Ron Mercer | c4e84bd | 2008-09-18 11:56:28 -0400 | [diff] [blame] | 1 | /* |
| 2 | * QLogic qlge NIC HBA Driver |
| 3 | * Copyright (c) 2003-2008 QLogic Corporation |
| 4 | * See LICENSE.qlge for copyright and licensing details. |
| 5 | * Author: Linux qlge network device driver by |
| 6 | * Ron Mercer <ron.mercer@qlogic.com> |
| 7 | */ |
| 8 | #include <linux/kernel.h> |
| 9 | #include <linux/init.h> |
| 10 | #include <linux/types.h> |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/list.h> |
| 13 | #include <linux/pci.h> |
| 14 | #include <linux/dma-mapping.h> |
| 15 | #include <linux/pagemap.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/dmapool.h> |
| 19 | #include <linux/mempool.h> |
| 20 | #include <linux/spinlock.h> |
| 21 | #include <linux/kthread.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/errno.h> |
| 24 | #include <linux/ioport.h> |
| 25 | #include <linux/in.h> |
| 26 | #include <linux/ip.h> |
| 27 | #include <linux/ipv6.h> |
| 28 | #include <net/ipv6.h> |
| 29 | #include <linux/tcp.h> |
| 30 | #include <linux/udp.h> |
| 31 | #include <linux/if_arp.h> |
| 32 | #include <linux/if_ether.h> |
| 33 | #include <linux/netdevice.h> |
| 34 | #include <linux/etherdevice.h> |
| 35 | #include <linux/ethtool.h> |
| 36 | #include <linux/skbuff.h> |
| 37 | #include <linux/rtnetlink.h> |
| 38 | #include <linux/if_vlan.h> |
Ron Mercer | c4e84bd | 2008-09-18 11:56:28 -0400 | [diff] [blame] | 39 | #include <linux/delay.h> |
| 40 | #include <linux/mm.h> |
| 41 | #include <linux/vmalloc.h> |
Kamalesh Babulal | b7c6bfb | 2008-10-13 18:41:01 -0700 | [diff] [blame^] | 42 | #include <net/ip6_checksum.h> |
Ron Mercer | c4e84bd | 2008-09-18 11:56:28 -0400 | [diff] [blame] | 43 | |
| 44 | #include "qlge.h" |
| 45 | |
| 46 | char qlge_driver_name[] = DRV_NAME; |
| 47 | const char qlge_driver_version[] = DRV_VERSION; |
| 48 | |
| 49 | MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>"); |
| 50 | MODULE_DESCRIPTION(DRV_STRING " "); |
| 51 | MODULE_LICENSE("GPL"); |
| 52 | MODULE_VERSION(DRV_VERSION); |
| 53 | |
| 54 | static const u32 default_msg = |
| 55 | NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | |
| 56 | /* NETIF_MSG_TIMER | */ |
| 57 | NETIF_MSG_IFDOWN | |
| 58 | NETIF_MSG_IFUP | |
| 59 | NETIF_MSG_RX_ERR | |
| 60 | NETIF_MSG_TX_ERR | |
| 61 | NETIF_MSG_TX_QUEUED | |
| 62 | NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | |
| 63 | /* NETIF_MSG_PKTDATA | */ |
| 64 | NETIF_MSG_HW | NETIF_MSG_WOL | 0; |
| 65 | |
| 66 | static int debug = 0x00007fff; /* defaults above */ |
| 67 | module_param(debug, int, 0); |
| 68 | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| 69 | |
| 70 | #define MSIX_IRQ 0 |
| 71 | #define MSI_IRQ 1 |
| 72 | #define LEG_IRQ 2 |
| 73 | static int irq_type = MSIX_IRQ; |
| 74 | module_param(irq_type, int, MSIX_IRQ); |
| 75 | MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy."); |
| 76 | |
| 77 | static struct pci_device_id qlge_pci_tbl[] __devinitdata = { |
| 78 | {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)}, |
| 79 | {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)}, |
| 80 | /* required last entry */ |
| 81 | {0,} |
| 82 | }; |
| 83 | |
| 84 | MODULE_DEVICE_TABLE(pci, qlge_pci_tbl); |
| 85 | |
| 86 | /* This hardware semaphore causes exclusive access to |
| 87 | * resources shared between the NIC driver, MPI firmware, |
| 88 | * FCOE firmware and the FC driver. |
| 89 | */ |
| 90 | static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask) |
| 91 | { |
| 92 | u32 sem_bits = 0; |
| 93 | |
| 94 | switch (sem_mask) { |
| 95 | case SEM_XGMAC0_MASK: |
| 96 | sem_bits = SEM_SET << SEM_XGMAC0_SHIFT; |
| 97 | break; |
| 98 | case SEM_XGMAC1_MASK: |
| 99 | sem_bits = SEM_SET << SEM_XGMAC1_SHIFT; |
| 100 | break; |
| 101 | case SEM_ICB_MASK: |
| 102 | sem_bits = SEM_SET << SEM_ICB_SHIFT; |
| 103 | break; |
| 104 | case SEM_MAC_ADDR_MASK: |
| 105 | sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT; |
| 106 | break; |
| 107 | case SEM_FLASH_MASK: |
| 108 | sem_bits = SEM_SET << SEM_FLASH_SHIFT; |
| 109 | break; |
| 110 | case SEM_PROBE_MASK: |
| 111 | sem_bits = SEM_SET << SEM_PROBE_SHIFT; |
| 112 | break; |
| 113 | case SEM_RT_IDX_MASK: |
| 114 | sem_bits = SEM_SET << SEM_RT_IDX_SHIFT; |
| 115 | break; |
| 116 | case SEM_PROC_REG_MASK: |
| 117 | sem_bits = SEM_SET << SEM_PROC_REG_SHIFT; |
| 118 | break; |
| 119 | default: |
| 120 | QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n"); |
| 121 | return -EINVAL; |
| 122 | } |
| 123 | |
| 124 | ql_write32(qdev, SEM, sem_bits | sem_mask); |
| 125 | return !(ql_read32(qdev, SEM) & sem_bits); |
| 126 | } |
| 127 | |
| 128 | int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask) |
| 129 | { |
| 130 | unsigned int seconds = 3; |
| 131 | do { |
| 132 | if (!ql_sem_trylock(qdev, sem_mask)) |
| 133 | return 0; |
| 134 | ssleep(1); |
| 135 | } while (--seconds); |
| 136 | return -ETIMEDOUT; |
| 137 | } |
| 138 | |
| 139 | void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask) |
| 140 | { |
| 141 | ql_write32(qdev, SEM, sem_mask); |
| 142 | ql_read32(qdev, SEM); /* flush */ |
| 143 | } |
| 144 | |
| 145 | /* This function waits for a specific bit to come ready |
| 146 | * in a given register. It is used mostly by the initialize |
| 147 | * process, but is also used in kernel thread API such as |
| 148 | * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid. |
| 149 | */ |
| 150 | int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) |
| 151 | { |
| 152 | u32 temp; |
| 153 | int count = UDELAY_COUNT; |
| 154 | |
| 155 | while (count) { |
| 156 | temp = ql_read32(qdev, reg); |
| 157 | |
| 158 | /* check for errors */ |
| 159 | if (temp & err_bit) { |
| 160 | QPRINTK(qdev, PROBE, ALERT, |
| 161 | "register 0x%.08x access error, value = 0x%.08x!.\n", |
| 162 | reg, temp); |
| 163 | return -EIO; |
| 164 | } else if (temp & bit) |
| 165 | return 0; |
| 166 | udelay(UDELAY_DELAY); |
| 167 | count--; |
| 168 | } |
| 169 | QPRINTK(qdev, PROBE, ALERT, |
| 170 | "Timed out waiting for reg %x to come ready.\n", reg); |
| 171 | return -ETIMEDOUT; |
| 172 | } |
| 173 | |
| 174 | /* The CFG register is used to download TX and RX control blocks |
| 175 | * to the chip. This function waits for an operation to complete. |
| 176 | */ |
| 177 | static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit) |
| 178 | { |
| 179 | int count = UDELAY_COUNT; |
| 180 | u32 temp; |
| 181 | |
| 182 | while (count) { |
| 183 | temp = ql_read32(qdev, CFG); |
| 184 | if (temp & CFG_LE) |
| 185 | return -EIO; |
| 186 | if (!(temp & bit)) |
| 187 | return 0; |
| 188 | udelay(UDELAY_DELAY); |
| 189 | count--; |
| 190 | } |
| 191 | return -ETIMEDOUT; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | /* Used to issue init control blocks to hw. Maps control block, |
| 196 | * sets address, triggers download, waits for completion. |
| 197 | */ |
| 198 | int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit, |
| 199 | u16 q_id) |
| 200 | { |
| 201 | u64 map; |
| 202 | int status = 0; |
| 203 | int direction; |
| 204 | u32 mask; |
| 205 | u32 value; |
| 206 | |
| 207 | direction = |
| 208 | (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE : |
| 209 | PCI_DMA_FROMDEVICE; |
| 210 | |
| 211 | map = pci_map_single(qdev->pdev, ptr, size, direction); |
| 212 | if (pci_dma_mapping_error(qdev->pdev, map)) { |
| 213 | QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n"); |
| 214 | return -ENOMEM; |
| 215 | } |
| 216 | |
| 217 | status = ql_wait_cfg(qdev, bit); |
| 218 | if (status) { |
| 219 | QPRINTK(qdev, IFUP, ERR, |
| 220 | "Timed out waiting for CFG to come ready.\n"); |
| 221 | goto exit; |
| 222 | } |
| 223 | |
| 224 | status = ql_sem_spinlock(qdev, SEM_ICB_MASK); |
| 225 | if (status) |
| 226 | goto exit; |
| 227 | ql_write32(qdev, ICB_L, (u32) map); |
| 228 | ql_write32(qdev, ICB_H, (u32) (map >> 32)); |
| 229 | ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */ |
| 230 | |
| 231 | mask = CFG_Q_MASK | (bit << 16); |
| 232 | value = bit | (q_id << CFG_Q_SHIFT); |
| 233 | ql_write32(qdev, CFG, (mask | value)); |
| 234 | |
| 235 | /* |
| 236 | * Wait for the bit to clear after signaling hw. |
| 237 | */ |
| 238 | status = ql_wait_cfg(qdev, bit); |
| 239 | exit: |
| 240 | pci_unmap_single(qdev->pdev, map, size, direction); |
| 241 | return status; |
| 242 | } |
| 243 | |
| 244 | /* Get a specific MAC address from the CAM. Used for debug and reg dump. */ |
| 245 | int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index, |
| 246 | u32 *value) |
| 247 | { |
| 248 | u32 offset = 0; |
| 249 | int status; |
| 250 | |
| 251 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); |
| 252 | if (status) |
| 253 | return status; |
| 254 | switch (type) { |
| 255 | case MAC_ADDR_TYPE_MULTI_MAC: |
| 256 | case MAC_ADDR_TYPE_CAM_MAC: |
| 257 | { |
| 258 | status = |
| 259 | ql_wait_reg_rdy(qdev, |
| 260 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 261 | if (status) |
| 262 | goto exit; |
| 263 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| 264 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 265 | MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ |
| 266 | status = |
| 267 | ql_wait_reg_rdy(qdev, |
| 268 | MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E); |
| 269 | if (status) |
| 270 | goto exit; |
| 271 | *value++ = ql_read32(qdev, MAC_ADDR_DATA); |
| 272 | status = |
| 273 | ql_wait_reg_rdy(qdev, |
| 274 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 275 | if (status) |
| 276 | goto exit; |
| 277 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| 278 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 279 | MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ |
| 280 | status = |
| 281 | ql_wait_reg_rdy(qdev, |
| 282 | MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E); |
| 283 | if (status) |
| 284 | goto exit; |
| 285 | *value++ = ql_read32(qdev, MAC_ADDR_DATA); |
| 286 | if (type == MAC_ADDR_TYPE_CAM_MAC) { |
| 287 | status = |
| 288 | ql_wait_reg_rdy(qdev, |
| 289 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 290 | if (status) |
| 291 | goto exit; |
| 292 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| 293 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 294 | MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */ |
| 295 | status = |
| 296 | ql_wait_reg_rdy(qdev, MAC_ADDR_IDX, |
| 297 | MAC_ADDR_MR, MAC_ADDR_E); |
| 298 | if (status) |
| 299 | goto exit; |
| 300 | *value++ = ql_read32(qdev, MAC_ADDR_DATA); |
| 301 | } |
| 302 | break; |
| 303 | } |
| 304 | case MAC_ADDR_TYPE_VLAN: |
| 305 | case MAC_ADDR_TYPE_MULTI_FLTR: |
| 306 | default: |
| 307 | QPRINTK(qdev, IFUP, CRIT, |
| 308 | "Address type %d not yet supported.\n", type); |
| 309 | status = -EPERM; |
| 310 | } |
| 311 | exit: |
| 312 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); |
| 313 | return status; |
| 314 | } |
| 315 | |
| 316 | /* Set up a MAC, multicast or VLAN address for the |
| 317 | * inbound frame matching. |
| 318 | */ |
| 319 | static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type, |
| 320 | u16 index) |
| 321 | { |
| 322 | u32 offset = 0; |
| 323 | int status = 0; |
| 324 | |
| 325 | status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); |
| 326 | if (status) |
| 327 | return status; |
| 328 | switch (type) { |
| 329 | case MAC_ADDR_TYPE_MULTI_MAC: |
| 330 | case MAC_ADDR_TYPE_CAM_MAC: |
| 331 | { |
| 332 | u32 cam_output; |
| 333 | u32 upper = (addr[0] << 8) | addr[1]; |
| 334 | u32 lower = |
| 335 | (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | |
| 336 | (addr[5]); |
| 337 | |
| 338 | QPRINTK(qdev, IFUP, INFO, |
| 339 | "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x" |
| 340 | " at index %d in the CAM.\n", |
| 341 | ((type == |
| 342 | MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" : |
| 343 | "UNICAST"), addr[0], addr[1], addr[2], addr[3], |
| 344 | addr[4], addr[5], index); |
| 345 | |
| 346 | status = |
| 347 | ql_wait_reg_rdy(qdev, |
| 348 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 349 | if (status) |
| 350 | goto exit; |
| 351 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| 352 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 353 | type); /* type */ |
| 354 | ql_write32(qdev, MAC_ADDR_DATA, lower); |
| 355 | status = |
| 356 | ql_wait_reg_rdy(qdev, |
| 357 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 358 | if (status) |
| 359 | goto exit; |
| 360 | ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */ |
| 361 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 362 | type); /* type */ |
| 363 | ql_write32(qdev, MAC_ADDR_DATA, upper); |
| 364 | status = |
| 365 | ql_wait_reg_rdy(qdev, |
| 366 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 367 | if (status) |
| 368 | goto exit; |
| 369 | ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */ |
| 370 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 371 | type); /* type */ |
| 372 | /* This field should also include the queue id |
| 373 | and possibly the function id. Right now we hardcode |
| 374 | the route field to NIC core. |
| 375 | */ |
| 376 | if (type == MAC_ADDR_TYPE_CAM_MAC) { |
| 377 | cam_output = (CAM_OUT_ROUTE_NIC | |
| 378 | (qdev-> |
| 379 | func << CAM_OUT_FUNC_SHIFT) | |
| 380 | (qdev-> |
| 381 | rss_ring_first_cq_id << |
| 382 | CAM_OUT_CQ_ID_SHIFT)); |
| 383 | if (qdev->vlgrp) |
| 384 | cam_output |= CAM_OUT_RV; |
| 385 | /* route to NIC core */ |
| 386 | ql_write32(qdev, MAC_ADDR_DATA, cam_output); |
| 387 | } |
| 388 | break; |
| 389 | } |
| 390 | case MAC_ADDR_TYPE_VLAN: |
| 391 | { |
| 392 | u32 enable_bit = *((u32 *) &addr[0]); |
| 393 | /* For VLAN, the addr actually holds a bit that |
| 394 | * either enables or disables the vlan id we are |
| 395 | * addressing. It's either MAC_ADDR_E on or off. |
| 396 | * That's bit-27 we're talking about. |
| 397 | */ |
| 398 | QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n", |
| 399 | (enable_bit ? "Adding" : "Removing"), |
| 400 | index, (enable_bit ? "to" : "from")); |
| 401 | |
| 402 | status = |
| 403 | ql_wait_reg_rdy(qdev, |
| 404 | MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E); |
| 405 | if (status) |
| 406 | goto exit; |
| 407 | ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */ |
| 408 | (index << MAC_ADDR_IDX_SHIFT) | /* index */ |
| 409 | type | /* type */ |
| 410 | enable_bit); /* enable/disable */ |
| 411 | break; |
| 412 | } |
| 413 | case MAC_ADDR_TYPE_MULTI_FLTR: |
| 414 | default: |
| 415 | QPRINTK(qdev, IFUP, CRIT, |
| 416 | "Address type %d not yet supported.\n", type); |
| 417 | status = -EPERM; |
| 418 | } |
| 419 | exit: |
| 420 | ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); |
| 421 | return status; |
| 422 | } |
| 423 | |
| 424 | /* Get a specific frame routing value from the CAM. |
| 425 | * Used for debug and reg dump. |
| 426 | */ |
| 427 | int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value) |
| 428 | { |
| 429 | int status = 0; |
| 430 | |
| 431 | status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); |
| 432 | if (status) |
| 433 | goto exit; |
| 434 | |
| 435 | status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E); |
| 436 | if (status) |
| 437 | goto exit; |
| 438 | |
| 439 | ql_write32(qdev, RT_IDX, |
| 440 | RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT)); |
| 441 | status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E); |
| 442 | if (status) |
| 443 | goto exit; |
| 444 | *value = ql_read32(qdev, RT_DATA); |
| 445 | exit: |
| 446 | ql_sem_unlock(qdev, SEM_RT_IDX_MASK); |
| 447 | return status; |
| 448 | } |
| 449 | |
| 450 | /* The NIC function for this chip has 16 routing indexes. Each one can be used |
| 451 | * to route different frame types to various inbound queues. We send broadcast/ |
| 452 | * multicast/error frames to the default queue for slow handling, |
| 453 | * and CAM hit/RSS frames to the fast handling queues. |
| 454 | */ |
| 455 | static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask, |
| 456 | int enable) |
| 457 | { |
| 458 | int status; |
| 459 | u32 value = 0; |
| 460 | |
| 461 | status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); |
| 462 | if (status) |
| 463 | return status; |
| 464 | |
| 465 | QPRINTK(qdev, IFUP, DEBUG, |
| 466 | "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n", |
| 467 | (enable ? "Adding" : "Removing"), |
| 468 | ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""), |
| 469 | ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""), |
| 470 | ((index == |
| 471 | RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""), |
| 472 | ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""), |
| 473 | ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""), |
| 474 | ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""), |
| 475 | ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""), |
| 476 | ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""), |
| 477 | ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""), |
| 478 | ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""), |
| 479 | ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""), |
| 480 | ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""), |
| 481 | ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""), |
| 482 | ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""), |
| 483 | ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""), |
| 484 | ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""), |
| 485 | (enable ? "to" : "from")); |
| 486 | |
| 487 | switch (mask) { |
| 488 | case RT_IDX_CAM_HIT: |
| 489 | { |
| 490 | value = RT_IDX_DST_CAM_Q | /* dest */ |
| 491 | RT_IDX_TYPE_NICQ | /* type */ |
| 492 | (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 493 | break; |
| 494 | } |
| 495 | case RT_IDX_VALID: /* Promiscuous Mode frames. */ |
| 496 | { |
| 497 | value = RT_IDX_DST_DFLT_Q | /* dest */ |
| 498 | RT_IDX_TYPE_NICQ | /* type */ |
| 499 | (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 500 | break; |
| 501 | } |
| 502 | case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */ |
| 503 | { |
| 504 | value = RT_IDX_DST_DFLT_Q | /* dest */ |
| 505 | RT_IDX_TYPE_NICQ | /* type */ |
| 506 | (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 507 | break; |
| 508 | } |
| 509 | case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */ |
| 510 | { |
| 511 | value = RT_IDX_DST_DFLT_Q | /* dest */ |
| 512 | RT_IDX_TYPE_NICQ | /* type */ |
| 513 | (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 514 | break; |
| 515 | } |
| 516 | case RT_IDX_MCAST: /* Pass up All Multicast frames. */ |
| 517 | { |
| 518 | value = RT_IDX_DST_CAM_Q | /* dest */ |
| 519 | RT_IDX_TYPE_NICQ | /* type */ |
| 520 | (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 521 | break; |
| 522 | } |
| 523 | case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */ |
| 524 | { |
| 525 | value = RT_IDX_DST_CAM_Q | /* dest */ |
| 526 | RT_IDX_TYPE_NICQ | /* type */ |
| 527 | (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 528 | break; |
| 529 | } |
| 530 | case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */ |
| 531 | { |
| 532 | value = RT_IDX_DST_RSS | /* dest */ |
| 533 | RT_IDX_TYPE_NICQ | /* type */ |
| 534 | (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */ |
| 535 | break; |
| 536 | } |
| 537 | case 0: /* Clear the E-bit on an entry. */ |
| 538 | { |
| 539 | value = RT_IDX_DST_DFLT_Q | /* dest */ |
| 540 | RT_IDX_TYPE_NICQ | /* type */ |
| 541 | (index << RT_IDX_IDX_SHIFT);/* index */ |
| 542 | break; |
| 543 | } |
| 544 | default: |
| 545 | QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n", |
| 546 | mask); |
| 547 | status = -EPERM; |
| 548 | goto exit; |
| 549 | } |
| 550 | |
| 551 | if (value) { |
| 552 | status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0); |
| 553 | if (status) |
| 554 | goto exit; |
| 555 | value |= (enable ? RT_IDX_E : 0); |
| 556 | ql_write32(qdev, RT_IDX, value); |
| 557 | ql_write32(qdev, RT_DATA, enable ? mask : 0); |
| 558 | } |
| 559 | exit: |
| 560 | ql_sem_unlock(qdev, SEM_RT_IDX_MASK); |
| 561 | return status; |
| 562 | } |
| 563 | |
| 564 | static void ql_enable_interrupts(struct ql_adapter *qdev) |
| 565 | { |
| 566 | ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI); |
| 567 | } |
| 568 | |
| 569 | static void ql_disable_interrupts(struct ql_adapter *qdev) |
| 570 | { |
| 571 | ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16)); |
| 572 | } |
| 573 | |
| 574 | /* If we're running with multiple MSI-X vectors then we enable on the fly. |
| 575 | * Otherwise, we may have multiple outstanding workers and don't want to |
| 576 | * enable until the last one finishes. In this case, the irq_cnt gets |
| 577 | * incremented everytime we queue a worker and decremented everytime |
| 578 | * a worker finishes. Once it hits zero we enable the interrupt. |
| 579 | */ |
| 580 | void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr) |
| 581 | { |
| 582 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) |
| 583 | ql_write32(qdev, INTR_EN, |
| 584 | qdev->intr_context[intr].intr_en_mask); |
| 585 | else { |
| 586 | if (qdev->legacy_check) |
| 587 | spin_lock(&qdev->legacy_lock); |
| 588 | if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) { |
| 589 | QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n", |
| 590 | intr); |
| 591 | ql_write32(qdev, INTR_EN, |
| 592 | qdev->intr_context[intr].intr_en_mask); |
| 593 | } else { |
| 594 | QPRINTK(qdev, INTR, ERR, |
| 595 | "Skip enable, other queue(s) are active.\n"); |
| 596 | } |
| 597 | if (qdev->legacy_check) |
| 598 | spin_unlock(&qdev->legacy_lock); |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr) |
| 603 | { |
| 604 | u32 var = 0; |
| 605 | |
| 606 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) |
| 607 | goto exit; |
| 608 | else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) { |
| 609 | ql_write32(qdev, INTR_EN, |
| 610 | qdev->intr_context[intr].intr_dis_mask); |
| 611 | var = ql_read32(qdev, STS); |
| 612 | } |
| 613 | atomic_inc(&qdev->intr_context[intr].irq_cnt); |
| 614 | exit: |
| 615 | return var; |
| 616 | } |
| 617 | |
| 618 | static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev) |
| 619 | { |
| 620 | int i; |
| 621 | for (i = 0; i < qdev->intr_count; i++) { |
| 622 | /* The enable call does a atomic_dec_and_test |
| 623 | * and enables only if the result is zero. |
| 624 | * So we precharge it here. |
| 625 | */ |
| 626 | atomic_set(&qdev->intr_context[i].irq_cnt, 1); |
| 627 | ql_enable_completion_interrupt(qdev, i); |
| 628 | } |
| 629 | |
| 630 | } |
| 631 | |
| 632 | int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data) |
| 633 | { |
| 634 | int status = 0; |
| 635 | /* wait for reg to come ready */ |
| 636 | status = ql_wait_reg_rdy(qdev, |
| 637 | FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); |
| 638 | if (status) |
| 639 | goto exit; |
| 640 | /* set up for reg read */ |
| 641 | ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset); |
| 642 | /* wait for reg to come ready */ |
| 643 | status = ql_wait_reg_rdy(qdev, |
| 644 | FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR); |
| 645 | if (status) |
| 646 | goto exit; |
| 647 | /* get the data */ |
| 648 | *data = ql_read32(qdev, FLASH_DATA); |
| 649 | exit: |
| 650 | return status; |
| 651 | } |
| 652 | |
| 653 | static int ql_get_flash_params(struct ql_adapter *qdev) |
| 654 | { |
| 655 | int i; |
| 656 | int status; |
| 657 | u32 *p = (u32 *)&qdev->flash; |
| 658 | |
| 659 | if (ql_sem_spinlock(qdev, SEM_FLASH_MASK)) |
| 660 | return -ETIMEDOUT; |
| 661 | |
| 662 | for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) { |
| 663 | status = ql_read_flash_word(qdev, i, p); |
| 664 | if (status) { |
| 665 | QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n"); |
| 666 | goto exit; |
| 667 | } |
| 668 | |
| 669 | } |
| 670 | exit: |
| 671 | ql_sem_unlock(qdev, SEM_FLASH_MASK); |
| 672 | return status; |
| 673 | } |
| 674 | |
| 675 | /* xgmac register are located behind the xgmac_addr and xgmac_data |
| 676 | * register pair. Each read/write requires us to wait for the ready |
| 677 | * bit before reading/writing the data. |
| 678 | */ |
| 679 | static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data) |
| 680 | { |
| 681 | int status; |
| 682 | /* wait for reg to come ready */ |
| 683 | status = ql_wait_reg_rdy(qdev, |
| 684 | XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); |
| 685 | if (status) |
| 686 | return status; |
| 687 | /* write the data to the data reg */ |
| 688 | ql_write32(qdev, XGMAC_DATA, data); |
| 689 | /* trigger the write */ |
| 690 | ql_write32(qdev, XGMAC_ADDR, reg); |
| 691 | return status; |
| 692 | } |
| 693 | |
| 694 | /* xgmac register are located behind the xgmac_addr and xgmac_data |
| 695 | * register pair. Each read/write requires us to wait for the ready |
| 696 | * bit before reading/writing the data. |
| 697 | */ |
| 698 | int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) |
| 699 | { |
| 700 | int status = 0; |
| 701 | /* wait for reg to come ready */ |
| 702 | status = ql_wait_reg_rdy(qdev, |
| 703 | XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); |
| 704 | if (status) |
| 705 | goto exit; |
| 706 | /* set up for reg read */ |
| 707 | ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R); |
| 708 | /* wait for reg to come ready */ |
| 709 | status = ql_wait_reg_rdy(qdev, |
| 710 | XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); |
| 711 | if (status) |
| 712 | goto exit; |
| 713 | /* get the data */ |
| 714 | *data = ql_read32(qdev, XGMAC_DATA); |
| 715 | exit: |
| 716 | return status; |
| 717 | } |
| 718 | |
| 719 | /* This is used for reading the 64-bit statistics regs. */ |
| 720 | int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data) |
| 721 | { |
| 722 | int status = 0; |
| 723 | u32 hi = 0; |
| 724 | u32 lo = 0; |
| 725 | |
| 726 | status = ql_read_xgmac_reg(qdev, reg, &lo); |
| 727 | if (status) |
| 728 | goto exit; |
| 729 | |
| 730 | status = ql_read_xgmac_reg(qdev, reg + 4, &hi); |
| 731 | if (status) |
| 732 | goto exit; |
| 733 | |
| 734 | *data = (u64) lo | ((u64) hi << 32); |
| 735 | |
| 736 | exit: |
| 737 | return status; |
| 738 | } |
| 739 | |
| 740 | /* Take the MAC Core out of reset. |
| 741 | * Enable statistics counting. |
| 742 | * Take the transmitter/receiver out of reset. |
| 743 | * This functionality may be done in the MPI firmware at a |
| 744 | * later date. |
| 745 | */ |
| 746 | static int ql_port_initialize(struct ql_adapter *qdev) |
| 747 | { |
| 748 | int status = 0; |
| 749 | u32 data; |
| 750 | |
| 751 | if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) { |
| 752 | /* Another function has the semaphore, so |
| 753 | * wait for the port init bit to come ready. |
| 754 | */ |
| 755 | QPRINTK(qdev, LINK, INFO, |
| 756 | "Another function has the semaphore, so wait for the port init bit to come ready.\n"); |
| 757 | status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0); |
| 758 | if (status) { |
| 759 | QPRINTK(qdev, LINK, CRIT, |
| 760 | "Port initialize timed out.\n"); |
| 761 | } |
| 762 | return status; |
| 763 | } |
| 764 | |
| 765 | QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n"); |
| 766 | /* Set the core reset. */ |
| 767 | status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); |
| 768 | if (status) |
| 769 | goto end; |
| 770 | data |= GLOBAL_CFG_RESET; |
| 771 | status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); |
| 772 | if (status) |
| 773 | goto end; |
| 774 | |
| 775 | /* Clear the core reset and turn on jumbo for receiver. */ |
| 776 | data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */ |
| 777 | data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */ |
| 778 | data |= GLOBAL_CFG_TX_STAT_EN; |
| 779 | data |= GLOBAL_CFG_RX_STAT_EN; |
| 780 | status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data); |
| 781 | if (status) |
| 782 | goto end; |
| 783 | |
| 784 | /* Enable transmitter, and clear it's reset. */ |
| 785 | status = ql_read_xgmac_reg(qdev, TX_CFG, &data); |
| 786 | if (status) |
| 787 | goto end; |
| 788 | data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */ |
| 789 | data |= TX_CFG_EN; /* Enable the transmitter. */ |
| 790 | status = ql_write_xgmac_reg(qdev, TX_CFG, data); |
| 791 | if (status) |
| 792 | goto end; |
| 793 | |
| 794 | /* Enable receiver and clear it's reset. */ |
| 795 | status = ql_read_xgmac_reg(qdev, RX_CFG, &data); |
| 796 | if (status) |
| 797 | goto end; |
| 798 | data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */ |
| 799 | data |= RX_CFG_EN; /* Enable the receiver. */ |
| 800 | status = ql_write_xgmac_reg(qdev, RX_CFG, data); |
| 801 | if (status) |
| 802 | goto end; |
| 803 | |
| 804 | /* Turn on jumbo. */ |
| 805 | status = |
| 806 | ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16)); |
| 807 | if (status) |
| 808 | goto end; |
| 809 | status = |
| 810 | ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580); |
| 811 | if (status) |
| 812 | goto end; |
| 813 | |
| 814 | /* Signal to the world that the port is enabled. */ |
| 815 | ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init)); |
| 816 | end: |
| 817 | ql_sem_unlock(qdev, qdev->xg_sem_mask); |
| 818 | return status; |
| 819 | } |
| 820 | |
| 821 | /* Get the next large buffer. */ |
| 822 | struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring) |
| 823 | { |
| 824 | struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx]; |
| 825 | rx_ring->lbq_curr_idx++; |
| 826 | if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) |
| 827 | rx_ring->lbq_curr_idx = 0; |
| 828 | rx_ring->lbq_free_cnt++; |
| 829 | return lbq_desc; |
| 830 | } |
| 831 | |
| 832 | /* Get the next small buffer. */ |
| 833 | struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring) |
| 834 | { |
| 835 | struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx]; |
| 836 | rx_ring->sbq_curr_idx++; |
| 837 | if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) |
| 838 | rx_ring->sbq_curr_idx = 0; |
| 839 | rx_ring->sbq_free_cnt++; |
| 840 | return sbq_desc; |
| 841 | } |
| 842 | |
| 843 | /* Update an rx ring index. */ |
| 844 | static void ql_update_cq(struct rx_ring *rx_ring) |
| 845 | { |
| 846 | rx_ring->cnsmr_idx++; |
| 847 | rx_ring->curr_entry++; |
| 848 | if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) { |
| 849 | rx_ring->cnsmr_idx = 0; |
| 850 | rx_ring->curr_entry = rx_ring->cq_base; |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | static void ql_write_cq_idx(struct rx_ring *rx_ring) |
| 855 | { |
| 856 | ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); |
| 857 | } |
| 858 | |
| 859 | /* Process (refill) a large buffer queue. */ |
| 860 | static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| 861 | { |
| 862 | int clean_idx = rx_ring->lbq_clean_idx; |
| 863 | struct bq_desc *lbq_desc; |
| 864 | struct bq_element *bq; |
| 865 | u64 map; |
| 866 | int i; |
| 867 | |
| 868 | while (rx_ring->lbq_free_cnt > 16) { |
| 869 | for (i = 0; i < 16; i++) { |
| 870 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 871 | "lbq: try cleaning clean_idx = %d.\n", |
| 872 | clean_idx); |
| 873 | lbq_desc = &rx_ring->lbq[clean_idx]; |
| 874 | bq = lbq_desc->bq; |
| 875 | if (lbq_desc->p.lbq_page == NULL) { |
| 876 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 877 | "lbq: getting new page for index %d.\n", |
| 878 | lbq_desc->index); |
| 879 | lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC); |
| 880 | if (lbq_desc->p.lbq_page == NULL) { |
| 881 | QPRINTK(qdev, RX_STATUS, ERR, |
| 882 | "Couldn't get a page.\n"); |
| 883 | return; |
| 884 | } |
| 885 | map = pci_map_page(qdev->pdev, |
| 886 | lbq_desc->p.lbq_page, |
| 887 | 0, PAGE_SIZE, |
| 888 | PCI_DMA_FROMDEVICE); |
| 889 | if (pci_dma_mapping_error(qdev->pdev, map)) { |
| 890 | QPRINTK(qdev, RX_STATUS, ERR, |
| 891 | "PCI mapping failed.\n"); |
| 892 | return; |
| 893 | } |
| 894 | pci_unmap_addr_set(lbq_desc, mapaddr, map); |
| 895 | pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE); |
| 896 | bq->addr_lo = /*lbq_desc->addr_lo = */ |
| 897 | cpu_to_le32(map); |
| 898 | bq->addr_hi = /*lbq_desc->addr_hi = */ |
| 899 | cpu_to_le32(map >> 32); |
| 900 | } |
| 901 | clean_idx++; |
| 902 | if (clean_idx == rx_ring->lbq_len) |
| 903 | clean_idx = 0; |
| 904 | } |
| 905 | |
| 906 | rx_ring->lbq_clean_idx = clean_idx; |
| 907 | rx_ring->lbq_prod_idx += 16; |
| 908 | if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) |
| 909 | rx_ring->lbq_prod_idx = 0; |
| 910 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 911 | "lbq: updating prod idx = %d.\n", |
| 912 | rx_ring->lbq_prod_idx); |
| 913 | ql_write_db_reg(rx_ring->lbq_prod_idx, |
| 914 | rx_ring->lbq_prod_idx_db_reg); |
| 915 | rx_ring->lbq_free_cnt -= 16; |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | /* Process (refill) a small buffer queue. */ |
| 920 | static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| 921 | { |
| 922 | int clean_idx = rx_ring->sbq_clean_idx; |
| 923 | struct bq_desc *sbq_desc; |
| 924 | struct bq_element *bq; |
| 925 | u64 map; |
| 926 | int i; |
| 927 | |
| 928 | while (rx_ring->sbq_free_cnt > 16) { |
| 929 | for (i = 0; i < 16; i++) { |
| 930 | sbq_desc = &rx_ring->sbq[clean_idx]; |
| 931 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 932 | "sbq: try cleaning clean_idx = %d.\n", |
| 933 | clean_idx); |
| 934 | bq = sbq_desc->bq; |
| 935 | if (sbq_desc->p.skb == NULL) { |
| 936 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 937 | "sbq: getting new skb for index %d.\n", |
| 938 | sbq_desc->index); |
| 939 | sbq_desc->p.skb = |
| 940 | netdev_alloc_skb(qdev->ndev, |
| 941 | rx_ring->sbq_buf_size); |
| 942 | if (sbq_desc->p.skb == NULL) { |
| 943 | QPRINTK(qdev, PROBE, ERR, |
| 944 | "Couldn't get an skb.\n"); |
| 945 | rx_ring->sbq_clean_idx = clean_idx; |
| 946 | return; |
| 947 | } |
| 948 | skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD); |
| 949 | map = pci_map_single(qdev->pdev, |
| 950 | sbq_desc->p.skb->data, |
| 951 | rx_ring->sbq_buf_size / |
| 952 | 2, PCI_DMA_FROMDEVICE); |
| 953 | pci_unmap_addr_set(sbq_desc, mapaddr, map); |
| 954 | pci_unmap_len_set(sbq_desc, maplen, |
| 955 | rx_ring->sbq_buf_size / 2); |
| 956 | bq->addr_lo = cpu_to_le32(map); |
| 957 | bq->addr_hi = cpu_to_le32(map >> 32); |
| 958 | } |
| 959 | |
| 960 | clean_idx++; |
| 961 | if (clean_idx == rx_ring->sbq_len) |
| 962 | clean_idx = 0; |
| 963 | } |
| 964 | rx_ring->sbq_clean_idx = clean_idx; |
| 965 | rx_ring->sbq_prod_idx += 16; |
| 966 | if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) |
| 967 | rx_ring->sbq_prod_idx = 0; |
| 968 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 969 | "sbq: updating prod idx = %d.\n", |
| 970 | rx_ring->sbq_prod_idx); |
| 971 | ql_write_db_reg(rx_ring->sbq_prod_idx, |
| 972 | rx_ring->sbq_prod_idx_db_reg); |
| 973 | |
| 974 | rx_ring->sbq_free_cnt -= 16; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | static void ql_update_buffer_queues(struct ql_adapter *qdev, |
| 979 | struct rx_ring *rx_ring) |
| 980 | { |
| 981 | ql_update_sbq(qdev, rx_ring); |
| 982 | ql_update_lbq(qdev, rx_ring); |
| 983 | } |
| 984 | |
| 985 | /* Unmaps tx buffers. Can be called from send() if a pci mapping |
| 986 | * fails at some stage, or from the interrupt when a tx completes. |
| 987 | */ |
| 988 | static void ql_unmap_send(struct ql_adapter *qdev, |
| 989 | struct tx_ring_desc *tx_ring_desc, int mapped) |
| 990 | { |
| 991 | int i; |
| 992 | for (i = 0; i < mapped; i++) { |
| 993 | if (i == 0 || (i == 7 && mapped > 7)) { |
| 994 | /* |
| 995 | * Unmap the skb->data area, or the |
| 996 | * external sglist (AKA the Outbound |
| 997 | * Address List (OAL)). |
| 998 | * If its the zeroeth element, then it's |
| 999 | * the skb->data area. If it's the 7th |
| 1000 | * element and there is more than 6 frags, |
| 1001 | * then its an OAL. |
| 1002 | */ |
| 1003 | if (i == 7) { |
| 1004 | QPRINTK(qdev, TX_DONE, DEBUG, |
| 1005 | "unmapping OAL area.\n"); |
| 1006 | } |
| 1007 | pci_unmap_single(qdev->pdev, |
| 1008 | pci_unmap_addr(&tx_ring_desc->map[i], |
| 1009 | mapaddr), |
| 1010 | pci_unmap_len(&tx_ring_desc->map[i], |
| 1011 | maplen), |
| 1012 | PCI_DMA_TODEVICE); |
| 1013 | } else { |
| 1014 | QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n", |
| 1015 | i); |
| 1016 | pci_unmap_page(qdev->pdev, |
| 1017 | pci_unmap_addr(&tx_ring_desc->map[i], |
| 1018 | mapaddr), |
| 1019 | pci_unmap_len(&tx_ring_desc->map[i], |
| 1020 | maplen), PCI_DMA_TODEVICE); |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | } |
| 1025 | |
| 1026 | /* Map the buffers for this transmit. This will return |
| 1027 | * NETDEV_TX_BUSY or NETDEV_TX_OK based on success. |
| 1028 | */ |
| 1029 | static int ql_map_send(struct ql_adapter *qdev, |
| 1030 | struct ob_mac_iocb_req *mac_iocb_ptr, |
| 1031 | struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc) |
| 1032 | { |
| 1033 | int len = skb_headlen(skb); |
| 1034 | dma_addr_t map; |
| 1035 | int frag_idx, err, map_idx = 0; |
| 1036 | struct tx_buf_desc *tbd = mac_iocb_ptr->tbd; |
| 1037 | int frag_cnt = skb_shinfo(skb)->nr_frags; |
| 1038 | |
| 1039 | if (frag_cnt) { |
| 1040 | QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt); |
| 1041 | } |
| 1042 | /* |
| 1043 | * Map the skb buffer first. |
| 1044 | */ |
| 1045 | map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE); |
| 1046 | |
| 1047 | err = pci_dma_mapping_error(qdev->pdev, map); |
| 1048 | if (err) { |
| 1049 | QPRINTK(qdev, TX_QUEUED, ERR, |
| 1050 | "PCI mapping failed with error: %d\n", err); |
| 1051 | |
| 1052 | return NETDEV_TX_BUSY; |
| 1053 | } |
| 1054 | |
| 1055 | tbd->len = cpu_to_le32(len); |
| 1056 | tbd->addr = cpu_to_le64(map); |
| 1057 | pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); |
| 1058 | pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len); |
| 1059 | map_idx++; |
| 1060 | |
| 1061 | /* |
| 1062 | * This loop fills the remainder of the 8 address descriptors |
| 1063 | * in the IOCB. If there are more than 7 fragments, then the |
| 1064 | * eighth address desc will point to an external list (OAL). |
| 1065 | * When this happens, the remainder of the frags will be stored |
| 1066 | * in this list. |
| 1067 | */ |
| 1068 | for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) { |
| 1069 | skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx]; |
| 1070 | tbd++; |
| 1071 | if (frag_idx == 6 && frag_cnt > 7) { |
| 1072 | /* Let's tack on an sglist. |
| 1073 | * Our control block will now |
| 1074 | * look like this: |
| 1075 | * iocb->seg[0] = skb->data |
| 1076 | * iocb->seg[1] = frag[0] |
| 1077 | * iocb->seg[2] = frag[1] |
| 1078 | * iocb->seg[3] = frag[2] |
| 1079 | * iocb->seg[4] = frag[3] |
| 1080 | * iocb->seg[5] = frag[4] |
| 1081 | * iocb->seg[6] = frag[5] |
| 1082 | * iocb->seg[7] = ptr to OAL (external sglist) |
| 1083 | * oal->seg[0] = frag[6] |
| 1084 | * oal->seg[1] = frag[7] |
| 1085 | * oal->seg[2] = frag[8] |
| 1086 | * oal->seg[3] = frag[9] |
| 1087 | * oal->seg[4] = frag[10] |
| 1088 | * etc... |
| 1089 | */ |
| 1090 | /* Tack on the OAL in the eighth segment of IOCB. */ |
| 1091 | map = pci_map_single(qdev->pdev, &tx_ring_desc->oal, |
| 1092 | sizeof(struct oal), |
| 1093 | PCI_DMA_TODEVICE); |
| 1094 | err = pci_dma_mapping_error(qdev->pdev, map); |
| 1095 | if (err) { |
| 1096 | QPRINTK(qdev, TX_QUEUED, ERR, |
| 1097 | "PCI mapping outbound address list with error: %d\n", |
| 1098 | err); |
| 1099 | goto map_error; |
| 1100 | } |
| 1101 | |
| 1102 | tbd->addr = cpu_to_le64(map); |
| 1103 | /* |
| 1104 | * The length is the number of fragments |
| 1105 | * that remain to be mapped times the length |
| 1106 | * of our sglist (OAL). |
| 1107 | */ |
| 1108 | tbd->len = |
| 1109 | cpu_to_le32((sizeof(struct tx_buf_desc) * |
| 1110 | (frag_cnt - frag_idx)) | TX_DESC_C); |
| 1111 | pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, |
| 1112 | map); |
| 1113 | pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, |
| 1114 | sizeof(struct oal)); |
| 1115 | tbd = (struct tx_buf_desc *)&tx_ring_desc->oal; |
| 1116 | map_idx++; |
| 1117 | } |
| 1118 | |
| 1119 | map = |
| 1120 | pci_map_page(qdev->pdev, frag->page, |
| 1121 | frag->page_offset, frag->size, |
| 1122 | PCI_DMA_TODEVICE); |
| 1123 | |
| 1124 | err = pci_dma_mapping_error(qdev->pdev, map); |
| 1125 | if (err) { |
| 1126 | QPRINTK(qdev, TX_QUEUED, ERR, |
| 1127 | "PCI mapping frags failed with error: %d.\n", |
| 1128 | err); |
| 1129 | goto map_error; |
| 1130 | } |
| 1131 | |
| 1132 | tbd->addr = cpu_to_le64(map); |
| 1133 | tbd->len = cpu_to_le32(frag->size); |
| 1134 | pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map); |
| 1135 | pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, |
| 1136 | frag->size); |
| 1137 | |
| 1138 | } |
| 1139 | /* Save the number of segments we've mapped. */ |
| 1140 | tx_ring_desc->map_cnt = map_idx; |
| 1141 | /* Terminate the last segment. */ |
| 1142 | tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E); |
| 1143 | return NETDEV_TX_OK; |
| 1144 | |
| 1145 | map_error: |
| 1146 | /* |
| 1147 | * If the first frag mapping failed, then i will be zero. |
| 1148 | * This causes the unmap of the skb->data area. Otherwise |
| 1149 | * we pass in the number of frags that mapped successfully |
| 1150 | * so they can be umapped. |
| 1151 | */ |
| 1152 | ql_unmap_send(qdev, tx_ring_desc, map_idx); |
| 1153 | return NETDEV_TX_BUSY; |
| 1154 | } |
| 1155 | |
| 1156 | void ql_realign_skb(struct sk_buff *skb, int len) |
| 1157 | { |
| 1158 | void *temp_addr = skb->data; |
| 1159 | |
| 1160 | /* Undo the skb_reserve(skb,32) we did before |
| 1161 | * giving to hardware, and realign data on |
| 1162 | * a 2-byte boundary. |
| 1163 | */ |
| 1164 | skb->data -= QLGE_SB_PAD - NET_IP_ALIGN; |
| 1165 | skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN; |
| 1166 | skb_copy_to_linear_data(skb, temp_addr, |
| 1167 | (unsigned int)len); |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * This function builds an skb for the given inbound |
| 1172 | * completion. It will be rewritten for readability in the near |
| 1173 | * future, but for not it works well. |
| 1174 | */ |
| 1175 | static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev, |
| 1176 | struct rx_ring *rx_ring, |
| 1177 | struct ib_mac_iocb_rsp *ib_mac_rsp) |
| 1178 | { |
| 1179 | struct bq_desc *lbq_desc; |
| 1180 | struct bq_desc *sbq_desc; |
| 1181 | struct sk_buff *skb = NULL; |
| 1182 | u32 length = le32_to_cpu(ib_mac_rsp->data_len); |
| 1183 | u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len); |
| 1184 | |
| 1185 | /* |
| 1186 | * Handle the header buffer if present. |
| 1187 | */ |
| 1188 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV && |
| 1189 | ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { |
| 1190 | QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len); |
| 1191 | /* |
| 1192 | * Headers fit nicely into a small buffer. |
| 1193 | */ |
| 1194 | sbq_desc = ql_get_curr_sbuf(rx_ring); |
| 1195 | pci_unmap_single(qdev->pdev, |
| 1196 | pci_unmap_addr(sbq_desc, mapaddr), |
| 1197 | pci_unmap_len(sbq_desc, maplen), |
| 1198 | PCI_DMA_FROMDEVICE); |
| 1199 | skb = sbq_desc->p.skb; |
| 1200 | ql_realign_skb(skb, hdr_len); |
| 1201 | skb_put(skb, hdr_len); |
| 1202 | sbq_desc->p.skb = NULL; |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Handle the data buffer(s). |
| 1207 | */ |
| 1208 | if (unlikely(!length)) { /* Is there data too? */ |
| 1209 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1210 | "No Data buffer in this packet.\n"); |
| 1211 | return skb; |
| 1212 | } |
| 1213 | |
| 1214 | if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) { |
| 1215 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { |
| 1216 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1217 | "Headers in small, data of %d bytes in small, combine them.\n", length); |
| 1218 | /* |
| 1219 | * Data is less than small buffer size so it's |
| 1220 | * stuffed in a small buffer. |
| 1221 | * For this case we append the data |
| 1222 | * from the "data" small buffer to the "header" small |
| 1223 | * buffer. |
| 1224 | */ |
| 1225 | sbq_desc = ql_get_curr_sbuf(rx_ring); |
| 1226 | pci_dma_sync_single_for_cpu(qdev->pdev, |
| 1227 | pci_unmap_addr |
| 1228 | (sbq_desc, mapaddr), |
| 1229 | pci_unmap_len |
| 1230 | (sbq_desc, maplen), |
| 1231 | PCI_DMA_FROMDEVICE); |
| 1232 | memcpy(skb_put(skb, length), |
| 1233 | sbq_desc->p.skb->data, length); |
| 1234 | pci_dma_sync_single_for_device(qdev->pdev, |
| 1235 | pci_unmap_addr |
| 1236 | (sbq_desc, |
| 1237 | mapaddr), |
| 1238 | pci_unmap_len |
| 1239 | (sbq_desc, |
| 1240 | maplen), |
| 1241 | PCI_DMA_FROMDEVICE); |
| 1242 | } else { |
| 1243 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1244 | "%d bytes in a single small buffer.\n", length); |
| 1245 | sbq_desc = ql_get_curr_sbuf(rx_ring); |
| 1246 | skb = sbq_desc->p.skb; |
| 1247 | ql_realign_skb(skb, length); |
| 1248 | skb_put(skb, length); |
| 1249 | pci_unmap_single(qdev->pdev, |
| 1250 | pci_unmap_addr(sbq_desc, |
| 1251 | mapaddr), |
| 1252 | pci_unmap_len(sbq_desc, |
| 1253 | maplen), |
| 1254 | PCI_DMA_FROMDEVICE); |
| 1255 | sbq_desc->p.skb = NULL; |
| 1256 | } |
| 1257 | } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) { |
| 1258 | if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) { |
| 1259 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1260 | "Header in small, %d bytes in large. Chain large to small!\n", length); |
| 1261 | /* |
| 1262 | * The data is in a single large buffer. We |
| 1263 | * chain it to the header buffer's skb and let |
| 1264 | * it rip. |
| 1265 | */ |
| 1266 | lbq_desc = ql_get_curr_lbuf(rx_ring); |
| 1267 | pci_unmap_page(qdev->pdev, |
| 1268 | pci_unmap_addr(lbq_desc, |
| 1269 | mapaddr), |
| 1270 | pci_unmap_len(lbq_desc, maplen), |
| 1271 | PCI_DMA_FROMDEVICE); |
| 1272 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1273 | "Chaining page to skb.\n"); |
| 1274 | skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page, |
| 1275 | 0, length); |
| 1276 | skb->len += length; |
| 1277 | skb->data_len += length; |
| 1278 | skb->truesize += length; |
| 1279 | lbq_desc->p.lbq_page = NULL; |
| 1280 | } else { |
| 1281 | /* |
| 1282 | * The headers and data are in a single large buffer. We |
| 1283 | * copy it to a new skb and let it go. This can happen with |
| 1284 | * jumbo mtu on a non-TCP/UDP frame. |
| 1285 | */ |
| 1286 | lbq_desc = ql_get_curr_lbuf(rx_ring); |
| 1287 | skb = netdev_alloc_skb(qdev->ndev, length); |
| 1288 | if (skb == NULL) { |
| 1289 | QPRINTK(qdev, PROBE, DEBUG, |
| 1290 | "No skb available, drop the packet.\n"); |
| 1291 | return NULL; |
| 1292 | } |
| 1293 | skb_reserve(skb, NET_IP_ALIGN); |
| 1294 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1295 | "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); |
| 1296 | skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page, |
| 1297 | 0, length); |
| 1298 | skb->len += length; |
| 1299 | skb->data_len += length; |
| 1300 | skb->truesize += length; |
| 1301 | length -= length; |
| 1302 | lbq_desc->p.lbq_page = NULL; |
| 1303 | __pskb_pull_tail(skb, |
| 1304 | (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? |
| 1305 | VLAN_ETH_HLEN : ETH_HLEN); |
| 1306 | } |
| 1307 | } else { |
| 1308 | /* |
| 1309 | * The data is in a chain of large buffers |
| 1310 | * pointed to by a small buffer. We loop |
| 1311 | * thru and chain them to the our small header |
| 1312 | * buffer's skb. |
| 1313 | * frags: There are 18 max frags and our small |
| 1314 | * buffer will hold 32 of them. The thing is, |
| 1315 | * we'll use 3 max for our 9000 byte jumbo |
| 1316 | * frames. If the MTU goes up we could |
| 1317 | * eventually be in trouble. |
| 1318 | */ |
| 1319 | int size, offset, i = 0; |
| 1320 | struct bq_element *bq, bq_array[8]; |
| 1321 | sbq_desc = ql_get_curr_sbuf(rx_ring); |
| 1322 | pci_unmap_single(qdev->pdev, |
| 1323 | pci_unmap_addr(sbq_desc, mapaddr), |
| 1324 | pci_unmap_len(sbq_desc, maplen), |
| 1325 | PCI_DMA_FROMDEVICE); |
| 1326 | if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) { |
| 1327 | /* |
| 1328 | * This is an non TCP/UDP IP frame, so |
| 1329 | * the headers aren't split into a small |
| 1330 | * buffer. We have to use the small buffer |
| 1331 | * that contains our sg list as our skb to |
| 1332 | * send upstairs. Copy the sg list here to |
| 1333 | * a local buffer and use it to find the |
| 1334 | * pages to chain. |
| 1335 | */ |
| 1336 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1337 | "%d bytes of headers & data in chain of large.\n", length); |
| 1338 | skb = sbq_desc->p.skb; |
| 1339 | bq = &bq_array[0]; |
| 1340 | memcpy(bq, skb->data, sizeof(bq_array)); |
| 1341 | sbq_desc->p.skb = NULL; |
| 1342 | skb_reserve(skb, NET_IP_ALIGN); |
| 1343 | } else { |
| 1344 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1345 | "Headers in small, %d bytes of data in chain of large.\n", length); |
| 1346 | bq = (struct bq_element *)sbq_desc->p.skb->data; |
| 1347 | } |
| 1348 | while (length > 0) { |
| 1349 | lbq_desc = ql_get_curr_lbuf(rx_ring); |
| 1350 | if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) { |
| 1351 | QPRINTK(qdev, RX_STATUS, ERR, |
| 1352 | "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n", |
| 1353 | lbq_desc->bq->addr_lo, bq->addr_lo); |
| 1354 | return NULL; |
| 1355 | } |
| 1356 | pci_unmap_page(qdev->pdev, |
| 1357 | pci_unmap_addr(lbq_desc, |
| 1358 | mapaddr), |
| 1359 | pci_unmap_len(lbq_desc, |
| 1360 | maplen), |
| 1361 | PCI_DMA_FROMDEVICE); |
| 1362 | size = (length < PAGE_SIZE) ? length : PAGE_SIZE; |
| 1363 | offset = 0; |
| 1364 | |
| 1365 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1366 | "Adding page %d to skb for %d bytes.\n", |
| 1367 | i, size); |
| 1368 | skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page, |
| 1369 | offset, size); |
| 1370 | skb->len += size; |
| 1371 | skb->data_len += size; |
| 1372 | skb->truesize += size; |
| 1373 | length -= size; |
| 1374 | lbq_desc->p.lbq_page = NULL; |
| 1375 | bq++; |
| 1376 | i++; |
| 1377 | } |
| 1378 | __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? |
| 1379 | VLAN_ETH_HLEN : ETH_HLEN); |
| 1380 | } |
| 1381 | return skb; |
| 1382 | } |
| 1383 | |
| 1384 | /* Process an inbound completion from an rx ring. */ |
| 1385 | static void ql_process_mac_rx_intr(struct ql_adapter *qdev, |
| 1386 | struct rx_ring *rx_ring, |
| 1387 | struct ib_mac_iocb_rsp *ib_mac_rsp) |
| 1388 | { |
| 1389 | struct net_device *ndev = qdev->ndev; |
| 1390 | struct sk_buff *skb = NULL; |
| 1391 | |
| 1392 | QL_DUMP_IB_MAC_RSP(ib_mac_rsp); |
| 1393 | |
| 1394 | skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); |
| 1395 | if (unlikely(!skb)) { |
| 1396 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1397 | "No skb available, drop packet.\n"); |
| 1398 | return; |
| 1399 | } |
| 1400 | |
| 1401 | prefetch(skb->data); |
| 1402 | skb->dev = ndev; |
| 1403 | if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) { |
| 1404 | QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n", |
| 1405 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| 1406 | IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "", |
| 1407 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| 1408 | IB_MAC_IOCB_RSP_M_REG ? "Registered" : "", |
| 1409 | (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == |
| 1410 | IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); |
| 1411 | } |
| 1412 | if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) { |
| 1413 | QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n"); |
| 1414 | } |
| 1415 | if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) { |
| 1416 | QPRINTK(qdev, RX_STATUS, ERR, |
| 1417 | "Bad checksum for this %s packet.\n", |
| 1418 | ((ib_mac_rsp-> |
| 1419 | flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP")); |
| 1420 | skb->ip_summed = CHECKSUM_NONE; |
| 1421 | } else if (qdev->rx_csum && |
| 1422 | ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) || |
| 1423 | ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) && |
| 1424 | !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) { |
| 1425 | QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n"); |
| 1426 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 1427 | } |
| 1428 | qdev->stats.rx_packets++; |
| 1429 | qdev->stats.rx_bytes += skb->len; |
| 1430 | skb->protocol = eth_type_trans(skb, ndev); |
| 1431 | if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) { |
| 1432 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1433 | "Passing a VLAN packet upstream.\n"); |
| 1434 | vlan_hwaccel_rx(skb, qdev->vlgrp, |
| 1435 | le16_to_cpu(ib_mac_rsp->vlan_id)); |
| 1436 | } else { |
| 1437 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1438 | "Passing a normal packet upstream.\n"); |
| 1439 | netif_rx(skb); |
| 1440 | } |
| 1441 | ndev->last_rx = jiffies; |
| 1442 | } |
| 1443 | |
| 1444 | /* Process an outbound completion from an rx ring. */ |
| 1445 | static void ql_process_mac_tx_intr(struct ql_adapter *qdev, |
| 1446 | struct ob_mac_iocb_rsp *mac_rsp) |
| 1447 | { |
| 1448 | struct tx_ring *tx_ring; |
| 1449 | struct tx_ring_desc *tx_ring_desc; |
| 1450 | |
| 1451 | QL_DUMP_OB_MAC_RSP(mac_rsp); |
| 1452 | tx_ring = &qdev->tx_ring[mac_rsp->txq_idx]; |
| 1453 | tx_ring_desc = &tx_ring->q[mac_rsp->tid]; |
| 1454 | ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); |
| 1455 | qdev->stats.tx_bytes += tx_ring_desc->map_cnt; |
| 1456 | qdev->stats.tx_packets++; |
| 1457 | dev_kfree_skb(tx_ring_desc->skb); |
| 1458 | tx_ring_desc->skb = NULL; |
| 1459 | |
| 1460 | if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E | |
| 1461 | OB_MAC_IOCB_RSP_S | |
| 1462 | OB_MAC_IOCB_RSP_L | |
| 1463 | OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) { |
| 1464 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) { |
| 1465 | QPRINTK(qdev, TX_DONE, WARNING, |
| 1466 | "Total descriptor length did not match transfer length.\n"); |
| 1467 | } |
| 1468 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) { |
| 1469 | QPRINTK(qdev, TX_DONE, WARNING, |
| 1470 | "Frame too short to be legal, not sent.\n"); |
| 1471 | } |
| 1472 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) { |
| 1473 | QPRINTK(qdev, TX_DONE, WARNING, |
| 1474 | "Frame too long, but sent anyway.\n"); |
| 1475 | } |
| 1476 | if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) { |
| 1477 | QPRINTK(qdev, TX_DONE, WARNING, |
| 1478 | "PCI backplane error. Frame not sent.\n"); |
| 1479 | } |
| 1480 | } |
| 1481 | atomic_inc(&tx_ring->tx_count); |
| 1482 | } |
| 1483 | |
| 1484 | /* Fire up a handler to reset the MPI processor. */ |
| 1485 | void ql_queue_fw_error(struct ql_adapter *qdev) |
| 1486 | { |
| 1487 | netif_stop_queue(qdev->ndev); |
| 1488 | netif_carrier_off(qdev->ndev); |
| 1489 | queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0); |
| 1490 | } |
| 1491 | |
| 1492 | void ql_queue_asic_error(struct ql_adapter *qdev) |
| 1493 | { |
| 1494 | netif_stop_queue(qdev->ndev); |
| 1495 | netif_carrier_off(qdev->ndev); |
| 1496 | ql_disable_interrupts(qdev); |
| 1497 | queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); |
| 1498 | } |
| 1499 | |
| 1500 | static void ql_process_chip_ae_intr(struct ql_adapter *qdev, |
| 1501 | struct ib_ae_iocb_rsp *ib_ae_rsp) |
| 1502 | { |
| 1503 | switch (ib_ae_rsp->event) { |
| 1504 | case MGMT_ERR_EVENT: |
| 1505 | QPRINTK(qdev, RX_ERR, ERR, |
| 1506 | "Management Processor Fatal Error.\n"); |
| 1507 | ql_queue_fw_error(qdev); |
| 1508 | return; |
| 1509 | |
| 1510 | case CAM_LOOKUP_ERR_EVENT: |
| 1511 | QPRINTK(qdev, LINK, ERR, |
| 1512 | "Multiple CAM hits lookup occurred.\n"); |
| 1513 | QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n"); |
| 1514 | ql_queue_asic_error(qdev); |
| 1515 | return; |
| 1516 | |
| 1517 | case SOFT_ECC_ERROR_EVENT: |
| 1518 | QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n"); |
| 1519 | ql_queue_asic_error(qdev); |
| 1520 | break; |
| 1521 | |
| 1522 | case PCI_ERR_ANON_BUF_RD: |
| 1523 | QPRINTK(qdev, RX_ERR, ERR, |
| 1524 | "PCI error occurred when reading anonymous buffers from rx_ring %d.\n", |
| 1525 | ib_ae_rsp->q_id); |
| 1526 | ql_queue_asic_error(qdev); |
| 1527 | break; |
| 1528 | |
| 1529 | default: |
| 1530 | QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n", |
| 1531 | ib_ae_rsp->event); |
| 1532 | ql_queue_asic_error(qdev); |
| 1533 | break; |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring) |
| 1538 | { |
| 1539 | struct ql_adapter *qdev = rx_ring->qdev; |
| 1540 | u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| 1541 | struct ob_mac_iocb_rsp *net_rsp = NULL; |
| 1542 | int count = 0; |
| 1543 | |
| 1544 | /* While there are entries in the completion queue. */ |
| 1545 | while (prod != rx_ring->cnsmr_idx) { |
| 1546 | |
| 1547 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1548 | "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, |
| 1549 | prod, rx_ring->cnsmr_idx); |
| 1550 | |
| 1551 | net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; |
| 1552 | rmb(); |
| 1553 | switch (net_rsp->opcode) { |
| 1554 | |
| 1555 | case OPCODE_OB_MAC_TSO_IOCB: |
| 1556 | case OPCODE_OB_MAC_IOCB: |
| 1557 | ql_process_mac_tx_intr(qdev, net_rsp); |
| 1558 | break; |
| 1559 | default: |
| 1560 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1561 | "Hit default case, not handled! dropping the packet, opcode = %x.\n", |
| 1562 | net_rsp->opcode); |
| 1563 | } |
| 1564 | count++; |
| 1565 | ql_update_cq(rx_ring); |
| 1566 | prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| 1567 | } |
| 1568 | ql_write_cq_idx(rx_ring); |
| 1569 | if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) { |
| 1570 | struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx]; |
| 1571 | if (atomic_read(&tx_ring->queue_stopped) && |
| 1572 | (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4))) |
| 1573 | /* |
| 1574 | * The queue got stopped because the tx_ring was full. |
| 1575 | * Wake it up, because it's now at least 25% empty. |
| 1576 | */ |
| 1577 | netif_wake_queue(qdev->ndev); |
| 1578 | } |
| 1579 | |
| 1580 | return count; |
| 1581 | } |
| 1582 | |
| 1583 | static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget) |
| 1584 | { |
| 1585 | struct ql_adapter *qdev = rx_ring->qdev; |
| 1586 | u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| 1587 | struct ql_net_rsp_iocb *net_rsp; |
| 1588 | int count = 0; |
| 1589 | |
| 1590 | /* While there are entries in the completion queue. */ |
| 1591 | while (prod != rx_ring->cnsmr_idx) { |
| 1592 | |
| 1593 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1594 | "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id, |
| 1595 | prod, rx_ring->cnsmr_idx); |
| 1596 | |
| 1597 | net_rsp = rx_ring->curr_entry; |
| 1598 | rmb(); |
| 1599 | switch (net_rsp->opcode) { |
| 1600 | case OPCODE_IB_MAC_IOCB: |
| 1601 | ql_process_mac_rx_intr(qdev, rx_ring, |
| 1602 | (struct ib_mac_iocb_rsp *) |
| 1603 | net_rsp); |
| 1604 | break; |
| 1605 | |
| 1606 | case OPCODE_IB_AE_IOCB: |
| 1607 | ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *) |
| 1608 | net_rsp); |
| 1609 | break; |
| 1610 | default: |
| 1611 | { |
| 1612 | QPRINTK(qdev, RX_STATUS, DEBUG, |
| 1613 | "Hit default case, not handled! dropping the packet, opcode = %x.\n", |
| 1614 | net_rsp->opcode); |
| 1615 | } |
| 1616 | } |
| 1617 | count++; |
| 1618 | ql_update_cq(rx_ring); |
| 1619 | prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); |
| 1620 | if (count == budget) |
| 1621 | break; |
| 1622 | } |
| 1623 | ql_update_buffer_queues(qdev, rx_ring); |
| 1624 | ql_write_cq_idx(rx_ring); |
| 1625 | return count; |
| 1626 | } |
| 1627 | |
| 1628 | static int ql_napi_poll_msix(struct napi_struct *napi, int budget) |
| 1629 | { |
| 1630 | struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi); |
| 1631 | struct ql_adapter *qdev = rx_ring->qdev; |
| 1632 | int work_done = ql_clean_inbound_rx_ring(rx_ring, budget); |
| 1633 | |
| 1634 | QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n", |
| 1635 | rx_ring->cq_id); |
| 1636 | |
| 1637 | if (work_done < budget) { |
| 1638 | __netif_rx_complete(qdev->ndev, napi); |
| 1639 | ql_enable_completion_interrupt(qdev, rx_ring->irq); |
| 1640 | } |
| 1641 | return work_done; |
| 1642 | } |
| 1643 | |
| 1644 | static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp) |
| 1645 | { |
| 1646 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 1647 | |
| 1648 | qdev->vlgrp = grp; |
| 1649 | if (grp) { |
| 1650 | QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n"); |
| 1651 | ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK | |
| 1652 | NIC_RCV_CFG_VLAN_MATCH_AND_NON); |
| 1653 | } else { |
| 1654 | QPRINTK(qdev, IFUP, DEBUG, |
| 1655 | "Turning off VLAN in NIC_RCV_CFG.\n"); |
| 1656 | ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK); |
| 1657 | } |
| 1658 | } |
| 1659 | |
| 1660 | static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid) |
| 1661 | { |
| 1662 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 1663 | u32 enable_bit = MAC_ADDR_E; |
| 1664 | |
| 1665 | spin_lock(&qdev->hw_lock); |
| 1666 | if (ql_set_mac_addr_reg |
| 1667 | (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { |
| 1668 | QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n"); |
| 1669 | } |
| 1670 | spin_unlock(&qdev->hw_lock); |
| 1671 | } |
| 1672 | |
| 1673 | static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid) |
| 1674 | { |
| 1675 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 1676 | u32 enable_bit = 0; |
| 1677 | |
| 1678 | spin_lock(&qdev->hw_lock); |
| 1679 | if (ql_set_mac_addr_reg |
| 1680 | (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) { |
| 1681 | QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n"); |
| 1682 | } |
| 1683 | spin_unlock(&qdev->hw_lock); |
| 1684 | |
| 1685 | } |
| 1686 | |
| 1687 | /* Worker thread to process a given rx_ring that is dedicated |
| 1688 | * to outbound completions. |
| 1689 | */ |
| 1690 | static void ql_tx_clean(struct work_struct *work) |
| 1691 | { |
| 1692 | struct rx_ring *rx_ring = |
| 1693 | container_of(work, struct rx_ring, rx_work.work); |
| 1694 | ql_clean_outbound_rx_ring(rx_ring); |
| 1695 | ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq); |
| 1696 | |
| 1697 | } |
| 1698 | |
| 1699 | /* Worker thread to process a given rx_ring that is dedicated |
| 1700 | * to inbound completions. |
| 1701 | */ |
| 1702 | static void ql_rx_clean(struct work_struct *work) |
| 1703 | { |
| 1704 | struct rx_ring *rx_ring = |
| 1705 | container_of(work, struct rx_ring, rx_work.work); |
| 1706 | ql_clean_inbound_rx_ring(rx_ring, 64); |
| 1707 | ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq); |
| 1708 | } |
| 1709 | |
| 1710 | /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */ |
| 1711 | static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id) |
| 1712 | { |
| 1713 | struct rx_ring *rx_ring = dev_id; |
| 1714 | queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue, |
| 1715 | &rx_ring->rx_work, 0); |
| 1716 | return IRQ_HANDLED; |
| 1717 | } |
| 1718 | |
| 1719 | /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */ |
| 1720 | static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id) |
| 1721 | { |
| 1722 | struct rx_ring *rx_ring = dev_id; |
| 1723 | struct ql_adapter *qdev = rx_ring->qdev; |
| 1724 | netif_rx_schedule(qdev->ndev, &rx_ring->napi); |
| 1725 | return IRQ_HANDLED; |
| 1726 | } |
| 1727 | |
| 1728 | /* We check here to see if we're already handling a legacy |
| 1729 | * interrupt. If we are, then it must belong to another |
| 1730 | * chip with which we're sharing the interrupt line. |
| 1731 | */ |
| 1732 | int ql_legacy_check(struct ql_adapter *qdev) |
| 1733 | { |
| 1734 | int err; |
| 1735 | spin_lock(&qdev->legacy_lock); |
| 1736 | err = atomic_read(&qdev->intr_context[0].irq_cnt); |
| 1737 | spin_unlock(&qdev->legacy_lock); |
| 1738 | return err; |
| 1739 | } |
| 1740 | |
| 1741 | /* This handles a fatal error, MPI activity, and the default |
| 1742 | * rx_ring in an MSI-X multiple vector environment. |
| 1743 | * In MSI/Legacy environment it also process the rest of |
| 1744 | * the rx_rings. |
| 1745 | */ |
| 1746 | static irqreturn_t qlge_isr(int irq, void *dev_id) |
| 1747 | { |
| 1748 | struct rx_ring *rx_ring = dev_id; |
| 1749 | struct ql_adapter *qdev = rx_ring->qdev; |
| 1750 | struct intr_context *intr_context = &qdev->intr_context[0]; |
| 1751 | u32 var; |
| 1752 | int i; |
| 1753 | int work_done = 0; |
| 1754 | |
| 1755 | if (qdev->legacy_check && qdev->legacy_check(qdev)) { |
| 1756 | QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n"); |
| 1757 | return IRQ_NONE; /* Not our interrupt */ |
| 1758 | } |
| 1759 | |
| 1760 | var = ql_read32(qdev, STS); |
| 1761 | |
| 1762 | /* |
| 1763 | * Check for fatal error. |
| 1764 | */ |
| 1765 | if (var & STS_FE) { |
| 1766 | ql_queue_asic_error(qdev); |
| 1767 | QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var); |
| 1768 | var = ql_read32(qdev, ERR_STS); |
| 1769 | QPRINTK(qdev, INTR, ERR, |
| 1770 | "Resetting chip. Error Status Register = 0x%x\n", var); |
| 1771 | return IRQ_HANDLED; |
| 1772 | } |
| 1773 | |
| 1774 | /* |
| 1775 | * Check MPI processor activity. |
| 1776 | */ |
| 1777 | if (var & STS_PI) { |
| 1778 | /* |
| 1779 | * We've got an async event or mailbox completion. |
| 1780 | * Handle it and clear the source of the interrupt. |
| 1781 | */ |
| 1782 | QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n"); |
| 1783 | ql_disable_completion_interrupt(qdev, intr_context->intr); |
| 1784 | queue_delayed_work_on(smp_processor_id(), qdev->workqueue, |
| 1785 | &qdev->mpi_work, 0); |
| 1786 | work_done++; |
| 1787 | } |
| 1788 | |
| 1789 | /* |
| 1790 | * Check the default queue and wake handler if active. |
| 1791 | */ |
| 1792 | rx_ring = &qdev->rx_ring[0]; |
| 1793 | if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) { |
| 1794 | QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n"); |
| 1795 | ql_disable_completion_interrupt(qdev, intr_context->intr); |
| 1796 | queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue, |
| 1797 | &rx_ring->rx_work, 0); |
| 1798 | work_done++; |
| 1799 | } |
| 1800 | |
| 1801 | if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) { |
| 1802 | /* |
| 1803 | * Start the DPC for each active queue. |
| 1804 | */ |
| 1805 | for (i = 1; i < qdev->rx_ring_count; i++) { |
| 1806 | rx_ring = &qdev->rx_ring[i]; |
| 1807 | if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != |
| 1808 | rx_ring->cnsmr_idx) { |
| 1809 | QPRINTK(qdev, INTR, INFO, |
| 1810 | "Waking handler for rx_ring[%d].\n", i); |
| 1811 | ql_disable_completion_interrupt(qdev, |
| 1812 | intr_context-> |
| 1813 | intr); |
| 1814 | if (i < qdev->rss_ring_first_cq_id) |
| 1815 | queue_delayed_work_on(rx_ring->cpu, |
| 1816 | qdev->q_workqueue, |
| 1817 | &rx_ring->rx_work, |
| 1818 | 0); |
| 1819 | else |
| 1820 | netif_rx_schedule(qdev->ndev, |
| 1821 | &rx_ring->napi); |
| 1822 | work_done++; |
| 1823 | } |
| 1824 | } |
| 1825 | } |
| 1826 | return work_done ? IRQ_HANDLED : IRQ_NONE; |
| 1827 | } |
| 1828 | |
| 1829 | static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr) |
| 1830 | { |
| 1831 | |
| 1832 | if (skb_is_gso(skb)) { |
| 1833 | int err; |
| 1834 | if (skb_header_cloned(skb)) { |
| 1835 | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| 1836 | if (err) |
| 1837 | return err; |
| 1838 | } |
| 1839 | |
| 1840 | mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; |
| 1841 | mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC; |
| 1842 | mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); |
| 1843 | mac_iocb_ptr->total_hdrs_len = |
| 1844 | cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb)); |
| 1845 | mac_iocb_ptr->net_trans_offset = |
| 1846 | cpu_to_le16(skb_network_offset(skb) | |
| 1847 | skb_transport_offset(skb) |
| 1848 | << OB_MAC_TRANSPORT_HDR_SHIFT); |
| 1849 | mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); |
| 1850 | mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO; |
| 1851 | if (likely(skb->protocol == htons(ETH_P_IP))) { |
| 1852 | struct iphdr *iph = ip_hdr(skb); |
| 1853 | iph->check = 0; |
| 1854 | mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; |
| 1855 | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| 1856 | iph->daddr, 0, |
| 1857 | IPPROTO_TCP, |
| 1858 | 0); |
| 1859 | } else if (skb->protocol == htons(ETH_P_IPV6)) { |
| 1860 | mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6; |
| 1861 | tcp_hdr(skb)->check = |
| 1862 | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| 1863 | &ipv6_hdr(skb)->daddr, |
| 1864 | 0, IPPROTO_TCP, 0); |
| 1865 | } |
| 1866 | return 1; |
| 1867 | } |
| 1868 | return 0; |
| 1869 | } |
| 1870 | |
| 1871 | static void ql_hw_csum_setup(struct sk_buff *skb, |
| 1872 | struct ob_mac_tso_iocb_req *mac_iocb_ptr) |
| 1873 | { |
| 1874 | int len; |
| 1875 | struct iphdr *iph = ip_hdr(skb); |
| 1876 | u16 *check; |
| 1877 | mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB; |
| 1878 | mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len); |
| 1879 | mac_iocb_ptr->net_trans_offset = |
| 1880 | cpu_to_le16(skb_network_offset(skb) | |
| 1881 | skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT); |
| 1882 | |
| 1883 | mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4; |
| 1884 | len = (ntohs(iph->tot_len) - (iph->ihl << 2)); |
| 1885 | if (likely(iph->protocol == IPPROTO_TCP)) { |
| 1886 | check = &(tcp_hdr(skb)->check); |
| 1887 | mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC; |
| 1888 | mac_iocb_ptr->total_hdrs_len = |
| 1889 | cpu_to_le16(skb_transport_offset(skb) + |
| 1890 | (tcp_hdr(skb)->doff << 2)); |
| 1891 | } else { |
| 1892 | check = &(udp_hdr(skb)->check); |
| 1893 | mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC; |
| 1894 | mac_iocb_ptr->total_hdrs_len = |
| 1895 | cpu_to_le16(skb_transport_offset(skb) + |
| 1896 | sizeof(struct udphdr)); |
| 1897 | } |
| 1898 | *check = ~csum_tcpudp_magic(iph->saddr, |
| 1899 | iph->daddr, len, iph->protocol, 0); |
| 1900 | } |
| 1901 | |
| 1902 | static int qlge_send(struct sk_buff *skb, struct net_device *ndev) |
| 1903 | { |
| 1904 | struct tx_ring_desc *tx_ring_desc; |
| 1905 | struct ob_mac_iocb_req *mac_iocb_ptr; |
| 1906 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 1907 | int tso; |
| 1908 | struct tx_ring *tx_ring; |
| 1909 | u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb); |
| 1910 | |
| 1911 | tx_ring = &qdev->tx_ring[tx_ring_idx]; |
| 1912 | |
| 1913 | if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) { |
| 1914 | QPRINTK(qdev, TX_QUEUED, INFO, |
| 1915 | "%s: shutting down tx queue %d du to lack of resources.\n", |
| 1916 | __func__, tx_ring_idx); |
| 1917 | netif_stop_queue(ndev); |
| 1918 | atomic_inc(&tx_ring->queue_stopped); |
| 1919 | return NETDEV_TX_BUSY; |
| 1920 | } |
| 1921 | tx_ring_desc = &tx_ring->q[tx_ring->prod_idx]; |
| 1922 | mac_iocb_ptr = tx_ring_desc->queue_entry; |
| 1923 | memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr)); |
| 1924 | if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) { |
| 1925 | QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n"); |
| 1926 | return NETDEV_TX_BUSY; |
| 1927 | } |
| 1928 | |
| 1929 | mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB; |
| 1930 | mac_iocb_ptr->tid = tx_ring_desc->index; |
| 1931 | /* We use the upper 32-bits to store the tx queue for this IO. |
| 1932 | * When we get the completion we can use it to establish the context. |
| 1933 | */ |
| 1934 | mac_iocb_ptr->txq_idx = tx_ring_idx; |
| 1935 | tx_ring_desc->skb = skb; |
| 1936 | |
| 1937 | mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len); |
| 1938 | |
| 1939 | if (qdev->vlgrp && vlan_tx_tag_present(skb)) { |
| 1940 | QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n", |
| 1941 | vlan_tx_tag_get(skb)); |
| 1942 | mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V; |
| 1943 | mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb)); |
| 1944 | } |
| 1945 | tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); |
| 1946 | if (tso < 0) { |
| 1947 | dev_kfree_skb_any(skb); |
| 1948 | return NETDEV_TX_OK; |
| 1949 | } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) { |
| 1950 | ql_hw_csum_setup(skb, |
| 1951 | (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); |
| 1952 | } |
| 1953 | QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr); |
| 1954 | tx_ring->prod_idx++; |
| 1955 | if (tx_ring->prod_idx == tx_ring->wq_len) |
| 1956 | tx_ring->prod_idx = 0; |
| 1957 | wmb(); |
| 1958 | |
| 1959 | ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg); |
| 1960 | ndev->trans_start = jiffies; |
| 1961 | QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n", |
| 1962 | tx_ring->prod_idx, skb->len); |
| 1963 | |
| 1964 | atomic_dec(&tx_ring->tx_count); |
| 1965 | return NETDEV_TX_OK; |
| 1966 | } |
| 1967 | |
| 1968 | static void ql_free_shadow_space(struct ql_adapter *qdev) |
| 1969 | { |
| 1970 | if (qdev->rx_ring_shadow_reg_area) { |
| 1971 | pci_free_consistent(qdev->pdev, |
| 1972 | PAGE_SIZE, |
| 1973 | qdev->rx_ring_shadow_reg_area, |
| 1974 | qdev->rx_ring_shadow_reg_dma); |
| 1975 | qdev->rx_ring_shadow_reg_area = NULL; |
| 1976 | } |
| 1977 | if (qdev->tx_ring_shadow_reg_area) { |
| 1978 | pci_free_consistent(qdev->pdev, |
| 1979 | PAGE_SIZE, |
| 1980 | qdev->tx_ring_shadow_reg_area, |
| 1981 | qdev->tx_ring_shadow_reg_dma); |
| 1982 | qdev->tx_ring_shadow_reg_area = NULL; |
| 1983 | } |
| 1984 | } |
| 1985 | |
| 1986 | static int ql_alloc_shadow_space(struct ql_adapter *qdev) |
| 1987 | { |
| 1988 | qdev->rx_ring_shadow_reg_area = |
| 1989 | pci_alloc_consistent(qdev->pdev, |
| 1990 | PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma); |
| 1991 | if (qdev->rx_ring_shadow_reg_area == NULL) { |
| 1992 | QPRINTK(qdev, IFUP, ERR, |
| 1993 | "Allocation of RX shadow space failed.\n"); |
| 1994 | return -ENOMEM; |
| 1995 | } |
| 1996 | qdev->tx_ring_shadow_reg_area = |
| 1997 | pci_alloc_consistent(qdev->pdev, PAGE_SIZE, |
| 1998 | &qdev->tx_ring_shadow_reg_dma); |
| 1999 | if (qdev->tx_ring_shadow_reg_area == NULL) { |
| 2000 | QPRINTK(qdev, IFUP, ERR, |
| 2001 | "Allocation of TX shadow space failed.\n"); |
| 2002 | goto err_wqp_sh_area; |
| 2003 | } |
| 2004 | return 0; |
| 2005 | |
| 2006 | err_wqp_sh_area: |
| 2007 | pci_free_consistent(qdev->pdev, |
| 2008 | PAGE_SIZE, |
| 2009 | qdev->rx_ring_shadow_reg_area, |
| 2010 | qdev->rx_ring_shadow_reg_dma); |
| 2011 | return -ENOMEM; |
| 2012 | } |
| 2013 | |
| 2014 | static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) |
| 2015 | { |
| 2016 | struct tx_ring_desc *tx_ring_desc; |
| 2017 | int i; |
| 2018 | struct ob_mac_iocb_req *mac_iocb_ptr; |
| 2019 | |
| 2020 | mac_iocb_ptr = tx_ring->wq_base; |
| 2021 | tx_ring_desc = tx_ring->q; |
| 2022 | for (i = 0; i < tx_ring->wq_len; i++) { |
| 2023 | tx_ring_desc->index = i; |
| 2024 | tx_ring_desc->skb = NULL; |
| 2025 | tx_ring_desc->queue_entry = mac_iocb_ptr; |
| 2026 | mac_iocb_ptr++; |
| 2027 | tx_ring_desc++; |
| 2028 | } |
| 2029 | atomic_set(&tx_ring->tx_count, tx_ring->wq_len); |
| 2030 | atomic_set(&tx_ring->queue_stopped, 0); |
| 2031 | } |
| 2032 | |
| 2033 | static void ql_free_tx_resources(struct ql_adapter *qdev, |
| 2034 | struct tx_ring *tx_ring) |
| 2035 | { |
| 2036 | if (tx_ring->wq_base) { |
| 2037 | pci_free_consistent(qdev->pdev, tx_ring->wq_size, |
| 2038 | tx_ring->wq_base, tx_ring->wq_base_dma); |
| 2039 | tx_ring->wq_base = NULL; |
| 2040 | } |
| 2041 | kfree(tx_ring->q); |
| 2042 | tx_ring->q = NULL; |
| 2043 | } |
| 2044 | |
| 2045 | static int ql_alloc_tx_resources(struct ql_adapter *qdev, |
| 2046 | struct tx_ring *tx_ring) |
| 2047 | { |
| 2048 | tx_ring->wq_base = |
| 2049 | pci_alloc_consistent(qdev->pdev, tx_ring->wq_size, |
| 2050 | &tx_ring->wq_base_dma); |
| 2051 | |
| 2052 | if ((tx_ring->wq_base == NULL) |
| 2053 | || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) { |
| 2054 | QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n"); |
| 2055 | return -ENOMEM; |
| 2056 | } |
| 2057 | tx_ring->q = |
| 2058 | kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL); |
| 2059 | if (tx_ring->q == NULL) |
| 2060 | goto err; |
| 2061 | |
| 2062 | return 0; |
| 2063 | err: |
| 2064 | pci_free_consistent(qdev->pdev, tx_ring->wq_size, |
| 2065 | tx_ring->wq_base, tx_ring->wq_base_dma); |
| 2066 | return -ENOMEM; |
| 2067 | } |
| 2068 | |
| 2069 | void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| 2070 | { |
| 2071 | int i; |
| 2072 | struct bq_desc *lbq_desc; |
| 2073 | |
| 2074 | for (i = 0; i < rx_ring->lbq_len; i++) { |
| 2075 | lbq_desc = &rx_ring->lbq[i]; |
| 2076 | if (lbq_desc->p.lbq_page) { |
| 2077 | pci_unmap_page(qdev->pdev, |
| 2078 | pci_unmap_addr(lbq_desc, mapaddr), |
| 2079 | pci_unmap_len(lbq_desc, maplen), |
| 2080 | PCI_DMA_FROMDEVICE); |
| 2081 | |
| 2082 | put_page(lbq_desc->p.lbq_page); |
| 2083 | lbq_desc->p.lbq_page = NULL; |
| 2084 | } |
| 2085 | lbq_desc->bq->addr_lo = 0; |
| 2086 | lbq_desc->bq->addr_hi = 0; |
| 2087 | } |
| 2088 | } |
| 2089 | |
| 2090 | /* |
| 2091 | * Allocate and map a page for each element of the lbq. |
| 2092 | */ |
| 2093 | static int ql_alloc_lbq_buffers(struct ql_adapter *qdev, |
| 2094 | struct rx_ring *rx_ring) |
| 2095 | { |
| 2096 | int i; |
| 2097 | struct bq_desc *lbq_desc; |
| 2098 | u64 map; |
| 2099 | struct bq_element *bq = rx_ring->lbq_base; |
| 2100 | |
| 2101 | for (i = 0; i < rx_ring->lbq_len; i++) { |
| 2102 | lbq_desc = &rx_ring->lbq[i]; |
| 2103 | memset(lbq_desc, 0, sizeof(lbq_desc)); |
| 2104 | lbq_desc->bq = bq; |
| 2105 | lbq_desc->index = i; |
| 2106 | lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC); |
| 2107 | if (unlikely(!lbq_desc->p.lbq_page)) { |
| 2108 | QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n"); |
| 2109 | goto mem_error; |
| 2110 | } else { |
| 2111 | map = pci_map_page(qdev->pdev, |
| 2112 | lbq_desc->p.lbq_page, |
| 2113 | 0, PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| 2114 | if (pci_dma_mapping_error(qdev->pdev, map)) { |
| 2115 | QPRINTK(qdev, IFUP, ERR, |
| 2116 | "PCI mapping failed.\n"); |
| 2117 | goto mem_error; |
| 2118 | } |
| 2119 | pci_unmap_addr_set(lbq_desc, mapaddr, map); |
| 2120 | pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE); |
| 2121 | bq->addr_lo = cpu_to_le32(map); |
| 2122 | bq->addr_hi = cpu_to_le32(map >> 32); |
| 2123 | } |
| 2124 | bq++; |
| 2125 | } |
| 2126 | return 0; |
| 2127 | mem_error: |
| 2128 | ql_free_lbq_buffers(qdev, rx_ring); |
| 2129 | return -ENOMEM; |
| 2130 | } |
| 2131 | |
| 2132 | void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| 2133 | { |
| 2134 | int i; |
| 2135 | struct bq_desc *sbq_desc; |
| 2136 | |
| 2137 | for (i = 0; i < rx_ring->sbq_len; i++) { |
| 2138 | sbq_desc = &rx_ring->sbq[i]; |
| 2139 | if (sbq_desc == NULL) { |
| 2140 | QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i); |
| 2141 | return; |
| 2142 | } |
| 2143 | if (sbq_desc->p.skb) { |
| 2144 | pci_unmap_single(qdev->pdev, |
| 2145 | pci_unmap_addr(sbq_desc, mapaddr), |
| 2146 | pci_unmap_len(sbq_desc, maplen), |
| 2147 | PCI_DMA_FROMDEVICE); |
| 2148 | dev_kfree_skb(sbq_desc->p.skb); |
| 2149 | sbq_desc->p.skb = NULL; |
| 2150 | } |
| 2151 | if (sbq_desc->bq == NULL) { |
| 2152 | QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n", |
| 2153 | i); |
| 2154 | return; |
| 2155 | } |
| 2156 | sbq_desc->bq->addr_lo = 0; |
| 2157 | sbq_desc->bq->addr_hi = 0; |
| 2158 | } |
| 2159 | } |
| 2160 | |
| 2161 | /* Allocate and map an skb for each element of the sbq. */ |
| 2162 | static int ql_alloc_sbq_buffers(struct ql_adapter *qdev, |
| 2163 | struct rx_ring *rx_ring) |
| 2164 | { |
| 2165 | int i; |
| 2166 | struct bq_desc *sbq_desc; |
| 2167 | struct sk_buff *skb; |
| 2168 | u64 map; |
| 2169 | struct bq_element *bq = rx_ring->sbq_base; |
| 2170 | |
| 2171 | for (i = 0; i < rx_ring->sbq_len; i++) { |
| 2172 | sbq_desc = &rx_ring->sbq[i]; |
| 2173 | memset(sbq_desc, 0, sizeof(sbq_desc)); |
| 2174 | sbq_desc->index = i; |
| 2175 | sbq_desc->bq = bq; |
| 2176 | skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size); |
| 2177 | if (unlikely(!skb)) { |
| 2178 | /* Better luck next round */ |
| 2179 | QPRINTK(qdev, IFUP, ERR, |
| 2180 | "small buff alloc failed for %d bytes at index %d.\n", |
| 2181 | rx_ring->sbq_buf_size, i); |
| 2182 | goto mem_err; |
| 2183 | } |
| 2184 | skb_reserve(skb, QLGE_SB_PAD); |
| 2185 | sbq_desc->p.skb = skb; |
| 2186 | /* |
| 2187 | * Map only half the buffer. Because the |
| 2188 | * other half may get some data copied to it |
| 2189 | * when the completion arrives. |
| 2190 | */ |
| 2191 | map = pci_map_single(qdev->pdev, |
| 2192 | skb->data, |
| 2193 | rx_ring->sbq_buf_size / 2, |
| 2194 | PCI_DMA_FROMDEVICE); |
| 2195 | if (pci_dma_mapping_error(qdev->pdev, map)) { |
| 2196 | QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n"); |
| 2197 | goto mem_err; |
| 2198 | } |
| 2199 | pci_unmap_addr_set(sbq_desc, mapaddr, map); |
| 2200 | pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2); |
| 2201 | bq->addr_lo = /*sbq_desc->addr_lo = */ |
| 2202 | cpu_to_le32(map); |
| 2203 | bq->addr_hi = /*sbq_desc->addr_hi = */ |
| 2204 | cpu_to_le32(map >> 32); |
| 2205 | bq++; |
| 2206 | } |
| 2207 | return 0; |
| 2208 | mem_err: |
| 2209 | ql_free_sbq_buffers(qdev, rx_ring); |
| 2210 | return -ENOMEM; |
| 2211 | } |
| 2212 | |
| 2213 | static void ql_free_rx_resources(struct ql_adapter *qdev, |
| 2214 | struct rx_ring *rx_ring) |
| 2215 | { |
| 2216 | if (rx_ring->sbq_len) |
| 2217 | ql_free_sbq_buffers(qdev, rx_ring); |
| 2218 | if (rx_ring->lbq_len) |
| 2219 | ql_free_lbq_buffers(qdev, rx_ring); |
| 2220 | |
| 2221 | /* Free the small buffer queue. */ |
| 2222 | if (rx_ring->sbq_base) { |
| 2223 | pci_free_consistent(qdev->pdev, |
| 2224 | rx_ring->sbq_size, |
| 2225 | rx_ring->sbq_base, rx_ring->sbq_base_dma); |
| 2226 | rx_ring->sbq_base = NULL; |
| 2227 | } |
| 2228 | |
| 2229 | /* Free the small buffer queue control blocks. */ |
| 2230 | kfree(rx_ring->sbq); |
| 2231 | rx_ring->sbq = NULL; |
| 2232 | |
| 2233 | /* Free the large buffer queue. */ |
| 2234 | if (rx_ring->lbq_base) { |
| 2235 | pci_free_consistent(qdev->pdev, |
| 2236 | rx_ring->lbq_size, |
| 2237 | rx_ring->lbq_base, rx_ring->lbq_base_dma); |
| 2238 | rx_ring->lbq_base = NULL; |
| 2239 | } |
| 2240 | |
| 2241 | /* Free the large buffer queue control blocks. */ |
| 2242 | kfree(rx_ring->lbq); |
| 2243 | rx_ring->lbq = NULL; |
| 2244 | |
| 2245 | /* Free the rx queue. */ |
| 2246 | if (rx_ring->cq_base) { |
| 2247 | pci_free_consistent(qdev->pdev, |
| 2248 | rx_ring->cq_size, |
| 2249 | rx_ring->cq_base, rx_ring->cq_base_dma); |
| 2250 | rx_ring->cq_base = NULL; |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | /* Allocate queues and buffers for this completions queue based |
| 2255 | * on the values in the parameter structure. */ |
| 2256 | static int ql_alloc_rx_resources(struct ql_adapter *qdev, |
| 2257 | struct rx_ring *rx_ring) |
| 2258 | { |
| 2259 | |
| 2260 | /* |
| 2261 | * Allocate the completion queue for this rx_ring. |
| 2262 | */ |
| 2263 | rx_ring->cq_base = |
| 2264 | pci_alloc_consistent(qdev->pdev, rx_ring->cq_size, |
| 2265 | &rx_ring->cq_base_dma); |
| 2266 | |
| 2267 | if (rx_ring->cq_base == NULL) { |
| 2268 | QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n"); |
| 2269 | return -ENOMEM; |
| 2270 | } |
| 2271 | |
| 2272 | if (rx_ring->sbq_len) { |
| 2273 | /* |
| 2274 | * Allocate small buffer queue. |
| 2275 | */ |
| 2276 | rx_ring->sbq_base = |
| 2277 | pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size, |
| 2278 | &rx_ring->sbq_base_dma); |
| 2279 | |
| 2280 | if (rx_ring->sbq_base == NULL) { |
| 2281 | QPRINTK(qdev, IFUP, ERR, |
| 2282 | "Small buffer queue allocation failed.\n"); |
| 2283 | goto err_mem; |
| 2284 | } |
| 2285 | |
| 2286 | /* |
| 2287 | * Allocate small buffer queue control blocks. |
| 2288 | */ |
| 2289 | rx_ring->sbq = |
| 2290 | kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc), |
| 2291 | GFP_KERNEL); |
| 2292 | if (rx_ring->sbq == NULL) { |
| 2293 | QPRINTK(qdev, IFUP, ERR, |
| 2294 | "Small buffer queue control block allocation failed.\n"); |
| 2295 | goto err_mem; |
| 2296 | } |
| 2297 | |
| 2298 | if (ql_alloc_sbq_buffers(qdev, rx_ring)) { |
| 2299 | QPRINTK(qdev, IFUP, ERR, |
| 2300 | "Small buffer allocation failed.\n"); |
| 2301 | goto err_mem; |
| 2302 | } |
| 2303 | } |
| 2304 | |
| 2305 | if (rx_ring->lbq_len) { |
| 2306 | /* |
| 2307 | * Allocate large buffer queue. |
| 2308 | */ |
| 2309 | rx_ring->lbq_base = |
| 2310 | pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size, |
| 2311 | &rx_ring->lbq_base_dma); |
| 2312 | |
| 2313 | if (rx_ring->lbq_base == NULL) { |
| 2314 | QPRINTK(qdev, IFUP, ERR, |
| 2315 | "Large buffer queue allocation failed.\n"); |
| 2316 | goto err_mem; |
| 2317 | } |
| 2318 | /* |
| 2319 | * Allocate large buffer queue control blocks. |
| 2320 | */ |
| 2321 | rx_ring->lbq = |
| 2322 | kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc), |
| 2323 | GFP_KERNEL); |
| 2324 | if (rx_ring->lbq == NULL) { |
| 2325 | QPRINTK(qdev, IFUP, ERR, |
| 2326 | "Large buffer queue control block allocation failed.\n"); |
| 2327 | goto err_mem; |
| 2328 | } |
| 2329 | |
| 2330 | /* |
| 2331 | * Allocate the buffers. |
| 2332 | */ |
| 2333 | if (ql_alloc_lbq_buffers(qdev, rx_ring)) { |
| 2334 | QPRINTK(qdev, IFUP, ERR, |
| 2335 | "Large buffer allocation failed.\n"); |
| 2336 | goto err_mem; |
| 2337 | } |
| 2338 | } |
| 2339 | |
| 2340 | return 0; |
| 2341 | |
| 2342 | err_mem: |
| 2343 | ql_free_rx_resources(qdev, rx_ring); |
| 2344 | return -ENOMEM; |
| 2345 | } |
| 2346 | |
| 2347 | static void ql_tx_ring_clean(struct ql_adapter *qdev) |
| 2348 | { |
| 2349 | struct tx_ring *tx_ring; |
| 2350 | struct tx_ring_desc *tx_ring_desc; |
| 2351 | int i, j; |
| 2352 | |
| 2353 | /* |
| 2354 | * Loop through all queues and free |
| 2355 | * any resources. |
| 2356 | */ |
| 2357 | for (j = 0; j < qdev->tx_ring_count; j++) { |
| 2358 | tx_ring = &qdev->tx_ring[j]; |
| 2359 | for (i = 0; i < tx_ring->wq_len; i++) { |
| 2360 | tx_ring_desc = &tx_ring->q[i]; |
| 2361 | if (tx_ring_desc && tx_ring_desc->skb) { |
| 2362 | QPRINTK(qdev, IFDOWN, ERR, |
| 2363 | "Freeing lost SKB %p, from queue %d, index %d.\n", |
| 2364 | tx_ring_desc->skb, j, |
| 2365 | tx_ring_desc->index); |
| 2366 | ql_unmap_send(qdev, tx_ring_desc, |
| 2367 | tx_ring_desc->map_cnt); |
| 2368 | dev_kfree_skb(tx_ring_desc->skb); |
| 2369 | tx_ring_desc->skb = NULL; |
| 2370 | } |
| 2371 | } |
| 2372 | } |
| 2373 | } |
| 2374 | |
| 2375 | static void ql_free_ring_cb(struct ql_adapter *qdev) |
| 2376 | { |
| 2377 | kfree(qdev->ring_mem); |
| 2378 | } |
| 2379 | |
| 2380 | static int ql_alloc_ring_cb(struct ql_adapter *qdev) |
| 2381 | { |
| 2382 | /* Allocate space for tx/rx ring control blocks. */ |
| 2383 | qdev->ring_mem_size = |
| 2384 | (qdev->tx_ring_count * sizeof(struct tx_ring)) + |
| 2385 | (qdev->rx_ring_count * sizeof(struct rx_ring)); |
| 2386 | qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL); |
| 2387 | if (qdev->ring_mem == NULL) { |
| 2388 | return -ENOMEM; |
| 2389 | } else { |
| 2390 | qdev->rx_ring = qdev->ring_mem; |
| 2391 | qdev->tx_ring = qdev->ring_mem + |
| 2392 | (qdev->rx_ring_count * sizeof(struct rx_ring)); |
| 2393 | } |
| 2394 | return 0; |
| 2395 | } |
| 2396 | |
| 2397 | static void ql_free_mem_resources(struct ql_adapter *qdev) |
| 2398 | { |
| 2399 | int i; |
| 2400 | |
| 2401 | for (i = 0; i < qdev->tx_ring_count; i++) |
| 2402 | ql_free_tx_resources(qdev, &qdev->tx_ring[i]); |
| 2403 | for (i = 0; i < qdev->rx_ring_count; i++) |
| 2404 | ql_free_rx_resources(qdev, &qdev->rx_ring[i]); |
| 2405 | ql_free_shadow_space(qdev); |
| 2406 | } |
| 2407 | |
| 2408 | static int ql_alloc_mem_resources(struct ql_adapter *qdev) |
| 2409 | { |
| 2410 | int i; |
| 2411 | |
| 2412 | /* Allocate space for our shadow registers and such. */ |
| 2413 | if (ql_alloc_shadow_space(qdev)) |
| 2414 | return -ENOMEM; |
| 2415 | |
| 2416 | for (i = 0; i < qdev->rx_ring_count; i++) { |
| 2417 | if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) { |
| 2418 | QPRINTK(qdev, IFUP, ERR, |
| 2419 | "RX resource allocation failed.\n"); |
| 2420 | goto err_mem; |
| 2421 | } |
| 2422 | } |
| 2423 | /* Allocate tx queue resources */ |
| 2424 | for (i = 0; i < qdev->tx_ring_count; i++) { |
| 2425 | if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) { |
| 2426 | QPRINTK(qdev, IFUP, ERR, |
| 2427 | "TX resource allocation failed.\n"); |
| 2428 | goto err_mem; |
| 2429 | } |
| 2430 | } |
| 2431 | return 0; |
| 2432 | |
| 2433 | err_mem: |
| 2434 | ql_free_mem_resources(qdev); |
| 2435 | return -ENOMEM; |
| 2436 | } |
| 2437 | |
| 2438 | /* Set up the rx ring control block and pass it to the chip. |
| 2439 | * The control block is defined as |
| 2440 | * "Completion Queue Initialization Control Block", or cqicb. |
| 2441 | */ |
| 2442 | static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring) |
| 2443 | { |
| 2444 | struct cqicb *cqicb = &rx_ring->cqicb; |
| 2445 | void *shadow_reg = qdev->rx_ring_shadow_reg_area + |
| 2446 | (rx_ring->cq_id * sizeof(u64) * 4); |
| 2447 | u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + |
| 2448 | (rx_ring->cq_id * sizeof(u64) * 4); |
| 2449 | void __iomem *doorbell_area = |
| 2450 | qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id)); |
| 2451 | int err = 0; |
| 2452 | u16 bq_len; |
| 2453 | |
| 2454 | /* Set up the shadow registers for this ring. */ |
| 2455 | rx_ring->prod_idx_sh_reg = shadow_reg; |
| 2456 | rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; |
| 2457 | shadow_reg += sizeof(u64); |
| 2458 | shadow_reg_dma += sizeof(u64); |
| 2459 | rx_ring->lbq_base_indirect = shadow_reg; |
| 2460 | rx_ring->lbq_base_indirect_dma = shadow_reg_dma; |
| 2461 | shadow_reg += sizeof(u64); |
| 2462 | shadow_reg_dma += sizeof(u64); |
| 2463 | rx_ring->sbq_base_indirect = shadow_reg; |
| 2464 | rx_ring->sbq_base_indirect_dma = shadow_reg_dma; |
| 2465 | |
| 2466 | /* PCI doorbell mem area + 0x00 for consumer index register */ |
| 2467 | rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area; |
| 2468 | rx_ring->cnsmr_idx = 0; |
| 2469 | rx_ring->curr_entry = rx_ring->cq_base; |
| 2470 | |
| 2471 | /* PCI doorbell mem area + 0x04 for valid register */ |
| 2472 | rx_ring->valid_db_reg = doorbell_area + 0x04; |
| 2473 | |
| 2474 | /* PCI doorbell mem area + 0x18 for large buffer consumer */ |
| 2475 | rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18); |
| 2476 | |
| 2477 | /* PCI doorbell mem area + 0x1c */ |
| 2478 | rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c); |
| 2479 | |
| 2480 | memset((void *)cqicb, 0, sizeof(struct cqicb)); |
| 2481 | cqicb->msix_vect = rx_ring->irq; |
| 2482 | |
| 2483 | cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT); |
| 2484 | |
| 2485 | cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma); |
| 2486 | cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32); |
| 2487 | |
| 2488 | cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma); |
| 2489 | cqicb->prod_idx_addr_hi = |
| 2490 | cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32); |
| 2491 | |
| 2492 | /* |
| 2493 | * Set up the control block load flags. |
| 2494 | */ |
| 2495 | cqicb->flags = FLAGS_LC | /* Load queue base address */ |
| 2496 | FLAGS_LV | /* Load MSI-X vector */ |
| 2497 | FLAGS_LI; /* Load irq delay values */ |
| 2498 | if (rx_ring->lbq_len) { |
| 2499 | cqicb->flags |= FLAGS_LL; /* Load lbq values */ |
| 2500 | *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma; |
| 2501 | cqicb->lbq_addr_lo = |
| 2502 | cpu_to_le32(rx_ring->lbq_base_indirect_dma); |
| 2503 | cqicb->lbq_addr_hi = |
| 2504 | cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32); |
| 2505 | cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size); |
| 2506 | bq_len = (u16) rx_ring->lbq_len; |
| 2507 | cqicb->lbq_len = cpu_to_le16(bq_len); |
| 2508 | rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16; |
| 2509 | rx_ring->lbq_curr_idx = 0; |
| 2510 | rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx; |
| 2511 | rx_ring->lbq_free_cnt = 16; |
| 2512 | } |
| 2513 | if (rx_ring->sbq_len) { |
| 2514 | cqicb->flags |= FLAGS_LS; /* Load sbq values */ |
| 2515 | *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma; |
| 2516 | cqicb->sbq_addr_lo = |
| 2517 | cpu_to_le32(rx_ring->sbq_base_indirect_dma); |
| 2518 | cqicb->sbq_addr_hi = |
| 2519 | cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32); |
| 2520 | cqicb->sbq_buf_size = |
| 2521 | cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8); |
| 2522 | bq_len = (u16) rx_ring->sbq_len; |
| 2523 | cqicb->sbq_len = cpu_to_le16(bq_len); |
| 2524 | rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16; |
| 2525 | rx_ring->sbq_curr_idx = 0; |
| 2526 | rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx; |
| 2527 | rx_ring->sbq_free_cnt = 16; |
| 2528 | } |
| 2529 | switch (rx_ring->type) { |
| 2530 | case TX_Q: |
| 2531 | /* If there's only one interrupt, then we use |
| 2532 | * worker threads to process the outbound |
| 2533 | * completion handling rx_rings. We do this so |
| 2534 | * they can be run on multiple CPUs. There is |
| 2535 | * room to play with this more where we would only |
| 2536 | * run in a worker if there are more than x number |
| 2537 | * of outbound completions on the queue and more |
| 2538 | * than one queue active. Some threshold that |
| 2539 | * would indicate a benefit in spite of the cost |
| 2540 | * of a context switch. |
| 2541 | * If there's more than one interrupt, then the |
| 2542 | * outbound completions are processed in the ISR. |
| 2543 | */ |
| 2544 | if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) |
| 2545 | INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean); |
| 2546 | else { |
| 2547 | /* With all debug warnings on we see a WARN_ON message |
| 2548 | * when we free the skb in the interrupt context. |
| 2549 | */ |
| 2550 | INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean); |
| 2551 | } |
| 2552 | cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs); |
| 2553 | cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames); |
| 2554 | break; |
| 2555 | case DEFAULT_Q: |
| 2556 | INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean); |
| 2557 | cqicb->irq_delay = 0; |
| 2558 | cqicb->pkt_delay = 0; |
| 2559 | break; |
| 2560 | case RX_Q: |
| 2561 | /* Inbound completion handling rx_rings run in |
| 2562 | * separate NAPI contexts. |
| 2563 | */ |
| 2564 | netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix, |
| 2565 | 64); |
| 2566 | cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs); |
| 2567 | cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames); |
| 2568 | break; |
| 2569 | default: |
| 2570 | QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n", |
| 2571 | rx_ring->type); |
| 2572 | } |
| 2573 | QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n"); |
| 2574 | err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb), |
| 2575 | CFG_LCQ, rx_ring->cq_id); |
| 2576 | if (err) { |
| 2577 | QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n"); |
| 2578 | return err; |
| 2579 | } |
| 2580 | QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n"); |
| 2581 | /* |
| 2582 | * Advance the producer index for the buffer queues. |
| 2583 | */ |
| 2584 | wmb(); |
| 2585 | if (rx_ring->lbq_len) |
| 2586 | ql_write_db_reg(rx_ring->lbq_prod_idx, |
| 2587 | rx_ring->lbq_prod_idx_db_reg); |
| 2588 | if (rx_ring->sbq_len) |
| 2589 | ql_write_db_reg(rx_ring->sbq_prod_idx, |
| 2590 | rx_ring->sbq_prod_idx_db_reg); |
| 2591 | return err; |
| 2592 | } |
| 2593 | |
| 2594 | static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring) |
| 2595 | { |
| 2596 | struct wqicb *wqicb = (struct wqicb *)tx_ring; |
| 2597 | void __iomem *doorbell_area = |
| 2598 | qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id); |
| 2599 | void *shadow_reg = qdev->tx_ring_shadow_reg_area + |
| 2600 | (tx_ring->wq_id * sizeof(u64)); |
| 2601 | u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + |
| 2602 | (tx_ring->wq_id * sizeof(u64)); |
| 2603 | int err = 0; |
| 2604 | |
| 2605 | /* |
| 2606 | * Assign doorbell registers for this tx_ring. |
| 2607 | */ |
| 2608 | /* TX PCI doorbell mem area for tx producer index */ |
| 2609 | tx_ring->prod_idx_db_reg = (u32 *) doorbell_area; |
| 2610 | tx_ring->prod_idx = 0; |
| 2611 | /* TX PCI doorbell mem area + 0x04 */ |
| 2612 | tx_ring->valid_db_reg = doorbell_area + 0x04; |
| 2613 | |
| 2614 | /* |
| 2615 | * Assign shadow registers for this tx_ring. |
| 2616 | */ |
| 2617 | tx_ring->cnsmr_idx_sh_reg = shadow_reg; |
| 2618 | tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; |
| 2619 | |
| 2620 | wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT); |
| 2621 | wqicb->flags = cpu_to_le16(Q_FLAGS_LC | |
| 2622 | Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO); |
| 2623 | wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id); |
| 2624 | wqicb->rid = 0; |
| 2625 | wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma); |
| 2626 | wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32); |
| 2627 | |
| 2628 | wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma); |
| 2629 | wqicb->cnsmr_idx_addr_hi = |
| 2630 | cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32); |
| 2631 | |
| 2632 | ql_init_tx_ring(qdev, tx_ring); |
| 2633 | |
| 2634 | err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ, |
| 2635 | (u16) tx_ring->wq_id); |
| 2636 | if (err) { |
| 2637 | QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n"); |
| 2638 | return err; |
| 2639 | } |
| 2640 | QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n"); |
| 2641 | return err; |
| 2642 | } |
| 2643 | |
| 2644 | static void ql_disable_msix(struct ql_adapter *qdev) |
| 2645 | { |
| 2646 | if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { |
| 2647 | pci_disable_msix(qdev->pdev); |
| 2648 | clear_bit(QL_MSIX_ENABLED, &qdev->flags); |
| 2649 | kfree(qdev->msi_x_entry); |
| 2650 | qdev->msi_x_entry = NULL; |
| 2651 | } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) { |
| 2652 | pci_disable_msi(qdev->pdev); |
| 2653 | clear_bit(QL_MSI_ENABLED, &qdev->flags); |
| 2654 | } |
| 2655 | } |
| 2656 | |
| 2657 | static void ql_enable_msix(struct ql_adapter *qdev) |
| 2658 | { |
| 2659 | int i; |
| 2660 | |
| 2661 | qdev->intr_count = 1; |
| 2662 | /* Get the MSIX vectors. */ |
| 2663 | if (irq_type == MSIX_IRQ) { |
| 2664 | /* Try to alloc space for the msix struct, |
| 2665 | * if it fails then go to MSI/legacy. |
| 2666 | */ |
| 2667 | qdev->msi_x_entry = kcalloc(qdev->rx_ring_count, |
| 2668 | sizeof(struct msix_entry), |
| 2669 | GFP_KERNEL); |
| 2670 | if (!qdev->msi_x_entry) { |
| 2671 | irq_type = MSI_IRQ; |
| 2672 | goto msi; |
| 2673 | } |
| 2674 | |
| 2675 | for (i = 0; i < qdev->rx_ring_count; i++) |
| 2676 | qdev->msi_x_entry[i].entry = i; |
| 2677 | |
| 2678 | if (!pci_enable_msix |
| 2679 | (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) { |
| 2680 | set_bit(QL_MSIX_ENABLED, &qdev->flags); |
| 2681 | qdev->intr_count = qdev->rx_ring_count; |
| 2682 | QPRINTK(qdev, IFUP, INFO, |
| 2683 | "MSI-X Enabled, got %d vectors.\n", |
| 2684 | qdev->intr_count); |
| 2685 | return; |
| 2686 | } else { |
| 2687 | kfree(qdev->msi_x_entry); |
| 2688 | qdev->msi_x_entry = NULL; |
| 2689 | QPRINTK(qdev, IFUP, WARNING, |
| 2690 | "MSI-X Enable failed, trying MSI.\n"); |
| 2691 | irq_type = MSI_IRQ; |
| 2692 | } |
| 2693 | } |
| 2694 | msi: |
| 2695 | if (irq_type == MSI_IRQ) { |
| 2696 | if (!pci_enable_msi(qdev->pdev)) { |
| 2697 | set_bit(QL_MSI_ENABLED, &qdev->flags); |
| 2698 | QPRINTK(qdev, IFUP, INFO, |
| 2699 | "Running with MSI interrupts.\n"); |
| 2700 | return; |
| 2701 | } |
| 2702 | } |
| 2703 | irq_type = LEG_IRQ; |
| 2704 | spin_lock_init(&qdev->legacy_lock); |
| 2705 | qdev->legacy_check = ql_legacy_check; |
| 2706 | QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n"); |
| 2707 | } |
| 2708 | |
| 2709 | /* |
| 2710 | * Here we build the intr_context structures based on |
| 2711 | * our rx_ring count and intr vector count. |
| 2712 | * The intr_context structure is used to hook each vector |
| 2713 | * to possibly different handlers. |
| 2714 | */ |
| 2715 | static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev) |
| 2716 | { |
| 2717 | int i = 0; |
| 2718 | struct intr_context *intr_context = &qdev->intr_context[0]; |
| 2719 | |
| 2720 | ql_enable_msix(qdev); |
| 2721 | |
| 2722 | if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) { |
| 2723 | /* Each rx_ring has it's |
| 2724 | * own intr_context since we have separate |
| 2725 | * vectors for each queue. |
| 2726 | * This only true when MSI-X is enabled. |
| 2727 | */ |
| 2728 | for (i = 0; i < qdev->intr_count; i++, intr_context++) { |
| 2729 | qdev->rx_ring[i].irq = i; |
| 2730 | intr_context->intr = i; |
| 2731 | intr_context->qdev = qdev; |
| 2732 | /* |
| 2733 | * We set up each vectors enable/disable/read bits so |
| 2734 | * there's no bit/mask calculations in the critical path. |
| 2735 | */ |
| 2736 | intr_context->intr_en_mask = |
| 2737 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | |
| 2738 | INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD |
| 2739 | | i; |
| 2740 | intr_context->intr_dis_mask = |
| 2741 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | |
| 2742 | INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK | |
| 2743 | INTR_EN_IHD | i; |
| 2744 | intr_context->intr_read_mask = |
| 2745 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | |
| 2746 | INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD | |
| 2747 | i; |
| 2748 | |
| 2749 | if (i == 0) { |
| 2750 | /* |
| 2751 | * Default queue handles bcast/mcast plus |
| 2752 | * async events. Needs buffers. |
| 2753 | */ |
| 2754 | intr_context->handler = qlge_isr; |
| 2755 | sprintf(intr_context->name, "%s-default-queue", |
| 2756 | qdev->ndev->name); |
| 2757 | } else if (i < qdev->rss_ring_first_cq_id) { |
| 2758 | /* |
| 2759 | * Outbound queue is for outbound completions only. |
| 2760 | */ |
| 2761 | intr_context->handler = qlge_msix_tx_isr; |
| 2762 | sprintf(intr_context->name, "%s-txq-%d", |
| 2763 | qdev->ndev->name, i); |
| 2764 | } else { |
| 2765 | /* |
| 2766 | * Inbound queues handle unicast frames only. |
| 2767 | */ |
| 2768 | intr_context->handler = qlge_msix_rx_isr; |
| 2769 | sprintf(intr_context->name, "%s-rxq-%d", |
| 2770 | qdev->ndev->name, i); |
| 2771 | } |
| 2772 | } |
| 2773 | } else { |
| 2774 | /* |
| 2775 | * All rx_rings use the same intr_context since |
| 2776 | * there is only one vector. |
| 2777 | */ |
| 2778 | intr_context->intr = 0; |
| 2779 | intr_context->qdev = qdev; |
| 2780 | /* |
| 2781 | * We set up each vectors enable/disable/read bits so |
| 2782 | * there's no bit/mask calculations in the critical path. |
| 2783 | */ |
| 2784 | intr_context->intr_en_mask = |
| 2785 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE; |
| 2786 | intr_context->intr_dis_mask = |
| 2787 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | |
| 2788 | INTR_EN_TYPE_DISABLE; |
| 2789 | intr_context->intr_read_mask = |
| 2790 | INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ; |
| 2791 | /* |
| 2792 | * Single interrupt means one handler for all rings. |
| 2793 | */ |
| 2794 | intr_context->handler = qlge_isr; |
| 2795 | sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name); |
| 2796 | for (i = 0; i < qdev->rx_ring_count; i++) |
| 2797 | qdev->rx_ring[i].irq = 0; |
| 2798 | } |
| 2799 | } |
| 2800 | |
| 2801 | static void ql_free_irq(struct ql_adapter *qdev) |
| 2802 | { |
| 2803 | int i; |
| 2804 | struct intr_context *intr_context = &qdev->intr_context[0]; |
| 2805 | |
| 2806 | for (i = 0; i < qdev->intr_count; i++, intr_context++) { |
| 2807 | if (intr_context->hooked) { |
| 2808 | if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { |
| 2809 | free_irq(qdev->msi_x_entry[i].vector, |
| 2810 | &qdev->rx_ring[i]); |
| 2811 | QPRINTK(qdev, IFDOWN, ERR, |
| 2812 | "freeing msix interrupt %d.\n", i); |
| 2813 | } else { |
| 2814 | free_irq(qdev->pdev->irq, &qdev->rx_ring[0]); |
| 2815 | QPRINTK(qdev, IFDOWN, ERR, |
| 2816 | "freeing msi interrupt %d.\n", i); |
| 2817 | } |
| 2818 | } |
| 2819 | } |
| 2820 | ql_disable_msix(qdev); |
| 2821 | } |
| 2822 | |
| 2823 | static int ql_request_irq(struct ql_adapter *qdev) |
| 2824 | { |
| 2825 | int i; |
| 2826 | int status = 0; |
| 2827 | struct pci_dev *pdev = qdev->pdev; |
| 2828 | struct intr_context *intr_context = &qdev->intr_context[0]; |
| 2829 | |
| 2830 | ql_resolve_queues_to_irqs(qdev); |
| 2831 | |
| 2832 | for (i = 0; i < qdev->intr_count; i++, intr_context++) { |
| 2833 | atomic_set(&intr_context->irq_cnt, 0); |
| 2834 | if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) { |
| 2835 | status = request_irq(qdev->msi_x_entry[i].vector, |
| 2836 | intr_context->handler, |
| 2837 | 0, |
| 2838 | intr_context->name, |
| 2839 | &qdev->rx_ring[i]); |
| 2840 | if (status) { |
| 2841 | QPRINTK(qdev, IFUP, ERR, |
| 2842 | "Failed request for MSIX interrupt %d.\n", |
| 2843 | i); |
| 2844 | goto err_irq; |
| 2845 | } else { |
| 2846 | QPRINTK(qdev, IFUP, INFO, |
| 2847 | "Hooked intr %d, queue type %s%s%s, with name %s.\n", |
| 2848 | i, |
| 2849 | qdev->rx_ring[i].type == |
| 2850 | DEFAULT_Q ? "DEFAULT_Q" : "", |
| 2851 | qdev->rx_ring[i].type == |
| 2852 | TX_Q ? "TX_Q" : "", |
| 2853 | qdev->rx_ring[i].type == |
| 2854 | RX_Q ? "RX_Q" : "", intr_context->name); |
| 2855 | } |
| 2856 | } else { |
| 2857 | QPRINTK(qdev, IFUP, DEBUG, |
| 2858 | "trying msi or legacy interrupts.\n"); |
| 2859 | QPRINTK(qdev, IFUP, DEBUG, |
| 2860 | "%s: irq = %d.\n", __func__, pdev->irq); |
| 2861 | QPRINTK(qdev, IFUP, DEBUG, |
| 2862 | "%s: context->name = %s.\n", __func__, |
| 2863 | intr_context->name); |
| 2864 | QPRINTK(qdev, IFUP, DEBUG, |
| 2865 | "%s: dev_id = 0x%p.\n", __func__, |
| 2866 | &qdev->rx_ring[0]); |
| 2867 | status = |
| 2868 | request_irq(pdev->irq, qlge_isr, |
| 2869 | test_bit(QL_MSI_ENABLED, |
| 2870 | &qdev-> |
| 2871 | flags) ? 0 : IRQF_SHARED, |
| 2872 | intr_context->name, &qdev->rx_ring[0]); |
| 2873 | if (status) |
| 2874 | goto err_irq; |
| 2875 | |
| 2876 | QPRINTK(qdev, IFUP, ERR, |
| 2877 | "Hooked intr %d, queue type %s%s%s, with name %s.\n", |
| 2878 | i, |
| 2879 | qdev->rx_ring[0].type == |
| 2880 | DEFAULT_Q ? "DEFAULT_Q" : "", |
| 2881 | qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "", |
| 2882 | qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "", |
| 2883 | intr_context->name); |
| 2884 | } |
| 2885 | intr_context->hooked = 1; |
| 2886 | } |
| 2887 | return status; |
| 2888 | err_irq: |
| 2889 | QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n"); |
| 2890 | ql_free_irq(qdev); |
| 2891 | return status; |
| 2892 | } |
| 2893 | |
| 2894 | static int ql_start_rss(struct ql_adapter *qdev) |
| 2895 | { |
| 2896 | struct ricb *ricb = &qdev->ricb; |
| 2897 | int status = 0; |
| 2898 | int i; |
| 2899 | u8 *hash_id = (u8 *) ricb->hash_cq_id; |
| 2900 | |
| 2901 | memset((void *)ricb, 0, sizeof(ricb)); |
| 2902 | |
| 2903 | ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K; |
| 2904 | ricb->flags = |
| 2905 | (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 | |
| 2906 | RSS_RT6); |
| 2907 | ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1); |
| 2908 | |
| 2909 | /* |
| 2910 | * Fill out the Indirection Table. |
| 2911 | */ |
| 2912 | for (i = 0; i < 32; i++) |
| 2913 | hash_id[i] = i & 1; |
| 2914 | |
| 2915 | /* |
| 2916 | * Random values for the IPv6 and IPv4 Hash Keys. |
| 2917 | */ |
| 2918 | get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40); |
| 2919 | get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16); |
| 2920 | |
| 2921 | QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n"); |
| 2922 | |
| 2923 | status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0); |
| 2924 | if (status) { |
| 2925 | QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n"); |
| 2926 | return status; |
| 2927 | } |
| 2928 | QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n"); |
| 2929 | return status; |
| 2930 | } |
| 2931 | |
| 2932 | /* Initialize the frame-to-queue routing. */ |
| 2933 | static int ql_route_initialize(struct ql_adapter *qdev) |
| 2934 | { |
| 2935 | int status = 0; |
| 2936 | int i; |
| 2937 | |
| 2938 | /* Clear all the entries in the routing table. */ |
| 2939 | for (i = 0; i < 16; i++) { |
| 2940 | status = ql_set_routing_reg(qdev, i, 0, 0); |
| 2941 | if (status) { |
| 2942 | QPRINTK(qdev, IFUP, ERR, |
| 2943 | "Failed to init routing register for CAM packets.\n"); |
| 2944 | return status; |
| 2945 | } |
| 2946 | } |
| 2947 | |
| 2948 | status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1); |
| 2949 | if (status) { |
| 2950 | QPRINTK(qdev, IFUP, ERR, |
| 2951 | "Failed to init routing register for error packets.\n"); |
| 2952 | return status; |
| 2953 | } |
| 2954 | status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1); |
| 2955 | if (status) { |
| 2956 | QPRINTK(qdev, IFUP, ERR, |
| 2957 | "Failed to init routing register for broadcast packets.\n"); |
| 2958 | return status; |
| 2959 | } |
| 2960 | /* If we have more than one inbound queue, then turn on RSS in the |
| 2961 | * routing block. |
| 2962 | */ |
| 2963 | if (qdev->rss_ring_count > 1) { |
| 2964 | status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT, |
| 2965 | RT_IDX_RSS_MATCH, 1); |
| 2966 | if (status) { |
| 2967 | QPRINTK(qdev, IFUP, ERR, |
| 2968 | "Failed to init routing register for MATCH RSS packets.\n"); |
| 2969 | return status; |
| 2970 | } |
| 2971 | } |
| 2972 | |
| 2973 | status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT, |
| 2974 | RT_IDX_CAM_HIT, 1); |
| 2975 | if (status) { |
| 2976 | QPRINTK(qdev, IFUP, ERR, |
| 2977 | "Failed to init routing register for CAM packets.\n"); |
| 2978 | return status; |
| 2979 | } |
| 2980 | return status; |
| 2981 | } |
| 2982 | |
| 2983 | static int ql_adapter_initialize(struct ql_adapter *qdev) |
| 2984 | { |
| 2985 | u32 value, mask; |
| 2986 | int i; |
| 2987 | int status = 0; |
| 2988 | |
| 2989 | /* |
| 2990 | * Set up the System register to halt on errors. |
| 2991 | */ |
| 2992 | value = SYS_EFE | SYS_FAE; |
| 2993 | mask = value << 16; |
| 2994 | ql_write32(qdev, SYS, mask | value); |
| 2995 | |
| 2996 | /* Set the default queue. */ |
| 2997 | value = NIC_RCV_CFG_DFQ; |
| 2998 | mask = NIC_RCV_CFG_DFQ_MASK; |
| 2999 | ql_write32(qdev, NIC_RCV_CFG, (mask | value)); |
| 3000 | |
| 3001 | /* Set the MPI interrupt to enabled. */ |
| 3002 | ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI); |
| 3003 | |
| 3004 | /* Enable the function, set pagesize, enable error checking. */ |
| 3005 | value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND | |
| 3006 | FSC_EC | FSC_VM_PAGE_4K | FSC_SH; |
| 3007 | |
| 3008 | /* Set/clear header splitting. */ |
| 3009 | mask = FSC_VM_PAGESIZE_MASK | |
| 3010 | FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16); |
| 3011 | ql_write32(qdev, FSC, mask | value); |
| 3012 | |
| 3013 | ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP | |
| 3014 | min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE)); |
| 3015 | |
| 3016 | /* Start up the rx queues. */ |
| 3017 | for (i = 0; i < qdev->rx_ring_count; i++) { |
| 3018 | status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]); |
| 3019 | if (status) { |
| 3020 | QPRINTK(qdev, IFUP, ERR, |
| 3021 | "Failed to start rx ring[%d].\n", i); |
| 3022 | return status; |
| 3023 | } |
| 3024 | } |
| 3025 | |
| 3026 | /* If there is more than one inbound completion queue |
| 3027 | * then download a RICB to configure RSS. |
| 3028 | */ |
| 3029 | if (qdev->rss_ring_count > 1) { |
| 3030 | status = ql_start_rss(qdev); |
| 3031 | if (status) { |
| 3032 | QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n"); |
| 3033 | return status; |
| 3034 | } |
| 3035 | } |
| 3036 | |
| 3037 | /* Start up the tx queues. */ |
| 3038 | for (i = 0; i < qdev->tx_ring_count; i++) { |
| 3039 | status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]); |
| 3040 | if (status) { |
| 3041 | QPRINTK(qdev, IFUP, ERR, |
| 3042 | "Failed to start tx ring[%d].\n", i); |
| 3043 | return status; |
| 3044 | } |
| 3045 | } |
| 3046 | |
| 3047 | status = ql_port_initialize(qdev); |
| 3048 | if (status) { |
| 3049 | QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n"); |
| 3050 | return status; |
| 3051 | } |
| 3052 | |
| 3053 | status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr, |
| 3054 | MAC_ADDR_TYPE_CAM_MAC, qdev->func); |
| 3055 | if (status) { |
| 3056 | QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n"); |
| 3057 | return status; |
| 3058 | } |
| 3059 | |
| 3060 | status = ql_route_initialize(qdev); |
| 3061 | if (status) { |
| 3062 | QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n"); |
| 3063 | return status; |
| 3064 | } |
| 3065 | |
| 3066 | /* Start NAPI for the RSS queues. */ |
| 3067 | for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) { |
| 3068 | QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n", |
| 3069 | i); |
| 3070 | napi_enable(&qdev->rx_ring[i].napi); |
| 3071 | } |
| 3072 | |
| 3073 | return status; |
| 3074 | } |
| 3075 | |
| 3076 | /* Issue soft reset to chip. */ |
| 3077 | static int ql_adapter_reset(struct ql_adapter *qdev) |
| 3078 | { |
| 3079 | u32 value; |
| 3080 | int max_wait_time; |
| 3081 | int status = 0; |
| 3082 | int resetCnt = 0; |
| 3083 | |
| 3084 | #define MAX_RESET_CNT 1 |
| 3085 | issueReset: |
| 3086 | resetCnt++; |
| 3087 | QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n"); |
| 3088 | ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR); |
| 3089 | /* Wait for reset to complete. */ |
| 3090 | max_wait_time = 3; |
| 3091 | QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n", |
| 3092 | max_wait_time); |
| 3093 | do { |
| 3094 | value = ql_read32(qdev, RST_FO); |
| 3095 | if ((value & RST_FO_FR) == 0) |
| 3096 | break; |
| 3097 | |
| 3098 | ssleep(1); |
| 3099 | } while ((--max_wait_time)); |
| 3100 | if (value & RST_FO_FR) { |
| 3101 | QPRINTK(qdev, IFDOWN, ERR, |
| 3102 | "Stuck in SoftReset: FSC_SR:0x%08x\n", value); |
| 3103 | if (resetCnt < MAX_RESET_CNT) |
| 3104 | goto issueReset; |
| 3105 | } |
| 3106 | if (max_wait_time == 0) { |
| 3107 | status = -ETIMEDOUT; |
| 3108 | QPRINTK(qdev, IFDOWN, ERR, |
| 3109 | "ETIMEOUT!!! errored out of resetting the chip!\n"); |
| 3110 | } |
| 3111 | |
| 3112 | return status; |
| 3113 | } |
| 3114 | |
| 3115 | static void ql_display_dev_info(struct net_device *ndev) |
| 3116 | { |
| 3117 | struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); |
| 3118 | |
| 3119 | QPRINTK(qdev, PROBE, INFO, |
| 3120 | "Function #%d, NIC Roll %d, NIC Rev = %d, " |
| 3121 | "XG Roll = %d, XG Rev = %d.\n", |
| 3122 | qdev->func, |
| 3123 | qdev->chip_rev_id & 0x0000000f, |
| 3124 | qdev->chip_rev_id >> 4 & 0x0000000f, |
| 3125 | qdev->chip_rev_id >> 8 & 0x0000000f, |
| 3126 | qdev->chip_rev_id >> 12 & 0x0000000f); |
| 3127 | QPRINTK(qdev, PROBE, INFO, |
| 3128 | "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", |
| 3129 | ndev->dev_addr[0], ndev->dev_addr[1], |
| 3130 | ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4], |
| 3131 | ndev->dev_addr[5]); |
| 3132 | } |
| 3133 | |
| 3134 | static int ql_adapter_down(struct ql_adapter *qdev) |
| 3135 | { |
| 3136 | struct net_device *ndev = qdev->ndev; |
| 3137 | int i, status = 0; |
| 3138 | struct rx_ring *rx_ring; |
| 3139 | |
| 3140 | netif_stop_queue(ndev); |
| 3141 | netif_carrier_off(ndev); |
| 3142 | |
| 3143 | cancel_delayed_work_sync(&qdev->asic_reset_work); |
| 3144 | cancel_delayed_work_sync(&qdev->mpi_reset_work); |
| 3145 | cancel_delayed_work_sync(&qdev->mpi_work); |
| 3146 | |
| 3147 | /* The default queue at index 0 is always processed in |
| 3148 | * a workqueue. |
| 3149 | */ |
| 3150 | cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work); |
| 3151 | |
| 3152 | /* The rest of the rx_rings are processed in |
| 3153 | * a workqueue only if it's a single interrupt |
| 3154 | * environment (MSI/Legacy). |
| 3155 | */ |
| 3156 | for (i = 1; i > qdev->rx_ring_count; i++) { |
| 3157 | rx_ring = &qdev->rx_ring[i]; |
| 3158 | /* Only the RSS rings use NAPI on multi irq |
| 3159 | * environment. Outbound completion processing |
| 3160 | * is done in interrupt context. |
| 3161 | */ |
| 3162 | if (i >= qdev->rss_ring_first_cq_id) { |
| 3163 | napi_disable(&rx_ring->napi); |
| 3164 | } else { |
| 3165 | cancel_delayed_work_sync(&rx_ring->rx_work); |
| 3166 | } |
| 3167 | } |
| 3168 | |
| 3169 | clear_bit(QL_ADAPTER_UP, &qdev->flags); |
| 3170 | |
| 3171 | ql_disable_interrupts(qdev); |
| 3172 | |
| 3173 | ql_tx_ring_clean(qdev); |
| 3174 | |
| 3175 | spin_lock(&qdev->hw_lock); |
| 3176 | status = ql_adapter_reset(qdev); |
| 3177 | if (status) |
| 3178 | QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n", |
| 3179 | qdev->func); |
| 3180 | spin_unlock(&qdev->hw_lock); |
| 3181 | return status; |
| 3182 | } |
| 3183 | |
| 3184 | static int ql_adapter_up(struct ql_adapter *qdev) |
| 3185 | { |
| 3186 | int err = 0; |
| 3187 | |
| 3188 | spin_lock(&qdev->hw_lock); |
| 3189 | err = ql_adapter_initialize(qdev); |
| 3190 | if (err) { |
| 3191 | QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n"); |
| 3192 | spin_unlock(&qdev->hw_lock); |
| 3193 | goto err_init; |
| 3194 | } |
| 3195 | spin_unlock(&qdev->hw_lock); |
| 3196 | set_bit(QL_ADAPTER_UP, &qdev->flags); |
| 3197 | ql_enable_interrupts(qdev); |
| 3198 | ql_enable_all_completion_interrupts(qdev); |
| 3199 | if ((ql_read32(qdev, STS) & qdev->port_init)) { |
| 3200 | netif_carrier_on(qdev->ndev); |
| 3201 | netif_start_queue(qdev->ndev); |
| 3202 | } |
| 3203 | |
| 3204 | return 0; |
| 3205 | err_init: |
| 3206 | ql_adapter_reset(qdev); |
| 3207 | return err; |
| 3208 | } |
| 3209 | |
| 3210 | static int ql_cycle_adapter(struct ql_adapter *qdev) |
| 3211 | { |
| 3212 | int status; |
| 3213 | |
| 3214 | status = ql_adapter_down(qdev); |
| 3215 | if (status) |
| 3216 | goto error; |
| 3217 | |
| 3218 | status = ql_adapter_up(qdev); |
| 3219 | if (status) |
| 3220 | goto error; |
| 3221 | |
| 3222 | return status; |
| 3223 | error: |
| 3224 | QPRINTK(qdev, IFUP, ALERT, |
| 3225 | "Driver up/down cycle failed, closing device\n"); |
| 3226 | rtnl_lock(); |
| 3227 | dev_close(qdev->ndev); |
| 3228 | rtnl_unlock(); |
| 3229 | return status; |
| 3230 | } |
| 3231 | |
| 3232 | static void ql_release_adapter_resources(struct ql_adapter *qdev) |
| 3233 | { |
| 3234 | ql_free_mem_resources(qdev); |
| 3235 | ql_free_irq(qdev); |
| 3236 | } |
| 3237 | |
| 3238 | static int ql_get_adapter_resources(struct ql_adapter *qdev) |
| 3239 | { |
| 3240 | int status = 0; |
| 3241 | |
| 3242 | if (ql_alloc_mem_resources(qdev)) { |
| 3243 | QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n"); |
| 3244 | return -ENOMEM; |
| 3245 | } |
| 3246 | status = ql_request_irq(qdev); |
| 3247 | if (status) |
| 3248 | goto err_irq; |
| 3249 | return status; |
| 3250 | err_irq: |
| 3251 | ql_free_mem_resources(qdev); |
| 3252 | return status; |
| 3253 | } |
| 3254 | |
| 3255 | static int qlge_close(struct net_device *ndev) |
| 3256 | { |
| 3257 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3258 | |
| 3259 | /* |
| 3260 | * Wait for device to recover from a reset. |
| 3261 | * (Rarely happens, but possible.) |
| 3262 | */ |
| 3263 | while (!test_bit(QL_ADAPTER_UP, &qdev->flags)) |
| 3264 | msleep(1); |
| 3265 | ql_adapter_down(qdev); |
| 3266 | ql_release_adapter_resources(qdev); |
| 3267 | ql_free_ring_cb(qdev); |
| 3268 | return 0; |
| 3269 | } |
| 3270 | |
| 3271 | static int ql_configure_rings(struct ql_adapter *qdev) |
| 3272 | { |
| 3273 | int i; |
| 3274 | struct rx_ring *rx_ring; |
| 3275 | struct tx_ring *tx_ring; |
| 3276 | int cpu_cnt = num_online_cpus(); |
| 3277 | |
| 3278 | /* |
| 3279 | * For each processor present we allocate one |
| 3280 | * rx_ring for outbound completions, and one |
| 3281 | * rx_ring for inbound completions. Plus there is |
| 3282 | * always the one default queue. For the CPU |
| 3283 | * counts we end up with the following rx_rings: |
| 3284 | * rx_ring count = |
| 3285 | * one default queue + |
| 3286 | * (CPU count * outbound completion rx_ring) + |
| 3287 | * (CPU count * inbound (RSS) completion rx_ring) |
| 3288 | * To keep it simple we limit the total number of |
| 3289 | * queues to < 32, so we truncate CPU to 8. |
| 3290 | * This limitation can be removed when requested. |
| 3291 | */ |
| 3292 | |
| 3293 | if (cpu_cnt > 8) |
| 3294 | cpu_cnt = 8; |
| 3295 | |
| 3296 | /* |
| 3297 | * rx_ring[0] is always the default queue. |
| 3298 | */ |
| 3299 | /* Allocate outbound completion ring for each CPU. */ |
| 3300 | qdev->tx_ring_count = cpu_cnt; |
| 3301 | /* Allocate inbound completion (RSS) ring for each CPU. */ |
| 3302 | qdev->rss_ring_count = cpu_cnt; |
| 3303 | /* cq_id for the first inbound ring handler. */ |
| 3304 | qdev->rss_ring_first_cq_id = cpu_cnt + 1; |
| 3305 | /* |
| 3306 | * qdev->rx_ring_count: |
| 3307 | * Total number of rx_rings. This includes the one |
| 3308 | * default queue, a number of outbound completion |
| 3309 | * handler rx_rings, and the number of inbound |
| 3310 | * completion handler rx_rings. |
| 3311 | */ |
| 3312 | qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1; |
| 3313 | |
| 3314 | if (ql_alloc_ring_cb(qdev)) |
| 3315 | return -ENOMEM; |
| 3316 | |
| 3317 | for (i = 0; i < qdev->tx_ring_count; i++) { |
| 3318 | tx_ring = &qdev->tx_ring[i]; |
| 3319 | memset((void *)tx_ring, 0, sizeof(tx_ring)); |
| 3320 | tx_ring->qdev = qdev; |
| 3321 | tx_ring->wq_id = i; |
| 3322 | tx_ring->wq_len = qdev->tx_ring_size; |
| 3323 | tx_ring->wq_size = |
| 3324 | tx_ring->wq_len * sizeof(struct ob_mac_iocb_req); |
| 3325 | |
| 3326 | /* |
| 3327 | * The completion queue ID for the tx rings start |
| 3328 | * immediately after the default Q ID, which is zero. |
| 3329 | */ |
| 3330 | tx_ring->cq_id = i + 1; |
| 3331 | } |
| 3332 | |
| 3333 | for (i = 0; i < qdev->rx_ring_count; i++) { |
| 3334 | rx_ring = &qdev->rx_ring[i]; |
| 3335 | memset((void *)rx_ring, 0, sizeof(rx_ring)); |
| 3336 | rx_ring->qdev = qdev; |
| 3337 | rx_ring->cq_id = i; |
| 3338 | rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */ |
| 3339 | if (i == 0) { /* Default queue at index 0. */ |
| 3340 | /* |
| 3341 | * Default queue handles bcast/mcast plus |
| 3342 | * async events. Needs buffers. |
| 3343 | */ |
| 3344 | rx_ring->cq_len = qdev->rx_ring_size; |
| 3345 | rx_ring->cq_size = |
| 3346 | rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); |
| 3347 | rx_ring->lbq_len = NUM_LARGE_BUFFERS; |
| 3348 | rx_ring->lbq_size = |
| 3349 | rx_ring->lbq_len * sizeof(struct bq_element); |
| 3350 | rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE; |
| 3351 | rx_ring->sbq_len = NUM_SMALL_BUFFERS; |
| 3352 | rx_ring->sbq_size = |
| 3353 | rx_ring->sbq_len * sizeof(struct bq_element); |
| 3354 | rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2; |
| 3355 | rx_ring->type = DEFAULT_Q; |
| 3356 | } else if (i < qdev->rss_ring_first_cq_id) { |
| 3357 | /* |
| 3358 | * Outbound queue handles outbound completions only. |
| 3359 | */ |
| 3360 | /* outbound cq is same size as tx_ring it services. */ |
| 3361 | rx_ring->cq_len = qdev->tx_ring_size; |
| 3362 | rx_ring->cq_size = |
| 3363 | rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); |
| 3364 | rx_ring->lbq_len = 0; |
| 3365 | rx_ring->lbq_size = 0; |
| 3366 | rx_ring->lbq_buf_size = 0; |
| 3367 | rx_ring->sbq_len = 0; |
| 3368 | rx_ring->sbq_size = 0; |
| 3369 | rx_ring->sbq_buf_size = 0; |
| 3370 | rx_ring->type = TX_Q; |
| 3371 | } else { /* Inbound completions (RSS) queues */ |
| 3372 | /* |
| 3373 | * Inbound queues handle unicast frames only. |
| 3374 | */ |
| 3375 | rx_ring->cq_len = qdev->rx_ring_size; |
| 3376 | rx_ring->cq_size = |
| 3377 | rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb); |
| 3378 | rx_ring->lbq_len = NUM_LARGE_BUFFERS; |
| 3379 | rx_ring->lbq_size = |
| 3380 | rx_ring->lbq_len * sizeof(struct bq_element); |
| 3381 | rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE; |
| 3382 | rx_ring->sbq_len = NUM_SMALL_BUFFERS; |
| 3383 | rx_ring->sbq_size = |
| 3384 | rx_ring->sbq_len * sizeof(struct bq_element); |
| 3385 | rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2; |
| 3386 | rx_ring->type = RX_Q; |
| 3387 | } |
| 3388 | } |
| 3389 | return 0; |
| 3390 | } |
| 3391 | |
| 3392 | static int qlge_open(struct net_device *ndev) |
| 3393 | { |
| 3394 | int err = 0; |
| 3395 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3396 | |
| 3397 | err = ql_configure_rings(qdev); |
| 3398 | if (err) |
| 3399 | return err; |
| 3400 | |
| 3401 | err = ql_get_adapter_resources(qdev); |
| 3402 | if (err) |
| 3403 | goto error_up; |
| 3404 | |
| 3405 | err = ql_adapter_up(qdev); |
| 3406 | if (err) |
| 3407 | goto error_up; |
| 3408 | |
| 3409 | return err; |
| 3410 | |
| 3411 | error_up: |
| 3412 | ql_release_adapter_resources(qdev); |
| 3413 | ql_free_ring_cb(qdev); |
| 3414 | return err; |
| 3415 | } |
| 3416 | |
| 3417 | static int qlge_change_mtu(struct net_device *ndev, int new_mtu) |
| 3418 | { |
| 3419 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3420 | |
| 3421 | if (ndev->mtu == 1500 && new_mtu == 9000) { |
| 3422 | QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n"); |
| 3423 | } else if (ndev->mtu == 9000 && new_mtu == 1500) { |
| 3424 | QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n"); |
| 3425 | } else if ((ndev->mtu == 1500 && new_mtu == 1500) || |
| 3426 | (ndev->mtu == 9000 && new_mtu == 9000)) { |
| 3427 | return 0; |
| 3428 | } else |
| 3429 | return -EINVAL; |
| 3430 | ndev->mtu = new_mtu; |
| 3431 | return 0; |
| 3432 | } |
| 3433 | |
| 3434 | static struct net_device_stats *qlge_get_stats(struct net_device |
| 3435 | *ndev) |
| 3436 | { |
| 3437 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3438 | return &qdev->stats; |
| 3439 | } |
| 3440 | |
| 3441 | static void qlge_set_multicast_list(struct net_device *ndev) |
| 3442 | { |
| 3443 | struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); |
| 3444 | struct dev_mc_list *mc_ptr; |
| 3445 | int i; |
| 3446 | |
| 3447 | spin_lock(&qdev->hw_lock); |
| 3448 | /* |
| 3449 | * Set or clear promiscuous mode if a |
| 3450 | * transition is taking place. |
| 3451 | */ |
| 3452 | if (ndev->flags & IFF_PROMISC) { |
| 3453 | if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) { |
| 3454 | if (ql_set_routing_reg |
| 3455 | (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) { |
| 3456 | QPRINTK(qdev, HW, ERR, |
| 3457 | "Failed to set promiscous mode.\n"); |
| 3458 | } else { |
| 3459 | set_bit(QL_PROMISCUOUS, &qdev->flags); |
| 3460 | } |
| 3461 | } |
| 3462 | } else { |
| 3463 | if (test_bit(QL_PROMISCUOUS, &qdev->flags)) { |
| 3464 | if (ql_set_routing_reg |
| 3465 | (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) { |
| 3466 | QPRINTK(qdev, HW, ERR, |
| 3467 | "Failed to clear promiscous mode.\n"); |
| 3468 | } else { |
| 3469 | clear_bit(QL_PROMISCUOUS, &qdev->flags); |
| 3470 | } |
| 3471 | } |
| 3472 | } |
| 3473 | |
| 3474 | /* |
| 3475 | * Set or clear all multicast mode if a |
| 3476 | * transition is taking place. |
| 3477 | */ |
| 3478 | if ((ndev->flags & IFF_ALLMULTI) || |
| 3479 | (ndev->mc_count > MAX_MULTICAST_ENTRIES)) { |
| 3480 | if (!test_bit(QL_ALLMULTI, &qdev->flags)) { |
| 3481 | if (ql_set_routing_reg |
| 3482 | (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) { |
| 3483 | QPRINTK(qdev, HW, ERR, |
| 3484 | "Failed to set all-multi mode.\n"); |
| 3485 | } else { |
| 3486 | set_bit(QL_ALLMULTI, &qdev->flags); |
| 3487 | } |
| 3488 | } |
| 3489 | } else { |
| 3490 | if (test_bit(QL_ALLMULTI, &qdev->flags)) { |
| 3491 | if (ql_set_routing_reg |
| 3492 | (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) { |
| 3493 | QPRINTK(qdev, HW, ERR, |
| 3494 | "Failed to clear all-multi mode.\n"); |
| 3495 | } else { |
| 3496 | clear_bit(QL_ALLMULTI, &qdev->flags); |
| 3497 | } |
| 3498 | } |
| 3499 | } |
| 3500 | |
| 3501 | if (ndev->mc_count) { |
| 3502 | for (i = 0, mc_ptr = ndev->mc_list; mc_ptr; |
| 3503 | i++, mc_ptr = mc_ptr->next) |
| 3504 | if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr, |
| 3505 | MAC_ADDR_TYPE_MULTI_MAC, i)) { |
| 3506 | QPRINTK(qdev, HW, ERR, |
| 3507 | "Failed to loadmulticast address.\n"); |
| 3508 | goto exit; |
| 3509 | } |
| 3510 | if (ql_set_routing_reg |
| 3511 | (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) { |
| 3512 | QPRINTK(qdev, HW, ERR, |
| 3513 | "Failed to set multicast match mode.\n"); |
| 3514 | } else { |
| 3515 | set_bit(QL_ALLMULTI, &qdev->flags); |
| 3516 | } |
| 3517 | } |
| 3518 | exit: |
| 3519 | spin_unlock(&qdev->hw_lock); |
| 3520 | } |
| 3521 | |
| 3522 | static int qlge_set_mac_address(struct net_device *ndev, void *p) |
| 3523 | { |
| 3524 | struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); |
| 3525 | struct sockaddr *addr = p; |
| 3526 | |
| 3527 | if (netif_running(ndev)) |
| 3528 | return -EBUSY; |
| 3529 | |
| 3530 | if (!is_valid_ether_addr(addr->sa_data)) |
| 3531 | return -EADDRNOTAVAIL; |
| 3532 | memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); |
| 3533 | |
| 3534 | spin_lock(&qdev->hw_lock); |
| 3535 | if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr, |
| 3536 | MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */ |
| 3537 | QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n"); |
| 3538 | return -1; |
| 3539 | } |
| 3540 | spin_unlock(&qdev->hw_lock); |
| 3541 | |
| 3542 | return 0; |
| 3543 | } |
| 3544 | |
| 3545 | static void qlge_tx_timeout(struct net_device *ndev) |
| 3546 | { |
| 3547 | struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev); |
| 3548 | queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0); |
| 3549 | } |
| 3550 | |
| 3551 | static void ql_asic_reset_work(struct work_struct *work) |
| 3552 | { |
| 3553 | struct ql_adapter *qdev = |
| 3554 | container_of(work, struct ql_adapter, asic_reset_work.work); |
| 3555 | ql_cycle_adapter(qdev); |
| 3556 | } |
| 3557 | |
| 3558 | static void ql_get_board_info(struct ql_adapter *qdev) |
| 3559 | { |
| 3560 | qdev->func = |
| 3561 | (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT; |
| 3562 | if (qdev->func) { |
| 3563 | qdev->xg_sem_mask = SEM_XGMAC1_MASK; |
| 3564 | qdev->port_link_up = STS_PL1; |
| 3565 | qdev->port_init = STS_PI1; |
| 3566 | qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI; |
| 3567 | qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO; |
| 3568 | } else { |
| 3569 | qdev->xg_sem_mask = SEM_XGMAC0_MASK; |
| 3570 | qdev->port_link_up = STS_PL0; |
| 3571 | qdev->port_init = STS_PI0; |
| 3572 | qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI; |
| 3573 | qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO; |
| 3574 | } |
| 3575 | qdev->chip_rev_id = ql_read32(qdev, REV_ID); |
| 3576 | } |
| 3577 | |
| 3578 | static void ql_release_all(struct pci_dev *pdev) |
| 3579 | { |
| 3580 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3581 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3582 | |
| 3583 | if (qdev->workqueue) { |
| 3584 | destroy_workqueue(qdev->workqueue); |
| 3585 | qdev->workqueue = NULL; |
| 3586 | } |
| 3587 | if (qdev->q_workqueue) { |
| 3588 | destroy_workqueue(qdev->q_workqueue); |
| 3589 | qdev->q_workqueue = NULL; |
| 3590 | } |
| 3591 | if (qdev->reg_base) |
| 3592 | iounmap((void *)qdev->reg_base); |
| 3593 | if (qdev->doorbell_area) |
| 3594 | iounmap(qdev->doorbell_area); |
| 3595 | pci_release_regions(pdev); |
| 3596 | pci_set_drvdata(pdev, NULL); |
| 3597 | } |
| 3598 | |
| 3599 | static int __devinit ql_init_device(struct pci_dev *pdev, |
| 3600 | struct net_device *ndev, int cards_found) |
| 3601 | { |
| 3602 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3603 | int pos, err = 0; |
| 3604 | u16 val16; |
| 3605 | |
| 3606 | memset((void *)qdev, 0, sizeof(qdev)); |
| 3607 | err = pci_enable_device(pdev); |
| 3608 | if (err) { |
| 3609 | dev_err(&pdev->dev, "PCI device enable failed.\n"); |
| 3610 | return err; |
| 3611 | } |
| 3612 | |
| 3613 | pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); |
| 3614 | if (pos <= 0) { |
| 3615 | dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, " |
| 3616 | "aborting.\n"); |
| 3617 | goto err_out; |
| 3618 | } else { |
| 3619 | pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16); |
| 3620 | val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN; |
| 3621 | val16 |= (PCI_EXP_DEVCTL_CERE | |
| 3622 | PCI_EXP_DEVCTL_NFERE | |
| 3623 | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE); |
| 3624 | pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16); |
| 3625 | } |
| 3626 | |
| 3627 | err = pci_request_regions(pdev, DRV_NAME); |
| 3628 | if (err) { |
| 3629 | dev_err(&pdev->dev, "PCI region request failed.\n"); |
| 3630 | goto err_out; |
| 3631 | } |
| 3632 | |
| 3633 | pci_set_master(pdev); |
| 3634 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
| 3635 | set_bit(QL_DMA64, &qdev->flags); |
| 3636 | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| 3637 | } else { |
| 3638 | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| 3639 | if (!err) |
| 3640 | err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); |
| 3641 | } |
| 3642 | |
| 3643 | if (err) { |
| 3644 | dev_err(&pdev->dev, "No usable DMA configuration.\n"); |
| 3645 | goto err_out; |
| 3646 | } |
| 3647 | |
| 3648 | pci_set_drvdata(pdev, ndev); |
| 3649 | qdev->reg_base = |
| 3650 | ioremap_nocache(pci_resource_start(pdev, 1), |
| 3651 | pci_resource_len(pdev, 1)); |
| 3652 | if (!qdev->reg_base) { |
| 3653 | dev_err(&pdev->dev, "Register mapping failed.\n"); |
| 3654 | err = -ENOMEM; |
| 3655 | goto err_out; |
| 3656 | } |
| 3657 | |
| 3658 | qdev->doorbell_area_size = pci_resource_len(pdev, 3); |
| 3659 | qdev->doorbell_area = |
| 3660 | ioremap_nocache(pci_resource_start(pdev, 3), |
| 3661 | pci_resource_len(pdev, 3)); |
| 3662 | if (!qdev->doorbell_area) { |
| 3663 | dev_err(&pdev->dev, "Doorbell register mapping failed.\n"); |
| 3664 | err = -ENOMEM; |
| 3665 | goto err_out; |
| 3666 | } |
| 3667 | |
| 3668 | ql_get_board_info(qdev); |
| 3669 | qdev->ndev = ndev; |
| 3670 | qdev->pdev = pdev; |
| 3671 | qdev->msg_enable = netif_msg_init(debug, default_msg); |
| 3672 | spin_lock_init(&qdev->hw_lock); |
| 3673 | spin_lock_init(&qdev->stats_lock); |
| 3674 | |
| 3675 | /* make sure the EEPROM is good */ |
| 3676 | err = ql_get_flash_params(qdev); |
| 3677 | if (err) { |
| 3678 | dev_err(&pdev->dev, "Invalid FLASH.\n"); |
| 3679 | goto err_out; |
| 3680 | } |
| 3681 | |
| 3682 | if (!is_valid_ether_addr(qdev->flash.mac_addr)) |
| 3683 | goto err_out; |
| 3684 | |
| 3685 | memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len); |
| 3686 | memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); |
| 3687 | |
| 3688 | /* Set up the default ring sizes. */ |
| 3689 | qdev->tx_ring_size = NUM_TX_RING_ENTRIES; |
| 3690 | qdev->rx_ring_size = NUM_RX_RING_ENTRIES; |
| 3691 | |
| 3692 | /* Set up the coalescing parameters. */ |
| 3693 | qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT; |
| 3694 | qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT; |
| 3695 | qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; |
| 3696 | qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT; |
| 3697 | |
| 3698 | /* |
| 3699 | * Set up the operating parameters. |
| 3700 | */ |
| 3701 | qdev->rx_csum = 1; |
| 3702 | |
| 3703 | qdev->q_workqueue = create_workqueue(ndev->name); |
| 3704 | qdev->workqueue = create_singlethread_workqueue(ndev->name); |
| 3705 | INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work); |
| 3706 | INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work); |
| 3707 | INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work); |
| 3708 | |
| 3709 | if (!cards_found) { |
| 3710 | dev_info(&pdev->dev, "%s\n", DRV_STRING); |
| 3711 | dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n", |
| 3712 | DRV_NAME, DRV_VERSION); |
| 3713 | } |
| 3714 | return 0; |
| 3715 | err_out: |
| 3716 | ql_release_all(pdev); |
| 3717 | pci_disable_device(pdev); |
| 3718 | return err; |
| 3719 | } |
| 3720 | |
| 3721 | static int __devinit qlge_probe(struct pci_dev *pdev, |
| 3722 | const struct pci_device_id *pci_entry) |
| 3723 | { |
| 3724 | struct net_device *ndev = NULL; |
| 3725 | struct ql_adapter *qdev = NULL; |
| 3726 | static int cards_found = 0; |
| 3727 | int err = 0; |
| 3728 | |
| 3729 | ndev = alloc_etherdev(sizeof(struct ql_adapter)); |
| 3730 | if (!ndev) |
| 3731 | return -ENOMEM; |
| 3732 | |
| 3733 | err = ql_init_device(pdev, ndev, cards_found); |
| 3734 | if (err < 0) { |
| 3735 | free_netdev(ndev); |
| 3736 | return err; |
| 3737 | } |
| 3738 | |
| 3739 | qdev = netdev_priv(ndev); |
| 3740 | SET_NETDEV_DEV(ndev, &pdev->dev); |
| 3741 | ndev->features = (0 |
| 3742 | | NETIF_F_IP_CSUM |
| 3743 | | NETIF_F_SG |
| 3744 | | NETIF_F_TSO |
| 3745 | | NETIF_F_TSO6 |
| 3746 | | NETIF_F_TSO_ECN |
| 3747 | | NETIF_F_HW_VLAN_TX |
| 3748 | | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER); |
| 3749 | |
| 3750 | if (test_bit(QL_DMA64, &qdev->flags)) |
| 3751 | ndev->features |= NETIF_F_HIGHDMA; |
| 3752 | |
| 3753 | /* |
| 3754 | * Set up net_device structure. |
| 3755 | */ |
| 3756 | ndev->tx_queue_len = qdev->tx_ring_size; |
| 3757 | ndev->irq = pdev->irq; |
| 3758 | ndev->open = qlge_open; |
| 3759 | ndev->stop = qlge_close; |
| 3760 | ndev->hard_start_xmit = qlge_send; |
| 3761 | SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops); |
| 3762 | ndev->change_mtu = qlge_change_mtu; |
| 3763 | ndev->get_stats = qlge_get_stats; |
| 3764 | ndev->set_multicast_list = qlge_set_multicast_list; |
| 3765 | ndev->set_mac_address = qlge_set_mac_address; |
| 3766 | ndev->tx_timeout = qlge_tx_timeout; |
| 3767 | ndev->watchdog_timeo = 10 * HZ; |
| 3768 | ndev->vlan_rx_register = ql_vlan_rx_register; |
| 3769 | ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid; |
| 3770 | ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid; |
| 3771 | err = register_netdev(ndev); |
| 3772 | if (err) { |
| 3773 | dev_err(&pdev->dev, "net device registration failed.\n"); |
| 3774 | ql_release_all(pdev); |
| 3775 | pci_disable_device(pdev); |
| 3776 | return err; |
| 3777 | } |
| 3778 | netif_carrier_off(ndev); |
| 3779 | netif_stop_queue(ndev); |
| 3780 | ql_display_dev_info(ndev); |
| 3781 | cards_found++; |
| 3782 | return 0; |
| 3783 | } |
| 3784 | |
| 3785 | static void __devexit qlge_remove(struct pci_dev *pdev) |
| 3786 | { |
| 3787 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3788 | unregister_netdev(ndev); |
| 3789 | ql_release_all(pdev); |
| 3790 | pci_disable_device(pdev); |
| 3791 | free_netdev(ndev); |
| 3792 | } |
| 3793 | |
| 3794 | /* |
| 3795 | * This callback is called by the PCI subsystem whenever |
| 3796 | * a PCI bus error is detected. |
| 3797 | */ |
| 3798 | static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev, |
| 3799 | enum pci_channel_state state) |
| 3800 | { |
| 3801 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3802 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3803 | |
| 3804 | if (netif_running(ndev)) |
| 3805 | ql_adapter_down(qdev); |
| 3806 | |
| 3807 | pci_disable_device(pdev); |
| 3808 | |
| 3809 | /* Request a slot reset. */ |
| 3810 | return PCI_ERS_RESULT_NEED_RESET; |
| 3811 | } |
| 3812 | |
| 3813 | /* |
| 3814 | * This callback is called after the PCI buss has been reset. |
| 3815 | * Basically, this tries to restart the card from scratch. |
| 3816 | * This is a shortened version of the device probe/discovery code, |
| 3817 | * it resembles the first-half of the () routine. |
| 3818 | */ |
| 3819 | static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev) |
| 3820 | { |
| 3821 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3822 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3823 | |
| 3824 | if (pci_enable_device(pdev)) { |
| 3825 | QPRINTK(qdev, IFUP, ERR, |
| 3826 | "Cannot re-enable PCI device after reset.\n"); |
| 3827 | return PCI_ERS_RESULT_DISCONNECT; |
| 3828 | } |
| 3829 | |
| 3830 | pci_set_master(pdev); |
| 3831 | |
| 3832 | netif_carrier_off(ndev); |
| 3833 | netif_stop_queue(ndev); |
| 3834 | ql_adapter_reset(qdev); |
| 3835 | |
| 3836 | /* Make sure the EEPROM is good */ |
| 3837 | memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len); |
| 3838 | |
| 3839 | if (!is_valid_ether_addr(ndev->perm_addr)) { |
| 3840 | QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n"); |
| 3841 | return PCI_ERS_RESULT_DISCONNECT; |
| 3842 | } |
| 3843 | |
| 3844 | return PCI_ERS_RESULT_RECOVERED; |
| 3845 | } |
| 3846 | |
| 3847 | static void qlge_io_resume(struct pci_dev *pdev) |
| 3848 | { |
| 3849 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3850 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3851 | |
| 3852 | pci_set_master(pdev); |
| 3853 | |
| 3854 | if (netif_running(ndev)) { |
| 3855 | if (ql_adapter_up(qdev)) { |
| 3856 | QPRINTK(qdev, IFUP, ERR, |
| 3857 | "Device initialization failed after reset.\n"); |
| 3858 | return; |
| 3859 | } |
| 3860 | } |
| 3861 | |
| 3862 | netif_device_attach(ndev); |
| 3863 | } |
| 3864 | |
| 3865 | static struct pci_error_handlers qlge_err_handler = { |
| 3866 | .error_detected = qlge_io_error_detected, |
| 3867 | .slot_reset = qlge_io_slot_reset, |
| 3868 | .resume = qlge_io_resume, |
| 3869 | }; |
| 3870 | |
| 3871 | static int qlge_suspend(struct pci_dev *pdev, pm_message_t state) |
| 3872 | { |
| 3873 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3874 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3875 | int err; |
| 3876 | |
| 3877 | netif_device_detach(ndev); |
| 3878 | |
| 3879 | if (netif_running(ndev)) { |
| 3880 | err = ql_adapter_down(qdev); |
| 3881 | if (!err) |
| 3882 | return err; |
| 3883 | } |
| 3884 | |
| 3885 | err = pci_save_state(pdev); |
| 3886 | if (err) |
| 3887 | return err; |
| 3888 | |
| 3889 | pci_disable_device(pdev); |
| 3890 | |
| 3891 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| 3892 | |
| 3893 | return 0; |
| 3894 | } |
| 3895 | |
David S. Miller | 04da2cf | 2008-09-19 16:14:24 -0700 | [diff] [blame] | 3896 | #ifdef CONFIG_PM |
Ron Mercer | c4e84bd | 2008-09-18 11:56:28 -0400 | [diff] [blame] | 3897 | static int qlge_resume(struct pci_dev *pdev) |
| 3898 | { |
| 3899 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 3900 | struct ql_adapter *qdev = netdev_priv(ndev); |
| 3901 | int err; |
| 3902 | |
| 3903 | pci_set_power_state(pdev, PCI_D0); |
| 3904 | pci_restore_state(pdev); |
| 3905 | err = pci_enable_device(pdev); |
| 3906 | if (err) { |
| 3907 | QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n"); |
| 3908 | return err; |
| 3909 | } |
| 3910 | pci_set_master(pdev); |
| 3911 | |
| 3912 | pci_enable_wake(pdev, PCI_D3hot, 0); |
| 3913 | pci_enable_wake(pdev, PCI_D3cold, 0); |
| 3914 | |
| 3915 | if (netif_running(ndev)) { |
| 3916 | err = ql_adapter_up(qdev); |
| 3917 | if (err) |
| 3918 | return err; |
| 3919 | } |
| 3920 | |
| 3921 | netif_device_attach(ndev); |
| 3922 | |
| 3923 | return 0; |
| 3924 | } |
David S. Miller | 04da2cf | 2008-09-19 16:14:24 -0700 | [diff] [blame] | 3925 | #endif /* CONFIG_PM */ |
Ron Mercer | c4e84bd | 2008-09-18 11:56:28 -0400 | [diff] [blame] | 3926 | |
| 3927 | static void qlge_shutdown(struct pci_dev *pdev) |
| 3928 | { |
| 3929 | qlge_suspend(pdev, PMSG_SUSPEND); |
| 3930 | } |
| 3931 | |
| 3932 | static struct pci_driver qlge_driver = { |
| 3933 | .name = DRV_NAME, |
| 3934 | .id_table = qlge_pci_tbl, |
| 3935 | .probe = qlge_probe, |
| 3936 | .remove = __devexit_p(qlge_remove), |
| 3937 | #ifdef CONFIG_PM |
| 3938 | .suspend = qlge_suspend, |
| 3939 | .resume = qlge_resume, |
| 3940 | #endif |
| 3941 | .shutdown = qlge_shutdown, |
| 3942 | .err_handler = &qlge_err_handler |
| 3943 | }; |
| 3944 | |
| 3945 | static int __init qlge_init_module(void) |
| 3946 | { |
| 3947 | return pci_register_driver(&qlge_driver); |
| 3948 | } |
| 3949 | |
| 3950 | static void __exit qlge_exit(void) |
| 3951 | { |
| 3952 | pci_unregister_driver(&qlge_driver); |
| 3953 | } |
| 3954 | |
| 3955 | module_init(qlge_init_module); |
| 3956 | module_exit(qlge_exit); |