Auke Kok | bc7f75f | 2007-09-17 12:30:59 -0700 | [diff] [blame^] | 1 | /******************************************************************************* |
| 2 | |
| 3 | Intel PRO/1000 Linux driver |
| 4 | Copyright(c) 1999 - 2007 Intel Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it |
| 7 | under the terms and conditions of the GNU General Public License, |
| 8 | version 2, as published by the Free Software Foundation. |
| 9 | |
| 10 | This program is distributed in the hope it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License along with |
| 16 | this program; if not, write to the Free Software Foundation, Inc., |
| 17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | |
| 19 | The full GNU General Public License is included in this distribution in |
| 20 | the file called "COPYING". |
| 21 | |
| 22 | Contact Information: |
| 23 | Linux NICS <linux.nics@intel.com> |
| 24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| 25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 26 | |
| 27 | *******************************************************************************/ |
| 28 | |
| 29 | /* ethtool support for e1000 */ |
| 30 | |
| 31 | #include <linux/netdevice.h> |
| 32 | #include <linux/ethtool.h> |
| 33 | #include <linux/pci.h> |
| 34 | #include <linux/delay.h> |
| 35 | |
| 36 | #include "e1000.h" |
| 37 | |
| 38 | struct e1000_stats { |
| 39 | char stat_string[ETH_GSTRING_LEN]; |
| 40 | int sizeof_stat; |
| 41 | int stat_offset; |
| 42 | }; |
| 43 | |
| 44 | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ |
| 45 | offsetof(struct e1000_adapter, m) |
| 46 | static const struct e1000_stats e1000_gstrings_stats[] = { |
| 47 | { "rx_packets", E1000_STAT(stats.gprc) }, |
| 48 | { "tx_packets", E1000_STAT(stats.gptc) }, |
| 49 | { "rx_bytes", E1000_STAT(stats.gorcl) }, |
| 50 | { "tx_bytes", E1000_STAT(stats.gotcl) }, |
| 51 | { "rx_broadcast", E1000_STAT(stats.bprc) }, |
| 52 | { "tx_broadcast", E1000_STAT(stats.bptc) }, |
| 53 | { "rx_multicast", E1000_STAT(stats.mprc) }, |
| 54 | { "tx_multicast", E1000_STAT(stats.mptc) }, |
| 55 | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, |
| 56 | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, |
| 57 | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, |
| 58 | { "multicast", E1000_STAT(stats.mprc) }, |
| 59 | { "collisions", E1000_STAT(stats.colc) }, |
| 60 | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, |
| 61 | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, |
| 62 | { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, |
| 63 | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, |
| 64 | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, |
| 65 | { "rx_missed_errors", E1000_STAT(stats.mpc) }, |
| 66 | { "tx_aborted_errors", E1000_STAT(stats.ecol) }, |
| 67 | { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, |
| 68 | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, |
| 69 | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, |
| 70 | { "tx_window_errors", E1000_STAT(stats.latecol) }, |
| 71 | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, |
| 72 | { "tx_deferred_ok", E1000_STAT(stats.dc) }, |
| 73 | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, |
| 74 | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, |
| 75 | { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, |
| 76 | { "tx_restart_queue", E1000_STAT(restart_queue) }, |
| 77 | { "rx_long_length_errors", E1000_STAT(stats.roc) }, |
| 78 | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, |
| 79 | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, |
| 80 | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, |
| 81 | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, |
| 82 | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, |
| 83 | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, |
| 84 | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, |
| 85 | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, |
| 86 | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, |
| 87 | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, |
| 88 | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, |
| 89 | { "rx_header_split", E1000_STAT(rx_hdr_split) }, |
| 90 | { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, |
| 91 | { "tx_smbus", E1000_STAT(stats.mgptc) }, |
| 92 | { "rx_smbus", E1000_STAT(stats.mgprc) }, |
| 93 | { "dropped_smbus", E1000_STAT(stats.mgpdc) }, |
| 94 | { "rx_dma_failed", E1000_STAT(rx_dma_failed) }, |
| 95 | { "tx_dma_failed", E1000_STAT(tx_dma_failed) }, |
| 96 | }; |
| 97 | |
| 98 | #define E1000_GLOBAL_STATS_LEN \ |
| 99 | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) |
| 100 | #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) |
| 101 | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
| 102 | "Register test (offline)", "Eeprom test (offline)", |
| 103 | "Interrupt test (offline)", "Loopback test (offline)", |
| 104 | "Link test (on/offline)" |
| 105 | }; |
| 106 | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN |
| 107 | |
| 108 | static int e1000_get_settings(struct net_device *netdev, |
| 109 | struct ethtool_cmd *ecmd) |
| 110 | { |
| 111 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 112 | struct e1000_hw *hw = &adapter->hw; |
| 113 | |
| 114 | if (hw->media_type == e1000_media_type_copper) { |
| 115 | |
| 116 | ecmd->supported = (SUPPORTED_10baseT_Half | |
| 117 | SUPPORTED_10baseT_Full | |
| 118 | SUPPORTED_100baseT_Half | |
| 119 | SUPPORTED_100baseT_Full | |
| 120 | SUPPORTED_1000baseT_Full | |
| 121 | SUPPORTED_Autoneg | |
| 122 | SUPPORTED_TP); |
| 123 | if (hw->phy.type == e1000_phy_ife) |
| 124 | ecmd->supported &= ~SUPPORTED_1000baseT_Full; |
| 125 | ecmd->advertising = ADVERTISED_TP; |
| 126 | |
| 127 | if (hw->mac.autoneg == 1) { |
| 128 | ecmd->advertising |= ADVERTISED_Autoneg; |
| 129 | /* the e1000 autoneg seems to match ethtool nicely */ |
| 130 | ecmd->advertising |= hw->phy.autoneg_advertised; |
| 131 | } |
| 132 | |
| 133 | ecmd->port = PORT_TP; |
| 134 | ecmd->phy_address = hw->phy.addr; |
| 135 | ecmd->transceiver = XCVR_INTERNAL; |
| 136 | |
| 137 | } else { |
| 138 | ecmd->supported = (SUPPORTED_1000baseT_Full | |
| 139 | SUPPORTED_FIBRE | |
| 140 | SUPPORTED_Autoneg); |
| 141 | |
| 142 | ecmd->advertising = (ADVERTISED_1000baseT_Full | |
| 143 | ADVERTISED_FIBRE | |
| 144 | ADVERTISED_Autoneg); |
| 145 | |
| 146 | ecmd->port = PORT_FIBRE; |
| 147 | ecmd->transceiver = XCVR_EXTERNAL; |
| 148 | } |
| 149 | |
| 150 | if (er32(STATUS) & E1000_STATUS_LU) { |
| 151 | |
| 152 | adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed, |
| 153 | &adapter->link_duplex); |
| 154 | ecmd->speed = adapter->link_speed; |
| 155 | |
| 156 | /* unfortunately FULL_DUPLEX != DUPLEX_FULL |
| 157 | * and HALF_DUPLEX != DUPLEX_HALF */ |
| 158 | |
| 159 | if (adapter->link_duplex == FULL_DUPLEX) |
| 160 | ecmd->duplex = DUPLEX_FULL; |
| 161 | else |
| 162 | ecmd->duplex = DUPLEX_HALF; |
| 163 | } else { |
| 164 | ecmd->speed = -1; |
| 165 | ecmd->duplex = -1; |
| 166 | } |
| 167 | |
| 168 | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || |
| 169 | hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
| 170 | return 0; |
| 171 | } |
| 172 | |
| 173 | static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) |
| 174 | { |
| 175 | struct e1000_mac_info *mac = &adapter->hw.mac; |
| 176 | |
| 177 | mac->autoneg = 0; |
| 178 | |
| 179 | /* Fiber NICs only allow 1000 gbps Full duplex */ |
| 180 | if ((adapter->hw.media_type == e1000_media_type_fiber) && |
| 181 | spddplx != (SPEED_1000 + DUPLEX_FULL)) { |
| 182 | ndev_err(adapter->netdev, "Unsupported Speed/Duplex " |
| 183 | "configuration\n"); |
| 184 | return -EINVAL; |
| 185 | } |
| 186 | |
| 187 | switch (spddplx) { |
| 188 | case SPEED_10 + DUPLEX_HALF: |
| 189 | mac->forced_speed_duplex = ADVERTISE_10_HALF; |
| 190 | break; |
| 191 | case SPEED_10 + DUPLEX_FULL: |
| 192 | mac->forced_speed_duplex = ADVERTISE_10_FULL; |
| 193 | break; |
| 194 | case SPEED_100 + DUPLEX_HALF: |
| 195 | mac->forced_speed_duplex = ADVERTISE_100_HALF; |
| 196 | break; |
| 197 | case SPEED_100 + DUPLEX_FULL: |
| 198 | mac->forced_speed_duplex = ADVERTISE_100_FULL; |
| 199 | break; |
| 200 | case SPEED_1000 + DUPLEX_FULL: |
| 201 | mac->autoneg = 1; |
| 202 | adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; |
| 203 | break; |
| 204 | case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
| 205 | default: |
| 206 | ndev_err(adapter->netdev, "Unsupported Speed/Duplex " |
| 207 | "configuration\n"); |
| 208 | return -EINVAL; |
| 209 | } |
| 210 | return 0; |
| 211 | } |
| 212 | |
| 213 | static int e1000_set_settings(struct net_device *netdev, |
| 214 | struct ethtool_cmd *ecmd) |
| 215 | { |
| 216 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 217 | struct e1000_hw *hw = &adapter->hw; |
| 218 | |
| 219 | /* When SoL/IDER sessions are active, autoneg/speed/duplex |
| 220 | * cannot be changed */ |
| 221 | if (e1000_check_reset_block(hw)) { |
| 222 | ndev_err(netdev, "Cannot change link " |
| 223 | "characteristics when SoL/IDER is active.\n"); |
| 224 | return -EINVAL; |
| 225 | } |
| 226 | |
| 227 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| 228 | msleep(1); |
| 229 | |
| 230 | if (ecmd->autoneg == AUTONEG_ENABLE) { |
| 231 | hw->mac.autoneg = 1; |
| 232 | if (hw->media_type == e1000_media_type_fiber) |
| 233 | hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | |
| 234 | ADVERTISED_FIBRE | |
| 235 | ADVERTISED_Autoneg; |
| 236 | else |
| 237 | hw->phy.autoneg_advertised = ecmd->advertising | |
| 238 | ADVERTISED_TP | |
| 239 | ADVERTISED_Autoneg; |
| 240 | ecmd->advertising = hw->phy.autoneg_advertised; |
| 241 | } else { |
| 242 | if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { |
| 243 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 244 | return -EINVAL; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /* reset the link */ |
| 249 | |
| 250 | if (netif_running(adapter->netdev)) { |
| 251 | e1000e_down(adapter); |
| 252 | e1000e_up(adapter); |
| 253 | } else { |
| 254 | e1000e_reset(adapter); |
| 255 | } |
| 256 | |
| 257 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | static void e1000_get_pauseparam(struct net_device *netdev, |
| 262 | struct ethtool_pauseparam *pause) |
| 263 | { |
| 264 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 265 | struct e1000_hw *hw = &adapter->hw; |
| 266 | |
| 267 | pause->autoneg = |
| 268 | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
| 269 | |
| 270 | if (hw->mac.fc == e1000_fc_rx_pause) { |
| 271 | pause->rx_pause = 1; |
| 272 | } else if (hw->mac.fc == e1000_fc_tx_pause) { |
| 273 | pause->tx_pause = 1; |
| 274 | } else if (hw->mac.fc == e1000_fc_full) { |
| 275 | pause->rx_pause = 1; |
| 276 | pause->tx_pause = 1; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | static int e1000_set_pauseparam(struct net_device *netdev, |
| 281 | struct ethtool_pauseparam *pause) |
| 282 | { |
| 283 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 284 | struct e1000_hw *hw = &adapter->hw; |
| 285 | int retval = 0; |
| 286 | |
| 287 | adapter->fc_autoneg = pause->autoneg; |
| 288 | |
| 289 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| 290 | msleep(1); |
| 291 | |
| 292 | if (pause->rx_pause && pause->tx_pause) |
| 293 | hw->mac.fc = e1000_fc_full; |
| 294 | else if (pause->rx_pause && !pause->tx_pause) |
| 295 | hw->mac.fc = e1000_fc_rx_pause; |
| 296 | else if (!pause->rx_pause && pause->tx_pause) |
| 297 | hw->mac.fc = e1000_fc_tx_pause; |
| 298 | else if (!pause->rx_pause && !pause->tx_pause) |
| 299 | hw->mac.fc = e1000_fc_none; |
| 300 | |
| 301 | hw->mac.original_fc = hw->mac.fc; |
| 302 | |
| 303 | if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
| 304 | if (netif_running(adapter->netdev)) { |
| 305 | e1000e_down(adapter); |
| 306 | e1000e_up(adapter); |
| 307 | } else { |
| 308 | e1000e_reset(adapter); |
| 309 | } |
| 310 | } else { |
| 311 | retval = ((hw->media_type == e1000_media_type_fiber) ? |
| 312 | hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw)); |
| 313 | } |
| 314 | |
| 315 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 316 | return retval; |
| 317 | } |
| 318 | |
| 319 | static u32 e1000_get_rx_csum(struct net_device *netdev) |
| 320 | { |
| 321 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 322 | return (adapter->flags & FLAG_RX_CSUM_ENABLED); |
| 323 | } |
| 324 | |
| 325 | static int e1000_set_rx_csum(struct net_device *netdev, u32 data) |
| 326 | { |
| 327 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 328 | |
| 329 | if (data) |
| 330 | adapter->flags |= FLAG_RX_CSUM_ENABLED; |
| 331 | else |
| 332 | adapter->flags &= ~FLAG_RX_CSUM_ENABLED; |
| 333 | |
| 334 | if (netif_running(netdev)) |
| 335 | e1000e_reinit_locked(adapter); |
| 336 | else |
| 337 | e1000e_reset(adapter); |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | static u32 e1000_get_tx_csum(struct net_device *netdev) |
| 342 | { |
| 343 | return ((netdev->features & NETIF_F_HW_CSUM) != 0); |
| 344 | } |
| 345 | |
| 346 | static int e1000_set_tx_csum(struct net_device *netdev, u32 data) |
| 347 | { |
| 348 | if (data) |
| 349 | netdev->features |= NETIF_F_HW_CSUM; |
| 350 | else |
| 351 | netdev->features &= ~NETIF_F_HW_CSUM; |
| 352 | |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | static int e1000_set_tso(struct net_device *netdev, u32 data) |
| 357 | { |
| 358 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 359 | |
| 360 | if (data) { |
| 361 | netdev->features |= NETIF_F_TSO; |
| 362 | netdev->features |= NETIF_F_TSO6; |
| 363 | } else { |
| 364 | netdev->features &= ~NETIF_F_TSO; |
| 365 | netdev->features &= ~NETIF_F_TSO6; |
| 366 | } |
| 367 | |
| 368 | ndev_info(netdev, "TSO is %s\n", |
| 369 | data ? "Enabled" : "Disabled"); |
| 370 | adapter->flags |= FLAG_TSO_FORCE; |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | static u32 e1000_get_msglevel(struct net_device *netdev) |
| 375 | { |
| 376 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 377 | return adapter->msg_enable; |
| 378 | } |
| 379 | |
| 380 | static void e1000_set_msglevel(struct net_device *netdev, u32 data) |
| 381 | { |
| 382 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 383 | adapter->msg_enable = data; |
| 384 | } |
| 385 | |
| 386 | static int e1000_get_regs_len(struct net_device *netdev) |
| 387 | { |
| 388 | #define E1000_REGS_LEN 32 /* overestimate */ |
| 389 | return E1000_REGS_LEN * sizeof(u32); |
| 390 | } |
| 391 | |
| 392 | static void e1000_get_regs(struct net_device *netdev, |
| 393 | struct ethtool_regs *regs, void *p) |
| 394 | { |
| 395 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 396 | struct e1000_hw *hw = &adapter->hw; |
| 397 | u32 *regs_buff = p; |
| 398 | u16 phy_data; |
| 399 | u8 revision_id; |
| 400 | |
| 401 | memset(p, 0, E1000_REGS_LEN * sizeof(u32)); |
| 402 | |
| 403 | pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id); |
| 404 | |
| 405 | regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device; |
| 406 | |
| 407 | regs_buff[0] = er32(CTRL); |
| 408 | regs_buff[1] = er32(STATUS); |
| 409 | |
| 410 | regs_buff[2] = er32(RCTL); |
| 411 | regs_buff[3] = er32(RDLEN); |
| 412 | regs_buff[4] = er32(RDH); |
| 413 | regs_buff[5] = er32(RDT); |
| 414 | regs_buff[6] = er32(RDTR); |
| 415 | |
| 416 | regs_buff[7] = er32(TCTL); |
| 417 | regs_buff[8] = er32(TDLEN); |
| 418 | regs_buff[9] = er32(TDH); |
| 419 | regs_buff[10] = er32(TDT); |
| 420 | regs_buff[11] = er32(TIDV); |
| 421 | |
| 422 | regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ |
| 423 | if (hw->phy.type == e1000_phy_m88) { |
| 424 | e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| 425 | regs_buff[13] = (u32)phy_data; /* cable length */ |
| 426 | regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 427 | regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 428 | regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 429 | e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| 430 | regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ |
| 431 | regs_buff[18] = regs_buff[13]; /* cable polarity */ |
| 432 | regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| 433 | regs_buff[20] = regs_buff[17]; /* polarity correction */ |
| 434 | /* phy receive errors */ |
| 435 | regs_buff[22] = adapter->phy_stats.receive_errors; |
| 436 | regs_buff[23] = regs_buff[13]; /* mdix mode */ |
| 437 | } |
| 438 | regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ |
| 439 | e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); |
| 440 | regs_buff[24] = (u32)phy_data; /* phy local receiver status */ |
| 441 | regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
| 442 | } |
| 443 | |
| 444 | static int e1000_get_eeprom_len(struct net_device *netdev) |
| 445 | { |
| 446 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 447 | return adapter->hw.nvm.word_size * 2; |
| 448 | } |
| 449 | |
| 450 | static int e1000_get_eeprom(struct net_device *netdev, |
| 451 | struct ethtool_eeprom *eeprom, u8 *bytes) |
| 452 | { |
| 453 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 454 | struct e1000_hw *hw = &adapter->hw; |
| 455 | u16 *eeprom_buff; |
| 456 | int first_word; |
| 457 | int last_word; |
| 458 | int ret_val = 0; |
| 459 | u16 i; |
| 460 | |
| 461 | if (eeprom->len == 0) |
| 462 | return -EINVAL; |
| 463 | |
| 464 | eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); |
| 465 | |
| 466 | first_word = eeprom->offset >> 1; |
| 467 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| 468 | |
| 469 | eeprom_buff = kmalloc(sizeof(u16) * |
| 470 | (last_word - first_word + 1), GFP_KERNEL); |
| 471 | if (!eeprom_buff) |
| 472 | return -ENOMEM; |
| 473 | |
| 474 | if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
| 475 | ret_val = e1000_read_nvm(hw, first_word, |
| 476 | last_word - first_word + 1, |
| 477 | eeprom_buff); |
| 478 | } else { |
| 479 | for (i = 0; i < last_word - first_word + 1; i++) { |
| 480 | ret_val = e1000_read_nvm(hw, first_word + i, 1, |
| 481 | &eeprom_buff[i]); |
| 482 | if (ret_val) |
| 483 | break; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | /* Device's eeprom is always little-endian, word addressable */ |
| 488 | for (i = 0; i < last_word - first_word + 1; i++) |
| 489 | le16_to_cpus(&eeprom_buff[i]); |
| 490 | |
| 491 | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); |
| 492 | kfree(eeprom_buff); |
| 493 | |
| 494 | return ret_val; |
| 495 | } |
| 496 | |
| 497 | static int e1000_set_eeprom(struct net_device *netdev, |
| 498 | struct ethtool_eeprom *eeprom, u8 *bytes) |
| 499 | { |
| 500 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 501 | struct e1000_hw *hw = &adapter->hw; |
| 502 | u16 *eeprom_buff; |
| 503 | void *ptr; |
| 504 | int max_len; |
| 505 | int first_word; |
| 506 | int last_word; |
| 507 | int ret_val = 0; |
| 508 | u16 i; |
| 509 | |
| 510 | if (eeprom->len == 0) |
| 511 | return -EOPNOTSUPP; |
| 512 | |
| 513 | if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16))) |
| 514 | return -EFAULT; |
| 515 | |
| 516 | max_len = hw->nvm.word_size * 2; |
| 517 | |
| 518 | first_word = eeprom->offset >> 1; |
| 519 | last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| 520 | eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
| 521 | if (!eeprom_buff) |
| 522 | return -ENOMEM; |
| 523 | |
| 524 | ptr = (void *)eeprom_buff; |
| 525 | |
| 526 | if (eeprom->offset & 1) { |
| 527 | /* need read/modify/write of first changed EEPROM word */ |
| 528 | /* only the second byte of the word is being modified */ |
| 529 | ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); |
| 530 | ptr++; |
| 531 | } |
| 532 | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) |
| 533 | /* need read/modify/write of last changed EEPROM word */ |
| 534 | /* only the first byte of the word is being modified */ |
| 535 | ret_val = e1000_read_nvm(hw, last_word, 1, |
| 536 | &eeprom_buff[last_word - first_word]); |
| 537 | |
| 538 | /* Device's eeprom is always little-endian, word addressable */ |
| 539 | for (i = 0; i < last_word - first_word + 1; i++) |
| 540 | le16_to_cpus(&eeprom_buff[i]); |
| 541 | |
| 542 | memcpy(ptr, bytes, eeprom->len); |
| 543 | |
| 544 | for (i = 0; i < last_word - first_word + 1; i++) |
| 545 | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
| 546 | |
| 547 | ret_val = e1000_write_nvm(hw, first_word, |
| 548 | last_word - first_word + 1, eeprom_buff); |
| 549 | |
| 550 | /* Update the checksum over the first part of the EEPROM if needed |
| 551 | * and flush shadow RAM for 82573 controllers */ |
| 552 | if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) || |
| 553 | (hw->mac.type == e1000_82573))) |
| 554 | e1000e_update_nvm_checksum(hw); |
| 555 | |
| 556 | kfree(eeprom_buff); |
| 557 | return ret_val; |
| 558 | } |
| 559 | |
| 560 | static void e1000_get_drvinfo(struct net_device *netdev, |
| 561 | struct ethtool_drvinfo *drvinfo) |
| 562 | { |
| 563 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 564 | char firmware_version[32]; |
| 565 | u16 eeprom_data; |
| 566 | |
| 567 | strncpy(drvinfo->driver, e1000e_driver_name, 32); |
| 568 | strncpy(drvinfo->version, e1000e_driver_version, 32); |
| 569 | |
| 570 | /* EEPROM image version # is reported as firmware version # for |
| 571 | * PCI-E controllers */ |
| 572 | e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data); |
| 573 | sprintf(firmware_version, "%d.%d-%d", |
| 574 | (eeprom_data & 0xF000) >> 12, |
| 575 | (eeprom_data & 0x0FF0) >> 4, |
| 576 | eeprom_data & 0x000F); |
| 577 | |
| 578 | strncpy(drvinfo->fw_version, firmware_version, 32); |
| 579 | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
| 580 | drvinfo->n_stats = E1000_STATS_LEN; |
| 581 | drvinfo->testinfo_len = E1000_TEST_LEN; |
| 582 | drvinfo->regdump_len = e1000_get_regs_len(netdev); |
| 583 | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
| 584 | } |
| 585 | |
| 586 | static void e1000_get_ringparam(struct net_device *netdev, |
| 587 | struct ethtool_ringparam *ring) |
| 588 | { |
| 589 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 590 | struct e1000_ring *tx_ring = adapter->tx_ring; |
| 591 | struct e1000_ring *rx_ring = adapter->rx_ring; |
| 592 | |
| 593 | ring->rx_max_pending = E1000_MAX_RXD; |
| 594 | ring->tx_max_pending = E1000_MAX_TXD; |
| 595 | ring->rx_mini_max_pending = 0; |
| 596 | ring->rx_jumbo_max_pending = 0; |
| 597 | ring->rx_pending = rx_ring->count; |
| 598 | ring->tx_pending = tx_ring->count; |
| 599 | ring->rx_mini_pending = 0; |
| 600 | ring->rx_jumbo_pending = 0; |
| 601 | } |
| 602 | |
| 603 | static int e1000_set_ringparam(struct net_device *netdev, |
| 604 | struct ethtool_ringparam *ring) |
| 605 | { |
| 606 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 607 | struct e1000_ring *tx_ring, *tx_old; |
| 608 | struct e1000_ring *rx_ring, *rx_old; |
| 609 | int err; |
| 610 | |
| 611 | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
| 612 | return -EINVAL; |
| 613 | |
| 614 | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| 615 | msleep(1); |
| 616 | |
| 617 | if (netif_running(adapter->netdev)) |
| 618 | e1000e_down(adapter); |
| 619 | |
| 620 | tx_old = adapter->tx_ring; |
| 621 | rx_old = adapter->rx_ring; |
| 622 | |
| 623 | err = -ENOMEM; |
| 624 | tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
| 625 | if (!tx_ring) |
| 626 | goto err_alloc_tx; |
| 627 | |
| 628 | rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
| 629 | if (!rx_ring) |
| 630 | goto err_alloc_rx; |
| 631 | |
| 632 | adapter->tx_ring = tx_ring; |
| 633 | adapter->rx_ring = rx_ring; |
| 634 | |
| 635 | rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); |
| 636 | rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD)); |
| 637 | rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
| 638 | |
| 639 | tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); |
| 640 | tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD)); |
| 641 | tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
| 642 | |
| 643 | if (netif_running(adapter->netdev)) { |
| 644 | /* Try to get new resources before deleting old */ |
| 645 | err = e1000e_setup_rx_resources(adapter); |
| 646 | if (err) |
| 647 | goto err_setup_rx; |
| 648 | err = e1000e_setup_tx_resources(adapter); |
| 649 | if (err) |
| 650 | goto err_setup_tx; |
| 651 | |
| 652 | /* save the new, restore the old in order to free it, |
| 653 | * then restore the new back again */ |
| 654 | adapter->rx_ring = rx_old; |
| 655 | adapter->tx_ring = tx_old; |
| 656 | e1000e_free_rx_resources(adapter); |
| 657 | e1000e_free_tx_resources(adapter); |
| 658 | kfree(tx_old); |
| 659 | kfree(rx_old); |
| 660 | adapter->rx_ring = rx_ring; |
| 661 | adapter->tx_ring = tx_ring; |
| 662 | err = e1000e_up(adapter); |
| 663 | if (err) |
| 664 | goto err_setup; |
| 665 | } |
| 666 | |
| 667 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 668 | return 0; |
| 669 | err_setup_tx: |
| 670 | e1000e_free_rx_resources(adapter); |
| 671 | err_setup_rx: |
| 672 | adapter->rx_ring = rx_old; |
| 673 | adapter->tx_ring = tx_old; |
| 674 | kfree(rx_ring); |
| 675 | err_alloc_rx: |
| 676 | kfree(tx_ring); |
| 677 | err_alloc_tx: |
| 678 | e1000e_up(adapter); |
| 679 | err_setup: |
| 680 | clear_bit(__E1000_RESETTING, &adapter->state); |
| 681 | return err; |
| 682 | } |
| 683 | |
| 684 | #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W) |
| 685 | #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \ |
| 686 | { \ |
| 687 | u32 _pat; \ |
| 688 | u32 _value; \ |
| 689 | u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ |
| 690 | for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \ |
| 691 | E1000_WRITE_REG_ARRAY(hw, reg, offset, \ |
| 692 | (_test[_pat] & writeable)); \ |
| 693 | _value = E1000_READ_REG_ARRAY(hw, reg, offset); \ |
| 694 | if (_value != (_test[_pat] & writeable & mask)) { \ |
| 695 | ndev_err(netdev, "pattern test reg %04X " \ |
| 696 | "failed: got 0x%08X expected 0x%08X\n", \ |
| 697 | reg + offset, \ |
| 698 | value, (_test[_pat] & writeable & mask)); \ |
| 699 | *data = reg; \ |
| 700 | return 1; \ |
| 701 | } \ |
| 702 | } \ |
| 703 | } |
| 704 | |
| 705 | #define REG_SET_AND_CHECK(R, M, W) \ |
| 706 | { \ |
| 707 | u32 _value; \ |
| 708 | __ew32(hw, R, W & M); \ |
| 709 | _value = __er32(hw, R); \ |
| 710 | if ((W & M) != (_value & M)) { \ |
| 711 | ndev_err(netdev, "set/check reg %04X test failed: " \ |
| 712 | "got 0x%08X expected 0x%08X\n", R, (_value & M), \ |
| 713 | (W & M)); \ |
| 714 | *data = R; \ |
| 715 | return 1; \ |
| 716 | } \ |
| 717 | } |
| 718 | |
| 719 | static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) |
| 720 | { |
| 721 | struct e1000_hw *hw = &adapter->hw; |
| 722 | struct e1000_mac_info *mac = &adapter->hw.mac; |
| 723 | struct net_device *netdev = adapter->netdev; |
| 724 | u32 value; |
| 725 | u32 before; |
| 726 | u32 after; |
| 727 | u32 i; |
| 728 | u32 toggle; |
| 729 | |
| 730 | /* The status register is Read Only, so a write should fail. |
| 731 | * Some bits that get toggled are ignored. |
| 732 | */ |
| 733 | switch (mac->type) { |
| 734 | /* there are several bits on newer hardware that are r/w */ |
| 735 | case e1000_82571: |
| 736 | case e1000_82572: |
| 737 | case e1000_80003es2lan: |
| 738 | toggle = 0x7FFFF3FF; |
| 739 | break; |
| 740 | case e1000_82573: |
| 741 | case e1000_ich8lan: |
| 742 | case e1000_ich9lan: |
| 743 | toggle = 0x7FFFF033; |
| 744 | break; |
| 745 | default: |
| 746 | toggle = 0xFFFFF833; |
| 747 | break; |
| 748 | } |
| 749 | |
| 750 | before = er32(STATUS); |
| 751 | value = (er32(STATUS) & toggle); |
| 752 | ew32(STATUS, toggle); |
| 753 | after = er32(STATUS) & toggle; |
| 754 | if (value != after) { |
| 755 | ndev_err(netdev, "failed STATUS register test got: " |
| 756 | "0x%08X expected: 0x%08X\n", after, value); |
| 757 | *data = 1; |
| 758 | return 1; |
| 759 | } |
| 760 | /* restore previous status */ |
| 761 | ew32(STATUS, before); |
| 762 | |
| 763 | if ((mac->type != e1000_ich8lan) && |
| 764 | (mac->type != e1000_ich9lan)) { |
| 765 | REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
| 766 | REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); |
| 767 | REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); |
| 768 | REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); |
| 769 | } |
| 770 | |
| 771 | REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); |
| 772 | REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| 773 | REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF); |
| 774 | REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF); |
| 775 | REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF); |
| 776 | REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); |
| 777 | REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); |
| 778 | REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
| 779 | REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| 780 | REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF); |
| 781 | |
| 782 | REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); |
| 783 | |
| 784 | before = (((mac->type == e1000_ich8lan) || |
| 785 | (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE); |
| 786 | REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); |
| 787 | REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); |
| 788 | |
| 789 | REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x01FFFFFF); |
| 790 | REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFF000, 0xFFFFFFFF); |
| 791 | REG_PATTERN_TEST(E1000_TXCW, 0x0000FFFF, 0x0000FFFF); |
| 792 | REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFF000, 0xFFFFFFFF); |
| 793 | |
| 794 | for (i = 0; i < mac->mta_reg_count; i++) |
| 795 | REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); |
| 796 | |
| 797 | *data = 0; |
| 798 | return 0; |
| 799 | } |
| 800 | |
| 801 | static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) |
| 802 | { |
| 803 | u16 temp; |
| 804 | u16 checksum = 0; |
| 805 | u16 i; |
| 806 | |
| 807 | *data = 0; |
| 808 | /* Read and add up the contents of the EEPROM */ |
| 809 | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
| 810 | if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { |
| 811 | *data = 1; |
| 812 | break; |
| 813 | } |
| 814 | checksum += temp; |
| 815 | } |
| 816 | |
| 817 | /* If Checksum is not Correct return error else test passed */ |
| 818 | if ((checksum != (u16) NVM_SUM) && !(*data)) |
| 819 | *data = 2; |
| 820 | |
| 821 | return *data; |
| 822 | } |
| 823 | |
| 824 | static irqreturn_t e1000_test_intr(int irq, void *data) |
| 825 | { |
| 826 | struct net_device *netdev = (struct net_device *) data; |
| 827 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 828 | struct e1000_hw *hw = &adapter->hw; |
| 829 | |
| 830 | adapter->test_icr |= er32(ICR); |
| 831 | |
| 832 | return IRQ_HANDLED; |
| 833 | } |
| 834 | |
| 835 | static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) |
| 836 | { |
| 837 | struct net_device *netdev = adapter->netdev; |
| 838 | struct e1000_hw *hw = &adapter->hw; |
| 839 | u32 mask; |
| 840 | u32 shared_int = 1; |
| 841 | u32 irq = adapter->pdev->irq; |
| 842 | int i; |
| 843 | |
| 844 | *data = 0; |
| 845 | |
| 846 | /* NOTE: we don't test MSI interrupts here, yet */ |
| 847 | /* Hook up test interrupt handler just for this test */ |
| 848 | if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, |
| 849 | netdev)) { |
| 850 | shared_int = 0; |
| 851 | } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED, |
| 852 | netdev->name, netdev)) { |
| 853 | *data = 1; |
| 854 | return -1; |
| 855 | } |
| 856 | ndev_info(netdev, "testing %s interrupt\n", |
| 857 | (shared_int ? "shared" : "unshared")); |
| 858 | |
| 859 | /* Disable all the interrupts */ |
| 860 | ew32(IMC, 0xFFFFFFFF); |
| 861 | msleep(10); |
| 862 | |
| 863 | /* Test each interrupt */ |
| 864 | for (i = 0; i < 10; i++) { |
| 865 | |
| 866 | if (((adapter->hw.mac.type == e1000_ich8lan) || |
| 867 | (adapter->hw.mac.type == e1000_ich9lan)) && i == 8) |
| 868 | continue; |
| 869 | |
| 870 | /* Interrupt to test */ |
| 871 | mask = 1 << i; |
| 872 | |
| 873 | if (!shared_int) { |
| 874 | /* Disable the interrupt to be reported in |
| 875 | * the cause register and then force the same |
| 876 | * interrupt and see if one gets posted. If |
| 877 | * an interrupt was posted to the bus, the |
| 878 | * test failed. |
| 879 | */ |
| 880 | adapter->test_icr = 0; |
| 881 | ew32(IMC, mask); |
| 882 | ew32(ICS, mask); |
| 883 | msleep(10); |
| 884 | |
| 885 | if (adapter->test_icr & mask) { |
| 886 | *data = 3; |
| 887 | break; |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | /* Enable the interrupt to be reported in |
| 892 | * the cause register and then force the same |
| 893 | * interrupt and see if one gets posted. If |
| 894 | * an interrupt was not posted to the bus, the |
| 895 | * test failed. |
| 896 | */ |
| 897 | adapter->test_icr = 0; |
| 898 | ew32(IMS, mask); |
| 899 | ew32(ICS, mask); |
| 900 | msleep(10); |
| 901 | |
| 902 | if (!(adapter->test_icr & mask)) { |
| 903 | *data = 4; |
| 904 | break; |
| 905 | } |
| 906 | |
| 907 | if (!shared_int) { |
| 908 | /* Disable the other interrupts to be reported in |
| 909 | * the cause register and then force the other |
| 910 | * interrupts and see if any get posted. If |
| 911 | * an interrupt was posted to the bus, the |
| 912 | * test failed. |
| 913 | */ |
| 914 | adapter->test_icr = 0; |
| 915 | ew32(IMC, ~mask & 0x00007FFF); |
| 916 | ew32(ICS, ~mask & 0x00007FFF); |
| 917 | msleep(10); |
| 918 | |
| 919 | if (adapter->test_icr) { |
| 920 | *data = 5; |
| 921 | break; |
| 922 | } |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | /* Disable all the interrupts */ |
| 927 | ew32(IMC, 0xFFFFFFFF); |
| 928 | msleep(10); |
| 929 | |
| 930 | /* Unhook test interrupt handler */ |
| 931 | free_irq(irq, netdev); |
| 932 | |
| 933 | return *data; |
| 934 | } |
| 935 | |
| 936 | static void e1000_free_desc_rings(struct e1000_adapter *adapter) |
| 937 | { |
| 938 | struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
| 939 | struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
| 940 | struct pci_dev *pdev = adapter->pdev; |
| 941 | int i; |
| 942 | |
| 943 | if (tx_ring->desc && tx_ring->buffer_info) { |
| 944 | for (i = 0; i < tx_ring->count; i++) { |
| 945 | if (tx_ring->buffer_info[i].dma) |
| 946 | pci_unmap_single(pdev, |
| 947 | tx_ring->buffer_info[i].dma, |
| 948 | tx_ring->buffer_info[i].length, |
| 949 | PCI_DMA_TODEVICE); |
| 950 | if (tx_ring->buffer_info[i].skb) |
| 951 | dev_kfree_skb(tx_ring->buffer_info[i].skb); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | if (rx_ring->desc && rx_ring->buffer_info) { |
| 956 | for (i = 0; i < rx_ring->count; i++) { |
| 957 | if (rx_ring->buffer_info[i].dma) |
| 958 | pci_unmap_single(pdev, |
| 959 | rx_ring->buffer_info[i].dma, |
| 960 | 2048, PCI_DMA_FROMDEVICE); |
| 961 | if (rx_ring->buffer_info[i].skb) |
| 962 | dev_kfree_skb(rx_ring->buffer_info[i].skb); |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | if (tx_ring->desc) { |
| 967 | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
| 968 | tx_ring->dma); |
| 969 | tx_ring->desc = NULL; |
| 970 | } |
| 971 | if (rx_ring->desc) { |
| 972 | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
| 973 | rx_ring->dma); |
| 974 | rx_ring->desc = NULL; |
| 975 | } |
| 976 | |
| 977 | kfree(tx_ring->buffer_info); |
| 978 | tx_ring->buffer_info = NULL; |
| 979 | kfree(rx_ring->buffer_info); |
| 980 | rx_ring->buffer_info = NULL; |
| 981 | } |
| 982 | |
| 983 | static int e1000_setup_desc_rings(struct e1000_adapter *adapter) |
| 984 | { |
| 985 | struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
| 986 | struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
| 987 | struct pci_dev *pdev = adapter->pdev; |
| 988 | struct e1000_hw *hw = &adapter->hw; |
| 989 | u32 rctl; |
| 990 | int size; |
| 991 | int i; |
| 992 | int ret_val; |
| 993 | |
| 994 | /* Setup Tx descriptor ring and Tx buffers */ |
| 995 | |
| 996 | if (!tx_ring->count) |
| 997 | tx_ring->count = E1000_DEFAULT_TXD; |
| 998 | |
| 999 | size = tx_ring->count * sizeof(struct e1000_buffer); |
| 1000 | tx_ring->buffer_info = kmalloc(size, GFP_KERNEL); |
| 1001 | if (!tx_ring->buffer_info) { |
| 1002 | ret_val = 1; |
| 1003 | goto err_nomem; |
| 1004 | } |
| 1005 | memset(tx_ring->buffer_info, 0, size); |
| 1006 | |
| 1007 | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| 1008 | tx_ring->size = ALIGN(tx_ring->size, 4096); |
| 1009 | tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, |
| 1010 | &tx_ring->dma, GFP_KERNEL); |
| 1011 | if (!tx_ring->desc) { |
| 1012 | ret_val = 2; |
| 1013 | goto err_nomem; |
| 1014 | } |
| 1015 | memset(tx_ring->desc, 0, tx_ring->size); |
| 1016 | tx_ring->next_to_use = 0; |
| 1017 | tx_ring->next_to_clean = 0; |
| 1018 | |
| 1019 | ew32(TDBAL, |
| 1020 | ((u64) tx_ring->dma & 0x00000000FFFFFFFF)); |
| 1021 | ew32(TDBAH, ((u64) tx_ring->dma >> 32)); |
| 1022 | ew32(TDLEN, |
| 1023 | tx_ring->count * sizeof(struct e1000_tx_desc)); |
| 1024 | ew32(TDH, 0); |
| 1025 | ew32(TDT, 0); |
| 1026 | ew32(TCTL, |
| 1027 | E1000_TCTL_PSP | E1000_TCTL_EN | |
| 1028 | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
| 1029 | E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
| 1030 | |
| 1031 | for (i = 0; i < tx_ring->count; i++) { |
| 1032 | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); |
| 1033 | struct sk_buff *skb; |
| 1034 | unsigned int skb_size = 1024; |
| 1035 | |
| 1036 | skb = alloc_skb(skb_size, GFP_KERNEL); |
| 1037 | if (!skb) { |
| 1038 | ret_val = 3; |
| 1039 | goto err_nomem; |
| 1040 | } |
| 1041 | skb_put(skb, skb_size); |
| 1042 | tx_ring->buffer_info[i].skb = skb; |
| 1043 | tx_ring->buffer_info[i].length = skb->len; |
| 1044 | tx_ring->buffer_info[i].dma = |
| 1045 | pci_map_single(pdev, skb->data, skb->len, |
| 1046 | PCI_DMA_TODEVICE); |
| 1047 | if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) { |
| 1048 | ret_val = 4; |
| 1049 | goto err_nomem; |
| 1050 | } |
| 1051 | tx_desc->buffer_addr = cpu_to_le64( |
| 1052 | tx_ring->buffer_info[i].dma); |
| 1053 | tx_desc->lower.data = cpu_to_le32(skb->len); |
| 1054 | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
| 1055 | E1000_TXD_CMD_IFCS | |
| 1056 | E1000_TXD_CMD_RPS); |
| 1057 | tx_desc->upper.data = 0; |
| 1058 | } |
| 1059 | |
| 1060 | /* Setup Rx descriptor ring and Rx buffers */ |
| 1061 | |
| 1062 | if (!rx_ring->count) |
| 1063 | rx_ring->count = E1000_DEFAULT_RXD; |
| 1064 | |
| 1065 | size = rx_ring->count * sizeof(struct e1000_buffer); |
| 1066 | rx_ring->buffer_info = kmalloc(size, GFP_KERNEL); |
| 1067 | if (!rx_ring->buffer_info) { |
| 1068 | ret_val = 5; |
| 1069 | goto err_nomem; |
| 1070 | } |
| 1071 | memset(rx_ring->buffer_info, 0, size); |
| 1072 | |
| 1073 | rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc); |
| 1074 | rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, |
| 1075 | &rx_ring->dma, GFP_KERNEL); |
| 1076 | if (!rx_ring->desc) { |
| 1077 | ret_val = 6; |
| 1078 | goto err_nomem; |
| 1079 | } |
| 1080 | memset(rx_ring->desc, 0, rx_ring->size); |
| 1081 | rx_ring->next_to_use = 0; |
| 1082 | rx_ring->next_to_clean = 0; |
| 1083 | |
| 1084 | rctl = er32(RCTL); |
| 1085 | ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| 1086 | ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF)); |
| 1087 | ew32(RDBAH, ((u64) rx_ring->dma >> 32)); |
| 1088 | ew32(RDLEN, rx_ring->size); |
| 1089 | ew32(RDH, 0); |
| 1090 | ew32(RDT, 0); |
| 1091 | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
| 1092 | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| 1093 | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| 1094 | ew32(RCTL, rctl); |
| 1095 | |
| 1096 | for (i = 0; i < rx_ring->count; i++) { |
| 1097 | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); |
| 1098 | struct sk_buff *skb; |
| 1099 | |
| 1100 | skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); |
| 1101 | if (!skb) { |
| 1102 | ret_val = 7; |
| 1103 | goto err_nomem; |
| 1104 | } |
| 1105 | skb_reserve(skb, NET_IP_ALIGN); |
| 1106 | rx_ring->buffer_info[i].skb = skb; |
| 1107 | rx_ring->buffer_info[i].dma = |
| 1108 | pci_map_single(pdev, skb->data, 2048, |
| 1109 | PCI_DMA_FROMDEVICE); |
| 1110 | if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) { |
| 1111 | ret_val = 8; |
| 1112 | goto err_nomem; |
| 1113 | } |
| 1114 | rx_desc->buffer_addr = |
| 1115 | cpu_to_le64(rx_ring->buffer_info[i].dma); |
| 1116 | memset(skb->data, 0x00, skb->len); |
| 1117 | } |
| 1118 | |
| 1119 | return 0; |
| 1120 | |
| 1121 | err_nomem: |
| 1122 | e1000_free_desc_rings(adapter); |
| 1123 | return ret_val; |
| 1124 | } |
| 1125 | |
| 1126 | static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
| 1127 | { |
| 1128 | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| 1129 | e1e_wphy(&adapter->hw, 29, 0x001F); |
| 1130 | e1e_wphy(&adapter->hw, 30, 0x8FFC); |
| 1131 | e1e_wphy(&adapter->hw, 29, 0x001A); |
| 1132 | e1e_wphy(&adapter->hw, 30, 0x8FF0); |
| 1133 | } |
| 1134 | |
| 1135 | static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
| 1136 | { |
| 1137 | struct e1000_hw *hw = &adapter->hw; |
| 1138 | u32 ctrl_reg = 0; |
| 1139 | u32 stat_reg = 0; |
| 1140 | |
| 1141 | adapter->hw.mac.autoneg = 0; |
| 1142 | |
| 1143 | if (adapter->hw.phy.type == e1000_phy_m88) { |
| 1144 | /* Auto-MDI/MDIX Off */ |
| 1145 | e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); |
| 1146 | /* reset to update Auto-MDI/MDIX */ |
| 1147 | e1e_wphy(hw, PHY_CONTROL, 0x9140); |
| 1148 | /* autoneg off */ |
| 1149 | e1e_wphy(hw, PHY_CONTROL, 0x8140); |
| 1150 | } else if (adapter->hw.phy.type == e1000_phy_gg82563) |
| 1151 | e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); |
| 1152 | |
| 1153 | ctrl_reg = er32(CTRL); |
| 1154 | |
| 1155 | if (adapter->hw.phy.type == e1000_phy_ife) { |
| 1156 | /* force 100, set loopback */ |
| 1157 | e1e_wphy(hw, PHY_CONTROL, 0x6100); |
| 1158 | |
| 1159 | /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| 1160 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| 1161 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| 1162 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| 1163 | E1000_CTRL_SPD_100 |/* Force Speed to 100 */ |
| 1164 | E1000_CTRL_FD); /* Force Duplex to FULL */ |
| 1165 | } else { |
| 1166 | /* force 1000, set loopback */ |
| 1167 | e1e_wphy(hw, PHY_CONTROL, 0x4140); |
| 1168 | |
| 1169 | /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| 1170 | ctrl_reg = er32(CTRL); |
| 1171 | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| 1172 | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| 1173 | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| 1174 | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
| 1175 | E1000_CTRL_FD); /* Force Duplex to FULL */ |
| 1176 | } |
| 1177 | |
| 1178 | if (adapter->hw.media_type == e1000_media_type_copper && |
| 1179 | adapter->hw.phy.type == e1000_phy_m88) { |
| 1180 | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
| 1181 | } else { |
| 1182 | /* Set the ILOS bit on the fiber Nic if half duplex link is |
| 1183 | * detected. */ |
| 1184 | stat_reg = er32(STATUS); |
| 1185 | if ((stat_reg & E1000_STATUS_FD) == 0) |
| 1186 | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
| 1187 | } |
| 1188 | |
| 1189 | ew32(CTRL, ctrl_reg); |
| 1190 | |
| 1191 | /* Disable the receiver on the PHY so when a cable is plugged in, the |
| 1192 | * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
| 1193 | */ |
| 1194 | if (adapter->hw.phy.type == e1000_phy_m88) |
| 1195 | e1000_phy_disable_receiver(adapter); |
| 1196 | |
| 1197 | udelay(500); |
| 1198 | |
| 1199 | return 0; |
| 1200 | } |
| 1201 | |
| 1202 | static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) |
| 1203 | { |
| 1204 | struct e1000_hw *hw = &adapter->hw; |
| 1205 | u32 ctrl = er32(CTRL); |
| 1206 | int link = 0; |
| 1207 | |
| 1208 | /* special requirements for 82571/82572 fiber adapters */ |
| 1209 | |
| 1210 | /* jump through hoops to make sure link is up because serdes |
| 1211 | * link is hardwired up */ |
| 1212 | ctrl |= E1000_CTRL_SLU; |
| 1213 | ew32(CTRL, ctrl); |
| 1214 | |
| 1215 | /* disable autoneg */ |
| 1216 | ctrl = er32(TXCW); |
| 1217 | ctrl &= ~(1 << 31); |
| 1218 | ew32(TXCW, ctrl); |
| 1219 | |
| 1220 | link = (er32(STATUS) & E1000_STATUS_LU); |
| 1221 | |
| 1222 | if (!link) { |
| 1223 | /* set invert loss of signal */ |
| 1224 | ctrl = er32(CTRL); |
| 1225 | ctrl |= E1000_CTRL_ILOS; |
| 1226 | ew32(CTRL, ctrl); |
| 1227 | } |
| 1228 | |
| 1229 | /* special write to serdes control register to enable SerDes analog |
| 1230 | * loopback */ |
| 1231 | #define E1000_SERDES_LB_ON 0x410 |
| 1232 | ew32(SCTL, E1000_SERDES_LB_ON); |
| 1233 | msleep(10); |
| 1234 | |
| 1235 | return 0; |
| 1236 | } |
| 1237 | |
| 1238 | /* only call this for fiber/serdes connections to es2lan */ |
| 1239 | static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) |
| 1240 | { |
| 1241 | struct e1000_hw *hw = &adapter->hw; |
| 1242 | u32 ctrlext = er32(CTRL_EXT); |
| 1243 | u32 ctrl = er32(CTRL); |
| 1244 | |
| 1245 | /* save CTRL_EXT to restore later, reuse an empty variable (unused |
| 1246 | on mac_type 80003es2lan) */ |
| 1247 | adapter->tx_fifo_head = ctrlext; |
| 1248 | |
| 1249 | /* clear the serdes mode bits, putting the device into mac loopback */ |
| 1250 | ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; |
| 1251 | ew32(CTRL_EXT, ctrlext); |
| 1252 | |
| 1253 | /* force speed to 1000/FD, link up */ |
| 1254 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
| 1255 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | |
| 1256 | E1000_CTRL_SPD_1000 | E1000_CTRL_FD); |
| 1257 | ew32(CTRL, ctrl); |
| 1258 | |
| 1259 | /* set mac loopback */ |
| 1260 | ctrl = er32(RCTL); |
| 1261 | ctrl |= E1000_RCTL_LBM_MAC; |
| 1262 | ew32(RCTL, ctrl); |
| 1263 | |
| 1264 | /* set testing mode parameters (no need to reset later) */ |
| 1265 | #define KMRNCTRLSTA_OPMODE (0x1F << 16) |
| 1266 | #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 |
| 1267 | ew32(KMRNCTRLSTA, |
| 1268 | (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); |
| 1269 | |
| 1270 | return 0; |
| 1271 | } |
| 1272 | |
| 1273 | static int e1000_setup_loopback_test(struct e1000_adapter *adapter) |
| 1274 | { |
| 1275 | struct e1000_hw *hw = &adapter->hw; |
| 1276 | u32 rctl; |
| 1277 | |
| 1278 | if (hw->media_type == e1000_media_type_fiber || |
| 1279 | hw->media_type == e1000_media_type_internal_serdes) { |
| 1280 | switch (hw->mac.type) { |
| 1281 | case e1000_80003es2lan: |
| 1282 | return e1000_set_es2lan_mac_loopback(adapter); |
| 1283 | break; |
| 1284 | case e1000_82571: |
| 1285 | case e1000_82572: |
| 1286 | return e1000_set_82571_fiber_loopback(adapter); |
| 1287 | break; |
| 1288 | default: |
| 1289 | rctl = er32(RCTL); |
| 1290 | rctl |= E1000_RCTL_LBM_TCVR; |
| 1291 | ew32(RCTL, rctl); |
| 1292 | return 0; |
| 1293 | } |
| 1294 | } else if (hw->media_type == e1000_media_type_copper) { |
| 1295 | return e1000_integrated_phy_loopback(adapter); |
| 1296 | } |
| 1297 | |
| 1298 | return 7; |
| 1299 | } |
| 1300 | |
| 1301 | static void e1000_loopback_cleanup(struct e1000_adapter *adapter) |
| 1302 | { |
| 1303 | struct e1000_hw *hw = &adapter->hw; |
| 1304 | u32 rctl; |
| 1305 | u16 phy_reg; |
| 1306 | |
| 1307 | rctl = er32(RCTL); |
| 1308 | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| 1309 | ew32(RCTL, rctl); |
| 1310 | |
| 1311 | switch (hw->mac.type) { |
| 1312 | case e1000_80003es2lan: |
| 1313 | if (hw->media_type == e1000_media_type_fiber || |
| 1314 | hw->media_type == e1000_media_type_internal_serdes) { |
| 1315 | /* restore CTRL_EXT, stealing space from tx_fifo_head */ |
| 1316 | ew32(CTRL_EXT, |
| 1317 | adapter->tx_fifo_head); |
| 1318 | adapter->tx_fifo_head = 0; |
| 1319 | } |
| 1320 | /* fall through */ |
| 1321 | case e1000_82571: |
| 1322 | case e1000_82572: |
| 1323 | if (hw->media_type == e1000_media_type_fiber || |
| 1324 | hw->media_type == e1000_media_type_internal_serdes) { |
| 1325 | #define E1000_SERDES_LB_OFF 0x400 |
| 1326 | ew32(SCTL, E1000_SERDES_LB_OFF); |
| 1327 | msleep(10); |
| 1328 | break; |
| 1329 | } |
| 1330 | /* Fall Through */ |
| 1331 | default: |
| 1332 | hw->mac.autoneg = 1; |
| 1333 | if (hw->phy.type == e1000_phy_gg82563) |
| 1334 | e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); |
| 1335 | e1e_rphy(hw, PHY_CONTROL, &phy_reg); |
| 1336 | if (phy_reg & MII_CR_LOOPBACK) { |
| 1337 | phy_reg &= ~MII_CR_LOOPBACK; |
| 1338 | e1e_wphy(hw, PHY_CONTROL, phy_reg); |
| 1339 | e1000e_commit_phy(hw); |
| 1340 | } |
| 1341 | break; |
| 1342 | } |
| 1343 | } |
| 1344 | |
| 1345 | static void e1000_create_lbtest_frame(struct sk_buff *skb, |
| 1346 | unsigned int frame_size) |
| 1347 | { |
| 1348 | memset(skb->data, 0xFF, frame_size); |
| 1349 | frame_size &= ~1; |
| 1350 | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
| 1351 | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
| 1352 | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
| 1353 | } |
| 1354 | |
| 1355 | static int e1000_check_lbtest_frame(struct sk_buff *skb, |
| 1356 | unsigned int frame_size) |
| 1357 | { |
| 1358 | frame_size &= ~1; |
| 1359 | if (*(skb->data + 3) == 0xFF) |
| 1360 | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
| 1361 | (*(skb->data + frame_size / 2 + 12) == 0xAF)) |
| 1362 | return 0; |
| 1363 | return 13; |
| 1364 | } |
| 1365 | |
| 1366 | static int e1000_run_loopback_test(struct e1000_adapter *adapter) |
| 1367 | { |
| 1368 | struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
| 1369 | struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
| 1370 | struct pci_dev *pdev = adapter->pdev; |
| 1371 | struct e1000_hw *hw = &adapter->hw; |
| 1372 | int i, j, k, l; |
| 1373 | int lc; |
| 1374 | int good_cnt; |
| 1375 | int ret_val = 0; |
| 1376 | unsigned long time; |
| 1377 | |
| 1378 | ew32(RDT, rx_ring->count - 1); |
| 1379 | |
| 1380 | /* Calculate the loop count based on the largest descriptor ring |
| 1381 | * The idea is to wrap the largest ring a number of times using 64 |
| 1382 | * send/receive pairs during each loop |
| 1383 | */ |
| 1384 | |
| 1385 | if (rx_ring->count <= tx_ring->count) |
| 1386 | lc = ((tx_ring->count / 64) * 2) + 1; |
| 1387 | else |
| 1388 | lc = ((rx_ring->count / 64) * 2) + 1; |
| 1389 | |
| 1390 | k = 0; |
| 1391 | l = 0; |
| 1392 | for (j = 0; j <= lc; j++) { /* loop count loop */ |
| 1393 | for (i = 0; i < 64; i++) { /* send the packets */ |
| 1394 | e1000_create_lbtest_frame( |
| 1395 | tx_ring->buffer_info[i].skb, 1024); |
| 1396 | pci_dma_sync_single_for_device(pdev, |
| 1397 | tx_ring->buffer_info[k].dma, |
| 1398 | tx_ring->buffer_info[k].length, |
| 1399 | PCI_DMA_TODEVICE); |
| 1400 | k++; |
| 1401 | if (k == tx_ring->count) |
| 1402 | k = 0; |
| 1403 | } |
| 1404 | ew32(TDT, k); |
| 1405 | msleep(200); |
| 1406 | time = jiffies; /* set the start time for the receive */ |
| 1407 | good_cnt = 0; |
| 1408 | do { /* receive the sent packets */ |
| 1409 | pci_dma_sync_single_for_cpu(pdev, |
| 1410 | rx_ring->buffer_info[l].dma, 2048, |
| 1411 | PCI_DMA_FROMDEVICE); |
| 1412 | |
| 1413 | ret_val = e1000_check_lbtest_frame( |
| 1414 | rx_ring->buffer_info[l].skb, 1024); |
| 1415 | if (!ret_val) |
| 1416 | good_cnt++; |
| 1417 | l++; |
| 1418 | if (l == rx_ring->count) |
| 1419 | l = 0; |
| 1420 | /* time + 20 msecs (200 msecs on 2.4) is more than |
| 1421 | * enough time to complete the receives, if it's |
| 1422 | * exceeded, break and error off |
| 1423 | */ |
| 1424 | } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); |
| 1425 | if (good_cnt != 64) { |
| 1426 | ret_val = 13; /* ret_val is the same as mis-compare */ |
| 1427 | break; |
| 1428 | } |
| 1429 | if (jiffies >= (time + 2)) { |
| 1430 | ret_val = 14; /* error code for time out error */ |
| 1431 | break; |
| 1432 | } |
| 1433 | } /* end loop count loop */ |
| 1434 | return ret_val; |
| 1435 | } |
| 1436 | |
| 1437 | static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) |
| 1438 | { |
| 1439 | /* PHY loopback cannot be performed if SoL/IDER |
| 1440 | * sessions are active */ |
| 1441 | if (e1000_check_reset_block(&adapter->hw)) { |
| 1442 | ndev_err(adapter->netdev, "Cannot do PHY loopback test " |
| 1443 | "when SoL/IDER is active.\n"); |
| 1444 | *data = 0; |
| 1445 | goto out; |
| 1446 | } |
| 1447 | |
| 1448 | *data = e1000_setup_desc_rings(adapter); |
| 1449 | if (data) |
| 1450 | goto out; |
| 1451 | |
| 1452 | *data = e1000_setup_loopback_test(adapter); |
| 1453 | if (data) |
| 1454 | goto err_loopback; |
| 1455 | |
| 1456 | *data = e1000_run_loopback_test(adapter); |
| 1457 | e1000_loopback_cleanup(adapter); |
| 1458 | |
| 1459 | err_loopback: |
| 1460 | e1000_free_desc_rings(adapter); |
| 1461 | out: |
| 1462 | return *data; |
| 1463 | } |
| 1464 | |
| 1465 | static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) |
| 1466 | { |
| 1467 | struct e1000_hw *hw = &adapter->hw; |
| 1468 | |
| 1469 | *data = 0; |
| 1470 | if (hw->media_type == e1000_media_type_internal_serdes) { |
| 1471 | int i = 0; |
| 1472 | hw->mac.serdes_has_link = 0; |
| 1473 | |
| 1474 | /* On some blade server designs, link establishment |
| 1475 | * could take as long as 2-3 minutes */ |
| 1476 | do { |
| 1477 | hw->mac.ops.check_for_link(hw); |
| 1478 | if (hw->mac.serdes_has_link) |
| 1479 | return *data; |
| 1480 | msleep(20); |
| 1481 | } while (i++ < 3750); |
| 1482 | |
| 1483 | *data = 1; |
| 1484 | } else { |
| 1485 | hw->mac.ops.check_for_link(hw); |
| 1486 | if (hw->mac.autoneg) |
| 1487 | msleep(4000); |
| 1488 | |
| 1489 | if (!(er32(STATUS) & |
| 1490 | E1000_STATUS_LU)) |
| 1491 | *data = 1; |
| 1492 | } |
| 1493 | return *data; |
| 1494 | } |
| 1495 | |
| 1496 | static int e1000_diag_test_count(struct net_device *netdev) |
| 1497 | { |
| 1498 | return E1000_TEST_LEN; |
| 1499 | } |
| 1500 | |
| 1501 | static void e1000_diag_test(struct net_device *netdev, |
| 1502 | struct ethtool_test *eth_test, u64 *data) |
| 1503 | { |
| 1504 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1505 | u16 autoneg_advertised; |
| 1506 | u8 forced_speed_duplex; |
| 1507 | u8 autoneg; |
| 1508 | bool if_running = netif_running(netdev); |
| 1509 | |
| 1510 | set_bit(__E1000_TESTING, &adapter->state); |
| 1511 | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
| 1512 | /* Offline tests */ |
| 1513 | |
| 1514 | /* save speed, duplex, autoneg settings */ |
| 1515 | autoneg_advertised = adapter->hw.phy.autoneg_advertised; |
| 1516 | forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; |
| 1517 | autoneg = adapter->hw.mac.autoneg; |
| 1518 | |
| 1519 | ndev_info(netdev, "offline testing starting\n"); |
| 1520 | |
| 1521 | /* Link test performed before hardware reset so autoneg doesn't |
| 1522 | * interfere with test result */ |
| 1523 | if (e1000_link_test(adapter, &data[4])) |
| 1524 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1525 | |
| 1526 | if (if_running) |
| 1527 | /* indicate we're in test mode */ |
| 1528 | dev_close(netdev); |
| 1529 | else |
| 1530 | e1000e_reset(adapter); |
| 1531 | |
| 1532 | if (e1000_reg_test(adapter, &data[0])) |
| 1533 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1534 | |
| 1535 | e1000e_reset(adapter); |
| 1536 | if (e1000_eeprom_test(adapter, &data[1])) |
| 1537 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1538 | |
| 1539 | e1000e_reset(adapter); |
| 1540 | if (e1000_intr_test(adapter, &data[2])) |
| 1541 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1542 | |
| 1543 | e1000e_reset(adapter); |
| 1544 | /* make sure the phy is powered up */ |
| 1545 | e1000e_power_up_phy(adapter); |
| 1546 | if (e1000_loopback_test(adapter, &data[3])) |
| 1547 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1548 | |
| 1549 | /* restore speed, duplex, autoneg settings */ |
| 1550 | adapter->hw.phy.autoneg_advertised = autoneg_advertised; |
| 1551 | adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; |
| 1552 | adapter->hw.mac.autoneg = autoneg; |
| 1553 | |
| 1554 | /* force this routine to wait until autoneg complete/timeout */ |
| 1555 | adapter->hw.phy.wait_for_link = 1; |
| 1556 | e1000e_reset(adapter); |
| 1557 | adapter->hw.phy.wait_for_link = 0; |
| 1558 | |
| 1559 | clear_bit(__E1000_TESTING, &adapter->state); |
| 1560 | if (if_running) |
| 1561 | dev_open(netdev); |
| 1562 | } else { |
| 1563 | ndev_info(netdev, "online testing starting\n"); |
| 1564 | /* Online tests */ |
| 1565 | if (e1000_link_test(adapter, &data[4])) |
| 1566 | eth_test->flags |= ETH_TEST_FL_FAILED; |
| 1567 | |
| 1568 | /* Online tests aren't run; pass by default */ |
| 1569 | data[0] = 0; |
| 1570 | data[1] = 0; |
| 1571 | data[2] = 0; |
| 1572 | data[3] = 0; |
| 1573 | |
| 1574 | clear_bit(__E1000_TESTING, &adapter->state); |
| 1575 | } |
| 1576 | msleep_interruptible(4 * 1000); |
| 1577 | } |
| 1578 | |
| 1579 | static void e1000_get_wol(struct net_device *netdev, |
| 1580 | struct ethtool_wolinfo *wol) |
| 1581 | { |
| 1582 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1583 | |
| 1584 | wol->supported = 0; |
| 1585 | wol->wolopts = 0; |
| 1586 | |
| 1587 | if (!(adapter->flags & FLAG_HAS_WOL)) |
| 1588 | return; |
| 1589 | |
| 1590 | wol->supported = WAKE_UCAST | WAKE_MCAST | |
| 1591 | WAKE_BCAST | WAKE_MAGIC; |
| 1592 | |
| 1593 | /* apply any specific unsupported masks here */ |
| 1594 | if (adapter->flags & FLAG_NO_WAKE_UCAST) { |
| 1595 | wol->supported &= ~WAKE_UCAST; |
| 1596 | |
| 1597 | if (adapter->wol & E1000_WUFC_EX) |
| 1598 | ndev_err(netdev, "Interface does not support " |
| 1599 | "directed (unicast) frame wake-up packets\n"); |
| 1600 | } |
| 1601 | |
| 1602 | if (adapter->wol & E1000_WUFC_EX) |
| 1603 | wol->wolopts |= WAKE_UCAST; |
| 1604 | if (adapter->wol & E1000_WUFC_MC) |
| 1605 | wol->wolopts |= WAKE_MCAST; |
| 1606 | if (adapter->wol & E1000_WUFC_BC) |
| 1607 | wol->wolopts |= WAKE_BCAST; |
| 1608 | if (adapter->wol & E1000_WUFC_MAG) |
| 1609 | wol->wolopts |= WAKE_MAGIC; |
| 1610 | } |
| 1611 | |
| 1612 | static int e1000_set_wol(struct net_device *netdev, |
| 1613 | struct ethtool_wolinfo *wol) |
| 1614 | { |
| 1615 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1616 | |
| 1617 | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) |
| 1618 | return -EOPNOTSUPP; |
| 1619 | |
| 1620 | if (!(adapter->flags & FLAG_HAS_WOL)) |
| 1621 | return wol->wolopts ? -EOPNOTSUPP : 0; |
| 1622 | |
| 1623 | /* these settings will always override what we currently have */ |
| 1624 | adapter->wol = 0; |
| 1625 | |
| 1626 | if (wol->wolopts & WAKE_UCAST) |
| 1627 | adapter->wol |= E1000_WUFC_EX; |
| 1628 | if (wol->wolopts & WAKE_MCAST) |
| 1629 | adapter->wol |= E1000_WUFC_MC; |
| 1630 | if (wol->wolopts & WAKE_BCAST) |
| 1631 | adapter->wol |= E1000_WUFC_BC; |
| 1632 | if (wol->wolopts & WAKE_MAGIC) |
| 1633 | adapter->wol |= E1000_WUFC_MAG; |
| 1634 | |
| 1635 | return 0; |
| 1636 | } |
| 1637 | |
| 1638 | /* toggle LED 4 times per second = 2 "blinks" per second */ |
| 1639 | #define E1000_ID_INTERVAL (HZ/4) |
| 1640 | |
| 1641 | /* bit defines for adapter->led_status */ |
| 1642 | #define E1000_LED_ON 0 |
| 1643 | |
| 1644 | static void e1000_led_blink_callback(unsigned long data) |
| 1645 | { |
| 1646 | struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| 1647 | |
| 1648 | if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) |
| 1649 | adapter->hw.mac.ops.led_off(&adapter->hw); |
| 1650 | else |
| 1651 | adapter->hw.mac.ops.led_on(&adapter->hw); |
| 1652 | |
| 1653 | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); |
| 1654 | } |
| 1655 | |
| 1656 | static int e1000_phys_id(struct net_device *netdev, u32 data) |
| 1657 | { |
| 1658 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1659 | |
| 1660 | if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
| 1661 | data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); |
| 1662 | |
| 1663 | if (adapter->hw.phy.type == e1000_phy_ife) { |
| 1664 | if (!adapter->blink_timer.function) { |
| 1665 | init_timer(&adapter->blink_timer); |
| 1666 | adapter->blink_timer.function = |
| 1667 | e1000_led_blink_callback; |
| 1668 | adapter->blink_timer.data = (unsigned long) adapter; |
| 1669 | } |
| 1670 | mod_timer(&adapter->blink_timer, jiffies); |
| 1671 | msleep_interruptible(data * 1000); |
| 1672 | del_timer_sync(&adapter->blink_timer); |
| 1673 | e1e_wphy(&adapter->hw, |
| 1674 | IFE_PHY_SPECIAL_CONTROL_LED, 0); |
| 1675 | } else { |
| 1676 | e1000e_blink_led(&adapter->hw); |
| 1677 | msleep_interruptible(data * 1000); |
| 1678 | } |
| 1679 | |
| 1680 | adapter->hw.mac.ops.led_off(&adapter->hw); |
| 1681 | clear_bit(E1000_LED_ON, &adapter->led_status); |
| 1682 | adapter->hw.mac.ops.cleanup_led(&adapter->hw); |
| 1683 | |
| 1684 | return 0; |
| 1685 | } |
| 1686 | |
| 1687 | static int e1000_nway_reset(struct net_device *netdev) |
| 1688 | { |
| 1689 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1690 | if (netif_running(netdev)) |
| 1691 | e1000e_reinit_locked(adapter); |
| 1692 | return 0; |
| 1693 | } |
| 1694 | |
| 1695 | static int e1000_get_stats_count(struct net_device *netdev) |
| 1696 | { |
| 1697 | return E1000_STATS_LEN; |
| 1698 | } |
| 1699 | |
| 1700 | static void e1000_get_ethtool_stats(struct net_device *netdev, |
| 1701 | struct ethtool_stats *stats, |
| 1702 | u64 *data) |
| 1703 | { |
| 1704 | struct e1000_adapter *adapter = netdev_priv(netdev); |
| 1705 | int i; |
| 1706 | |
| 1707 | e1000e_update_stats(adapter); |
| 1708 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
| 1709 | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; |
| 1710 | data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
| 1711 | sizeof(u64)) ? *(u64 *)p : *(u32 *)p; |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | static void e1000_get_strings(struct net_device *netdev, u32 stringset, |
| 1716 | u8 *data) |
| 1717 | { |
| 1718 | u8 *p = data; |
| 1719 | int i; |
| 1720 | |
| 1721 | switch (stringset) { |
| 1722 | case ETH_SS_TEST: |
| 1723 | memcpy(data, *e1000_gstrings_test, |
| 1724 | E1000_TEST_LEN*ETH_GSTRING_LEN); |
| 1725 | break; |
| 1726 | case ETH_SS_STATS: |
| 1727 | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
| 1728 | memcpy(p, e1000_gstrings_stats[i].stat_string, |
| 1729 | ETH_GSTRING_LEN); |
| 1730 | p += ETH_GSTRING_LEN; |
| 1731 | } |
| 1732 | break; |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | static const struct ethtool_ops e1000_ethtool_ops = { |
| 1737 | .get_settings = e1000_get_settings, |
| 1738 | .set_settings = e1000_set_settings, |
| 1739 | .get_drvinfo = e1000_get_drvinfo, |
| 1740 | .get_regs_len = e1000_get_regs_len, |
| 1741 | .get_regs = e1000_get_regs, |
| 1742 | .get_wol = e1000_get_wol, |
| 1743 | .set_wol = e1000_set_wol, |
| 1744 | .get_msglevel = e1000_get_msglevel, |
| 1745 | .set_msglevel = e1000_set_msglevel, |
| 1746 | .nway_reset = e1000_nway_reset, |
| 1747 | .get_link = ethtool_op_get_link, |
| 1748 | .get_eeprom_len = e1000_get_eeprom_len, |
| 1749 | .get_eeprom = e1000_get_eeprom, |
| 1750 | .set_eeprom = e1000_set_eeprom, |
| 1751 | .get_ringparam = e1000_get_ringparam, |
| 1752 | .set_ringparam = e1000_set_ringparam, |
| 1753 | .get_pauseparam = e1000_get_pauseparam, |
| 1754 | .set_pauseparam = e1000_set_pauseparam, |
| 1755 | .get_rx_csum = e1000_get_rx_csum, |
| 1756 | .set_rx_csum = e1000_set_rx_csum, |
| 1757 | .get_tx_csum = e1000_get_tx_csum, |
| 1758 | .set_tx_csum = e1000_set_tx_csum, |
| 1759 | .get_sg = ethtool_op_get_sg, |
| 1760 | .set_sg = ethtool_op_set_sg, |
| 1761 | .get_tso = ethtool_op_get_tso, |
| 1762 | .set_tso = e1000_set_tso, |
| 1763 | .self_test_count = e1000_diag_test_count, |
| 1764 | .self_test = e1000_diag_test, |
| 1765 | .get_strings = e1000_get_strings, |
| 1766 | .phys_id = e1000_phys_id, |
| 1767 | .get_stats_count = e1000_get_stats_count, |
| 1768 | .get_ethtool_stats = e1000_get_ethtool_stats, |
| 1769 | }; |
| 1770 | |
| 1771 | void e1000e_set_ethtool_ops(struct net_device *netdev) |
| 1772 | { |
| 1773 | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
| 1774 | } |