alloc_percpu(struct task_struct *); |
| 765 | cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, |
| 766 | &powerclamp_cooling_ops); |
| 767 | if (IS_ERR(cooling_dev)) |
| 768 | return -ENODEV; |
| 769 | |
| 770 | if (!duration) |
| 771 | duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); |
| 772 | powerclamp_create_debug_files(); |
| 773 | |
| 774 | return 0; |
| 775 | } |
| 776 | module_init(powerclamp_init); |
| 777 | |
| 778 | static void powerclamp_exit(void) |
| 779 | { |
| 780 | unregister_hotcpu_notifier(&powerclamp_cpu_notifier); |
| 781 | end_power_clamp(); |
| 782 | free_percpu(powerclamp_thread); |
| 783 | thermal_cooling_device_unregister(cooling_dev); |
| 784 | kfree(cpu_clamping_mask); |
| 785 | |
| 786 | cancel_delayed_work_sync(&poll_pkg_cstate_work); |
| 787 | debugfs_remove_recursive(debug_dir); |
| 788 | } |
| 789 | module_exit(powerclamp_exit); |
| 790 | |
| 791 | MODULE_LICENSE("GPL"); |
| 792 | MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); |
| 793 | MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>"); |
| 794 | MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs"); |