blob: 00d73be7dc27134f5f9e24d9083eaf0a950cdb0f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15#include <linux/config.h>
16#include <asm/asm.h>
17#include <asm/offset.h>
18#include <asm/regdef.h>
19
20#define dst a0
21#define src a1
22#define len a2
23
24/*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 * - src and dst don't overlap
30 * - src is readable
31 * - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 * copy_to_user
39 * - src is readable (no exceptions when reading src)
40 * copy_from_user
41 * - dst is writable (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * include/asm-mips/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50/*
51 * Implementation
52 */
53
54/*
55 * The exception handler for loads requires that:
56 * 1- AT contain the address of the byte just past the end of the source
57 * of the copy,
58 * 2- src_entry <= src < AT, and
59 * 3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73#define EXC(inst_reg,addr,handler) \
749: inst_reg, addr; \
75 .section __ex_table,"a"; \
76 PTR 9b, handler; \
77 .previous
78
79/*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
Ralf Baechle875d43e2005-09-03 15:56:16 -070082#ifdef CONFIG_64BIT
Linus Torvalds1da177e2005-04-16 15:20:36 -070083#define USE_DOUBLE
84#endif
85
86#ifdef USE_DOUBLE
87
88#define LOAD ld
89#define LOADL ldl
90#define LOADR ldr
91#define STOREL sdl
92#define STORER sdr
93#define STORE sd
94#define ADD daddu
95#define SUB dsubu
96#define SRL dsrl
97#define SRA dsra
98#define SLL dsll
99#define SLLV dsllv
100#define SRLV dsrlv
101#define NBYTES 8
102#define LOG_NBYTES 3
103
104/*
105 * As we are sharing code base with the mips32 tree (which use the o32 ABI
106 * register definitions). We need to redefine the register definitions from
107 * the n64 ABI register naming to the o32 ABI register naming.
108 */
109#undef t0
110#undef t1
111#undef t2
112#undef t3
113#define t0 $8
114#define t1 $9
115#define t2 $10
116#define t3 $11
117#define t4 $12
118#define t5 $13
119#define t6 $14
120#define t7 $15
121
122#else
123
124#define LOAD lw
125#define LOADL lwl
126#define LOADR lwr
127#define STOREL swl
128#define STORER swr
129#define STORE sw
130#define ADD addu
131#define SUB subu
132#define SRL srl
133#define SLL sll
134#define SRA sra
135#define SLLV sllv
136#define SRLV srlv
137#define NBYTES 4
138#define LOG_NBYTES 2
139
140#endif /* USE_DOUBLE */
141
142#ifdef CONFIG_CPU_LITTLE_ENDIAN
143#define LDFIRST LOADR
144#define LDREST LOADL
145#define STFIRST STORER
146#define STREST STOREL
147#define SHIFT_DISCARD SLLV
148#else
149#define LDFIRST LOADL
150#define LDREST LOADR
151#define STFIRST STOREL
152#define STREST STORER
153#define SHIFT_DISCARD SRLV
154#endif
155
156#define FIRST(unit) ((unit)*NBYTES)
157#define REST(unit) (FIRST(unit)+NBYTES-1)
158#define UNIT(unit) FIRST(unit)
159
160#define ADDRMASK (NBYTES-1)
161
162 .text
163 .set noreorder
164 .set noat
165
166/*
167 * A combined memcpy/__copy_user
168 * __copy_user sets len to 0 for success; else to an upper bound of
169 * the number of uncopied bytes.
170 * memcpy sets v0 to dst.
171 */
172 .align 5
173LEAF(memcpy) /* a0=dst a1=src a2=len */
174 move v0, dst /* return value */
175__memcpy:
176FEXPORT(__copy_user)
177 /*
178 * Note: dst & src may be unaligned, len may be 0
179 * Temps
180 */
181#define rem t8
182
183 /*
184 * The "issue break"s below are very approximate.
185 * Issue delays for dcache fills will perturb the schedule, as will
186 * load queue full replay traps, etc.
187 *
188 * If len < NBYTES use byte operations.
189 */
190 PREF( 0, 0(src) )
191 PREF( 1, 0(dst) )
192 sltu t2, len, NBYTES
193 and t1, dst, ADDRMASK
194 PREF( 0, 1*32(src) )
195 PREF( 1, 1*32(dst) )
196 bnez t2, copy_bytes_checklen
197 and t0, src, ADDRMASK
198 PREF( 0, 2*32(src) )
199 PREF( 1, 2*32(dst) )
200 bnez t1, dst_unaligned
201 nop
202 bnez t0, src_unaligned_dst_aligned
203 /*
204 * use delay slot for fall-through
205 * src and dst are aligned; need to compute rem
206 */
207both_aligned:
208 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter
209 beqz t0, cleanup_both_aligned # len < 8*NBYTES
210 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES)
211 PREF( 0, 3*32(src) )
212 PREF( 1, 3*32(dst) )
213 .align 4
2141:
215EXC( LOAD t0, UNIT(0)(src), l_exc)
216EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
217EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
218EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
219 SUB len, len, 8*NBYTES
220EXC( LOAD t4, UNIT(4)(src), l_exc_copy)
221EXC( LOAD t7, UNIT(5)(src), l_exc_copy)
222EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
223EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
224EXC( LOAD t0, UNIT(6)(src), l_exc_copy)
225EXC( LOAD t1, UNIT(7)(src), l_exc_copy)
226 ADD src, src, 8*NBYTES
227 ADD dst, dst, 8*NBYTES
228EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
229EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
230EXC( STORE t4, UNIT(-4)(dst), s_exc_p4u)
231EXC( STORE t7, UNIT(-3)(dst), s_exc_p3u)
232EXC( STORE t0, UNIT(-2)(dst), s_exc_p2u)
233EXC( STORE t1, UNIT(-1)(dst), s_exc_p1u)
234 PREF( 0, 8*32(src) )
235 PREF( 1, 8*32(dst) )
236 bne len, rem, 1b
237 nop
238
239 /*
240 * len == rem == the number of bytes left to copy < 8*NBYTES
241 */
242cleanup_both_aligned:
243 beqz len, done
244 sltu t0, len, 4*NBYTES
245 bnez t0, less_than_4units
246 and rem, len, (NBYTES-1) # rem = len % NBYTES
247 /*
248 * len >= 4*NBYTES
249 */
250EXC( LOAD t0, UNIT(0)(src), l_exc)
251EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
252EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
253EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
254 SUB len, len, 4*NBYTES
255 ADD src, src, 4*NBYTES
256EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
257EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
258EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
259EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
260 beqz len, done
261 ADD dst, dst, 4*NBYTES
262less_than_4units:
263 /*
264 * rem = len % NBYTES
265 */
266 beq rem, len, copy_bytes
267 nop
2681:
269EXC( LOAD t0, 0(src), l_exc)
270 ADD src, src, NBYTES
271 SUB len, len, NBYTES
272EXC( STORE t0, 0(dst), s_exc_p1u)
273 bne rem, len, 1b
274 ADD dst, dst, NBYTES
275
276 /*
277 * src and dst are aligned, need to copy rem bytes (rem < NBYTES)
278 * A loop would do only a byte at a time with possible branch
279 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE
280 * because can't assume read-access to dst. Instead, use
281 * STREST dst, which doesn't require read access to dst.
282 *
283 * This code should perform better than a simple loop on modern,
284 * wide-issue mips processors because the code has fewer branches and
285 * more instruction-level parallelism.
286 */
287#define bits t2
288 beqz len, done
289 ADD t1, dst, len # t1 is just past last byte of dst
290 li bits, 8*NBYTES
291 SLL rem, len, 3 # rem = number of bits to keep
292EXC( LOAD t0, 0(src), l_exc)
293 SUB bits, bits, rem # bits = number of bits to discard
294 SHIFT_DISCARD t0, t0, bits
295EXC( STREST t0, -1(t1), s_exc)
296 jr ra
297 move len, zero
298dst_unaligned:
299 /*
300 * dst is unaligned
301 * t0 = src & ADDRMASK
302 * t1 = dst & ADDRMASK; T1 > 0
303 * len >= NBYTES
304 *
305 * Copy enough bytes to align dst
306 * Set match = (src and dst have same alignment)
307 */
308#define match rem
309EXC( LDFIRST t3, FIRST(0)(src), l_exc)
310 ADD t2, zero, NBYTES
311EXC( LDREST t3, REST(0)(src), l_exc_copy)
312 SUB t2, t2, t1 # t2 = number of bytes copied
313 xor match, t0, t1
314EXC( STFIRST t3, FIRST(0)(dst), s_exc)
315 beq len, t2, done
316 SUB len, len, t2
317 ADD dst, dst, t2
318 beqz match, both_aligned
319 ADD src, src, t2
320
321src_unaligned_dst_aligned:
322 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
323 PREF( 0, 3*32(src) )
324 beqz t0, cleanup_src_unaligned
325 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
326 PREF( 1, 3*32(dst) )
3271:
328/*
329 * Avoid consecutive LD*'s to the same register since some mips
330 * implementations can't issue them in the same cycle.
331 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
332 * are to the same unit (unless src is aligned, but it's not).
333 */
334EXC( LDFIRST t0, FIRST(0)(src), l_exc)
335EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
336 SUB len, len, 4*NBYTES
337EXC( LDREST t0, REST(0)(src), l_exc_copy)
338EXC( LDREST t1, REST(1)(src), l_exc_copy)
339EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
340EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
341EXC( LDREST t2, REST(2)(src), l_exc_copy)
342EXC( LDREST t3, REST(3)(src), l_exc_copy)
343 PREF( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed)
344 ADD src, src, 4*NBYTES
345#ifdef CONFIG_CPU_SB1
346 nop # improves slotting
347#endif
348EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
349EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
350EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
351EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
352 PREF( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed)
353 bne len, rem, 1b
354 ADD dst, dst, 4*NBYTES
355
356cleanup_src_unaligned:
357 beqz len, done
358 and rem, len, NBYTES-1 # rem = len % NBYTES
359 beq rem, len, copy_bytes
360 nop
3611:
362EXC( LDFIRST t0, FIRST(0)(src), l_exc)
363EXC( LDREST t0, REST(0)(src), l_exc_copy)
364 ADD src, src, NBYTES
365 SUB len, len, NBYTES
366EXC( STORE t0, 0(dst), s_exc_p1u)
367 bne len, rem, 1b
368 ADD dst, dst, NBYTES
369
370copy_bytes_checklen:
371 beqz len, done
372 nop
373copy_bytes:
374 /* 0 < len < NBYTES */
375#define COPY_BYTE(N) \
376EXC( lb t0, N(src), l_exc); \
377 SUB len, len, 1; \
378 beqz len, done; \
379EXC( sb t0, N(dst), s_exc_p1)
380
381 COPY_BYTE(0)
382 COPY_BYTE(1)
383#ifdef USE_DOUBLE
384 COPY_BYTE(2)
385 COPY_BYTE(3)
386 COPY_BYTE(4)
387 COPY_BYTE(5)
388#endif
389EXC( lb t0, NBYTES-2(src), l_exc)
390 SUB len, len, 1
391 jr ra
392EXC( sb t0, NBYTES-2(dst), s_exc_p1)
393done:
394 jr ra
395 nop
396 END(memcpy)
397
398l_exc_copy:
399 /*
400 * Copy bytes from src until faulting load address (or until a
401 * lb faults)
402 *
403 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
404 * may be more than a byte beyond the last address.
405 * Hence, the lb below may get an exception.
406 *
407 * Assumes src < THREAD_BUADDR($28)
408 */
409 LOAD t0, TI_TASK($28)
410 nop
411 LOAD t0, THREAD_BUADDR(t0)
4121:
413EXC( lb t1, 0(src), l_exc)
414 ADD src, src, 1
415 sb t1, 0(dst) # can't fault -- we're copy_from_user
416 bne src, t0, 1b
417 ADD dst, dst, 1
418l_exc:
419 LOAD t0, TI_TASK($28)
420 nop
421 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
422 nop
423 SUB len, AT, t0 # len number of uncopied bytes
424 /*
425 * Here's where we rely on src and dst being incremented in tandem,
426 * See (3) above.
427 * dst += (fault addr - src) to put dst at first byte to clear
428 */
429 ADD dst, t0 # compute start address in a1
430 SUB dst, src
431 /*
432 * Clear len bytes starting at dst. Can't call __bzero because it
433 * might modify len. An inefficient loop for these rare times...
434 */
435 beqz len, done
436 SUB src, len, 1
4371: sb zero, 0(dst)
438 ADD dst, dst, 1
439 bnez src, 1b
440 SUB src, src, 1
441 jr ra
442 nop
443
444
445#define SEXC(n) \
446s_exc_p ## n ## u: \
447 jr ra; \
448 ADD len, len, n*NBYTES
449
450SEXC(8)
451SEXC(7)
452SEXC(6)
453SEXC(5)
454SEXC(4)
455SEXC(3)
456SEXC(2)
457SEXC(1)
458
459s_exc_p1:
460 jr ra
461 ADD len, len, 1
462s_exc:
463 jr ra
464 nop
465
466 .align 5
467LEAF(memmove)
468 ADD t0, a0, a2
469 ADD t1, a1, a2
470 sltu t0, a1, t0 # dst + len <= src -> memcpy
471 sltu t1, a0, t1 # dst >= src + len -> memcpy
472 and t0, t1
473 beqz t0, __memcpy
474 move v0, a0 /* return value */
475 beqz a2, r_out
476 END(memmove)
477
478 /* fall through to __rmemcpy */
479LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
480 sltu t0, a1, a0
481 beqz t0, r_end_bytes_up # src >= dst
482 nop
483 ADD a0, a2 # dst = dst + len
484 ADD a1, a2 # src = src + len
485
486r_end_bytes:
487 lb t0, -1(a1)
488 SUB a2, a2, 0x1
489 sb t0, -1(a0)
490 SUB a1, a1, 0x1
491 bnez a2, r_end_bytes
492 SUB a0, a0, 0x1
493
494r_out:
495 jr ra
496 move a2, zero
497
498r_end_bytes_up:
499 lb t0, (a1)
500 SUB a2, a2, 0x1
501 sb t0, (a0)
502 ADD a1, a1, 0x1
503 bnez a2, r_end_bytes_up
504 ADD a0, a0, 0x1
505
506 jr ra
507 move a2, zero
508 END(__rmemcpy)