blob: ee056c41a9fb725e52137e151a525274512413ca [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
4#include <linux/config.h>
5
6/*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
11 *
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
14 */
15#ifndef __ASSEMBLY__
16#include <asm/processor.h>
17#include <asm/fixmap.h>
18#include <linux/threads.h>
19
20#ifndef _I386_BITOPS_H
21#include <asm/bitops.h>
22#endif
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/spinlock.h>
27
Tim Schmielau8c65b4a2005-11-07 00:59:43 -080028struct mm_struct;
29struct vm_area_struct;
30
Linus Torvalds1da177e2005-04-16 15:20:36 -070031/*
32 * ZERO_PAGE is a global shared page that is always zero: used
33 * for zero-mapped memory areas etc..
34 */
35#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
36extern unsigned long empty_zero_page[1024];
37extern pgd_t swapper_pg_dir[1024];
38extern kmem_cache_t *pgd_cache;
39extern kmem_cache_t *pmd_cache;
40extern spinlock_t pgd_lock;
41extern struct page *pgd_list;
42
43void pmd_ctor(void *, kmem_cache_t *, unsigned long);
44void pgd_ctor(void *, kmem_cache_t *, unsigned long);
45void pgd_dtor(void *, kmem_cache_t *, unsigned long);
46void pgtable_cache_init(void);
47void paging_init(void);
48
49/*
50 * The Linux x86 paging architecture is 'compile-time dual-mode', it
51 * implements both the traditional 2-level x86 page tables and the
52 * newer 3-level PAE-mode page tables.
53 */
54#ifdef CONFIG_X86_PAE
55# include <asm/pgtable-3level-defs.h>
56# define PMD_SIZE (1UL << PMD_SHIFT)
57# define PMD_MASK (~(PMD_SIZE-1))
58#else
59# include <asm/pgtable-2level-defs.h>
60#endif
61
62#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
63#define PGDIR_MASK (~(PGDIR_SIZE-1))
64
65#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
Hugh Dickinsd455a362005-04-19 13:29:23 -070066#define FIRST_USER_ADDRESS 0
Linus Torvalds1da177e2005-04-16 15:20:36 -070067
68#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
69#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
70
71#define TWOLEVEL_PGDIR_SHIFT 22
72#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
73#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
74
75/* Just any arbitrary offset to the start of the vmalloc VM area: the
76 * current 8MB value just means that there will be a 8MB "hole" after the
77 * physical memory until the kernel virtual memory starts. That means that
78 * any out-of-bounds memory accesses will hopefully be caught.
79 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
80 * area for the same reason. ;)
81 */
82#define VMALLOC_OFFSET (8*1024*1024)
83#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
84 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
85#ifdef CONFIG_HIGHMEM
86# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
87#else
88# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
89#endif
90
91/*
Paolo 'Blaisorblade' Giarrusso9b4ee402005-09-03 15:54:57 -070092 * _PAGE_PSE set in the page directory entry just means that
Linus Torvalds1da177e2005-04-16 15:20:36 -070093 * the page directory entry points directly to a 4MB-aligned block of
94 * memory.
95 */
96#define _PAGE_BIT_PRESENT 0
97#define _PAGE_BIT_RW 1
98#define _PAGE_BIT_USER 2
99#define _PAGE_BIT_PWT 3
100#define _PAGE_BIT_PCD 4
101#define _PAGE_BIT_ACCESSED 5
102#define _PAGE_BIT_DIRTY 6
103#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
104#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
105#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
106#define _PAGE_BIT_UNUSED2 10
107#define _PAGE_BIT_UNUSED3 11
108#define _PAGE_BIT_NX 63
109
110#define _PAGE_PRESENT 0x001
111#define _PAGE_RW 0x002
112#define _PAGE_USER 0x004
113#define _PAGE_PWT 0x008
114#define _PAGE_PCD 0x010
115#define _PAGE_ACCESSED 0x020
116#define _PAGE_DIRTY 0x040
117#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
118#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
119#define _PAGE_UNUSED1 0x200 /* available for programmer */
120#define _PAGE_UNUSED2 0x400
121#define _PAGE_UNUSED3 0x800
122
Paolo 'Blaisorblade' Giarrusso9b4ee402005-09-03 15:54:57 -0700123/* If _PAGE_PRESENT is clear, we use these: */
124#define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
125#define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE;
126 pte_present gives true */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127#ifdef CONFIG_X86_PAE
128#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
129#else
130#define _PAGE_NX 0
131#endif
132
133#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
134#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
135#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
136
137#define PAGE_NONE \
138 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
139#define PAGE_SHARED \
140 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
141
142#define PAGE_SHARED_EXEC \
143 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
144#define PAGE_COPY_NOEXEC \
145 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
146#define PAGE_COPY_EXEC \
147 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
148#define PAGE_COPY \
149 PAGE_COPY_NOEXEC
150#define PAGE_READONLY \
151 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
152#define PAGE_READONLY_EXEC \
153 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
154
155#define _PAGE_KERNEL \
156 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
157#define _PAGE_KERNEL_EXEC \
158 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
159
160extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
161#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
162#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
163#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
164#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
165
166#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
167#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
168#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
169#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
170#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
171#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
172
173/*
174 * The i386 can't do page protection for execute, and considers that
175 * the same are read. Also, write permissions imply read permissions.
176 * This is the closest we can get..
177 */
178#define __P000 PAGE_NONE
179#define __P001 PAGE_READONLY
180#define __P010 PAGE_COPY
181#define __P011 PAGE_COPY
182#define __P100 PAGE_READONLY_EXEC
183#define __P101 PAGE_READONLY_EXEC
184#define __P110 PAGE_COPY_EXEC
185#define __P111 PAGE_COPY_EXEC
186
187#define __S000 PAGE_NONE
188#define __S001 PAGE_READONLY
189#define __S010 PAGE_SHARED
190#define __S011 PAGE_SHARED
191#define __S100 PAGE_READONLY_EXEC
192#define __S101 PAGE_READONLY_EXEC
193#define __S110 PAGE_SHARED_EXEC
194#define __S111 PAGE_SHARED_EXEC
195
196/*
197 * Define this if things work differently on an i386 and an i486:
198 * it will (on an i486) warn about kernel memory accesses that are
Jesper Juhle49332b2005-05-01 08:59:08 -0700199 * done without a 'access_ok(VERIFY_WRITE,..)'
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200 */
Jesper Juhle49332b2005-05-01 08:59:08 -0700201#undef TEST_ACCESS_OK
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202
203/* The boot page tables (all created as a single array) */
204extern unsigned long pg0[];
205
206#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
207#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
208
Hugh Dickins705e87c2005-10-29 18:16:27 -0700209/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
210#define pmd_none(x) (!(unsigned long)pmd_val(x))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
212#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
213#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
214
215
216#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
217
218/*
219 * The following only work if pte_present() is true.
220 * Undefined behaviour if not..
221 */
222static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
223static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
224static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
225static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
226static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
Zhang, Yanmin8f860592006-03-22 00:08:50 -0800227static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700228
229/*
230 * The following only works if pte_present() is not true.
231 */
232static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
233
234static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
235static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
236static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
237static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
238static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
239static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
240static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
241static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
242static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
243static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
Zhang, Yanmin8f860592006-03-22 00:08:50 -0800244static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245
246#ifdef CONFIG_X86_PAE
247# include <asm/pgtable-3level.h>
248#else
249# include <asm/pgtable-2level.h>
250#endif
251
252static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
253{
254 if (!pte_dirty(*ptep))
255 return 0;
256 return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
257}
258
259static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
260{
261 if (!pte_young(*ptep))
262 return 0;
263 return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
264}
265
Zachary Amsdena6003882005-09-03 15:55:04 -0700266static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
267{
268 pte_t pte;
269 if (full) {
270 pte = *ptep;
271 *ptep = __pte(0);
272 } else {
273 pte = ptep_get_and_clear(mm, addr, ptep);
274 }
275 return pte;
276}
277
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
279{
280 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
281}
282
283/*
Zachary Amsdend7271b12005-09-03 15:56:50 -0700284 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
285 *
286 * dst - pointer to pgd range anwhere on a pgd page
287 * src - ""
288 * count - the number of pgds to copy.
289 *
290 * dst and src can be on the same page, but the range must not overlap,
291 * and must not cross a page boundary.
292 */
293static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
294{
295 memcpy(dst, src, count * sizeof(pgd_t));
296}
297
298/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299 * Macro to mark a page protection value as "uncacheable". On processors which do not support
300 * it, this is a no-op.
301 */
302#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
303 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
304
305/*
306 * Conversion functions: convert a page and protection to a page entry,
307 * and a page entry and page directory to the page they refer to.
308 */
309
310#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311
312static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
313{
314 pte.pte_low &= _PAGE_CHG_MASK;
315 pte.pte_low |= pgprot_val(newprot);
316#ifdef CONFIG_X86_PAE
317 /*
318 * Chop off the NX bit (if present), and add the NX portion of
319 * the newprot (if present):
320 */
321 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
322 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
323 (__supported_pte_mask >> 32);
324#endif
325 return pte;
326}
327
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328#define pmd_large(pmd) \
329((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
330
331/*
332 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
333 *
334 * this macro returns the index of the entry in the pgd page which would
335 * control the given virtual address
336 */
337#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
338#define pgd_index_k(addr) pgd_index(addr)
339
340/*
341 * pgd_offset() returns a (pgd_t *)
342 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
343 */
344#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
345
346/*
347 * a shortcut which implies the use of the kernel's pgd, instead
348 * of a process's
349 */
350#define pgd_offset_k(address) pgd_offset(&init_mm, address)
351
352/*
353 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
354 *
355 * this macro returns the index of the entry in the pmd page which would
356 * control the given virtual address
357 */
358#define pmd_index(address) \
359 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
360
361/*
362 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
363 *
364 * this macro returns the index of the entry in the pte page which would
365 * control the given virtual address
366 */
367#define pte_index(address) \
368 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
369#define pte_offset_kernel(dir, address) \
370 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
371
Paolo 'Blaisorblade' Giarrussoca140fd2005-10-30 14:59:31 -0800372#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
373
374#define pmd_page_kernel(pmd) \
375 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
376
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377/*
378 * Helper function that returns the kernel pagetable entry controlling
379 * the virtual address 'address'. NULL means no pagetable entry present.
380 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
381 * as a pte too.
382 */
383extern pte_t *lookup_address(unsigned long address);
384
385/*
386 * Make a given kernel text page executable/non-executable.
387 * Returns the previous executability setting of that page (which
388 * is used to restore the previous state). Used by the SMP bootup code.
389 * NOTE: this is an __init function for security reasons.
390 */
391#ifdef CONFIG_X86_PAE
392 extern int set_kernel_exec(unsigned long vaddr, int enable);
393#else
394 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
395#endif
396
397extern void noexec_setup(const char *str);
398
399#if defined(CONFIG_HIGHPTE)
400#define pte_offset_map(dir, address) \
401 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
402#define pte_offset_map_nested(dir, address) \
403 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
404#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
405#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
406#else
407#define pte_offset_map(dir, address) \
408 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
409#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
410#define pte_unmap(pte) do { } while (0)
411#define pte_unmap_nested(pte) do { } while (0)
412#endif
413
414/*
415 * The i386 doesn't have any external MMU info: the kernel page
416 * tables contain all the necessary information.
417 *
418 * Also, we only update the dirty/accessed state if we set
419 * the dirty bit by hand in the kernel, since the hardware
420 * will do the accessed bit for us, and we don't want to
421 * race with other CPU's that might be updating the dirty
422 * bit at the same time.
423 */
424#define update_mmu_cache(vma,address,pte) do { } while (0)
425#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
426#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
427 do { \
428 if (__dirty) { \
429 (__ptep)->pte_low = (__entry).pte_low; \
430 flush_tlb_page(__vma, __address); \
431 } \
432 } while (0)
433
434#endif /* !__ASSEMBLY__ */
435
Andy Whitcroft05b79bd2005-06-23 00:07:57 -0700436#ifdef CONFIG_FLATMEM
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437#define kern_addr_valid(addr) (1)
Andy Whitcroft05b79bd2005-06-23 00:07:57 -0700438#endif /* CONFIG_FLATMEM */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
441 remap_pfn_range(vma, vaddr, pfn, size, prot)
442
443#define MK_IOSPACE_PFN(space, pfn) (pfn)
444#define GET_IOSPACE(pfn) 0
445#define GET_PFN(pfn) (pfn)
446
447#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
448#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
449#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
Zachary Amsdena6003882005-09-03 15:55:04 -0700450#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451#define __HAVE_ARCH_PTEP_SET_WRPROTECT
452#define __HAVE_ARCH_PTE_SAME
453#include <asm-generic/pgtable.h>
454
455#endif /* _I386_PGTABLE_H */