Frieder Schrempf | 84d0431 | 2019-01-07 09:29:47 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | |
| 3 | /* |
| 4 | * Freescale QuadSPI driver. |
| 5 | * |
| 6 | * Copyright (C) 2013 Freescale Semiconductor, Inc. |
| 7 | * Copyright (C) 2018 Bootlin |
| 8 | * Copyright (C) 2018 exceet electronics GmbH |
| 9 | * Copyright (C) 2018 Kontron Electronics GmbH |
| 10 | * |
| 11 | * Transition to SPI MEM interface: |
| 12 | * Authors: |
Yogesh Narayan Gaur | c55d0e8 | 2019-01-29 09:55:27 +0000 | [diff] [blame] | 13 | * Boris Brezillon <bbrezillon@kernel.org> |
Frieder Schrempf | 84d0431 | 2019-01-07 09:29:47 +0000 | [diff] [blame] | 14 | * Frieder Schrempf <frieder.schrempf@kontron.de> |
| 15 | * Yogesh Gaur <yogeshnarayan.gaur@nxp.com> |
| 16 | * Suresh Gupta <suresh.gupta@nxp.com> |
| 17 | * |
| 18 | * Based on the original fsl-quadspi.c spi-nor driver: |
| 19 | * Author: Freescale Semiconductor, Inc. |
| 20 | * |
| 21 | */ |
| 22 | |
| 23 | #include <linux/bitops.h> |
| 24 | #include <linux/clk.h> |
| 25 | #include <linux/completion.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/err.h> |
| 28 | #include <linux/errno.h> |
| 29 | #include <linux/interrupt.h> |
| 30 | #include <linux/io.h> |
| 31 | #include <linux/iopoll.h> |
| 32 | #include <linux/jiffies.h> |
| 33 | #include <linux/kernel.h> |
| 34 | #include <linux/module.h> |
| 35 | #include <linux/mutex.h> |
| 36 | #include <linux/of.h> |
| 37 | #include <linux/of_device.h> |
| 38 | #include <linux/platform_device.h> |
| 39 | #include <linux/pm_qos.h> |
| 40 | #include <linux/sizes.h> |
| 41 | |
| 42 | #include <linux/spi/spi.h> |
| 43 | #include <linux/spi/spi-mem.h> |
| 44 | |
| 45 | /* |
| 46 | * The driver only uses one single LUT entry, that is updated on |
| 47 | * each call of exec_op(). Index 0 is preset at boot with a basic |
| 48 | * read operation, so let's use the last entry (15). |
| 49 | */ |
| 50 | #define SEQID_LUT 15 |
| 51 | |
| 52 | /* Registers used by the driver */ |
| 53 | #define QUADSPI_MCR 0x00 |
| 54 | #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16) |
| 55 | #define QUADSPI_MCR_MDIS_MASK BIT(14) |
| 56 | #define QUADSPI_MCR_CLR_TXF_MASK BIT(11) |
| 57 | #define QUADSPI_MCR_CLR_RXF_MASK BIT(10) |
| 58 | #define QUADSPI_MCR_DDR_EN_MASK BIT(7) |
| 59 | #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2) |
| 60 | #define QUADSPI_MCR_SWRSTHD_MASK BIT(1) |
| 61 | #define QUADSPI_MCR_SWRSTSD_MASK BIT(0) |
| 62 | |
| 63 | #define QUADSPI_IPCR 0x08 |
| 64 | #define QUADSPI_IPCR_SEQID(x) ((x) << 24) |
| 65 | |
| 66 | #define QUADSPI_BUF3CR 0x1c |
| 67 | #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31) |
| 68 | #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8) |
| 69 | #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8) |
| 70 | |
| 71 | #define QUADSPI_BFGENCR 0x20 |
| 72 | #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12) |
| 73 | |
| 74 | #define QUADSPI_BUF0IND 0x30 |
| 75 | #define QUADSPI_BUF1IND 0x34 |
| 76 | #define QUADSPI_BUF2IND 0x38 |
| 77 | #define QUADSPI_SFAR 0x100 |
| 78 | |
| 79 | #define QUADSPI_SMPR 0x108 |
| 80 | #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16) |
| 81 | #define QUADSPI_SMPR_FSDLY_MASK BIT(6) |
| 82 | #define QUADSPI_SMPR_FSPHS_MASK BIT(5) |
| 83 | #define QUADSPI_SMPR_HSENA_MASK BIT(0) |
| 84 | |
| 85 | #define QUADSPI_RBCT 0x110 |
| 86 | #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0) |
| 87 | #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8) |
| 88 | |
| 89 | #define QUADSPI_TBDR 0x154 |
| 90 | |
| 91 | #define QUADSPI_SR 0x15c |
| 92 | #define QUADSPI_SR_IP_ACC_MASK BIT(1) |
| 93 | #define QUADSPI_SR_AHB_ACC_MASK BIT(2) |
| 94 | |
| 95 | #define QUADSPI_FR 0x160 |
| 96 | #define QUADSPI_FR_TFF_MASK BIT(0) |
| 97 | |
| 98 | #define QUADSPI_SPTRCLR 0x16c |
| 99 | #define QUADSPI_SPTRCLR_IPPTRC BIT(8) |
| 100 | #define QUADSPI_SPTRCLR_BFPTRC BIT(0) |
| 101 | |
| 102 | #define QUADSPI_SFA1AD 0x180 |
| 103 | #define QUADSPI_SFA2AD 0x184 |
| 104 | #define QUADSPI_SFB1AD 0x188 |
| 105 | #define QUADSPI_SFB2AD 0x18c |
| 106 | #define QUADSPI_RBDR(x) (0x200 + ((x) * 4)) |
| 107 | |
| 108 | #define QUADSPI_LUTKEY 0x300 |
| 109 | #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 |
| 110 | |
| 111 | #define QUADSPI_LCKCR 0x304 |
| 112 | #define QUADSPI_LCKER_LOCK BIT(0) |
| 113 | #define QUADSPI_LCKER_UNLOCK BIT(1) |
| 114 | |
| 115 | #define QUADSPI_RSER 0x164 |
| 116 | #define QUADSPI_RSER_TFIE BIT(0) |
| 117 | |
| 118 | #define QUADSPI_LUT_BASE 0x310 |
| 119 | #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) |
| 120 | #define QUADSPI_LUT_REG(idx) \ |
| 121 | (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4) |
| 122 | |
| 123 | /* Instruction set for the LUT register */ |
| 124 | #define LUT_STOP 0 |
| 125 | #define LUT_CMD 1 |
| 126 | #define LUT_ADDR 2 |
| 127 | #define LUT_DUMMY 3 |
| 128 | #define LUT_MODE 4 |
| 129 | #define LUT_MODE2 5 |
| 130 | #define LUT_MODE4 6 |
| 131 | #define LUT_FSL_READ 7 |
| 132 | #define LUT_FSL_WRITE 8 |
| 133 | #define LUT_JMP_ON_CS 9 |
| 134 | #define LUT_ADDR_DDR 10 |
| 135 | #define LUT_MODE_DDR 11 |
| 136 | #define LUT_MODE2_DDR 12 |
| 137 | #define LUT_MODE4_DDR 13 |
| 138 | #define LUT_FSL_READ_DDR 14 |
| 139 | #define LUT_FSL_WRITE_DDR 15 |
| 140 | #define LUT_DATA_LEARN 16 |
| 141 | |
| 142 | /* |
| 143 | * The PAD definitions for LUT register. |
| 144 | * |
| 145 | * The pad stands for the number of IO lines [0:3]. |
| 146 | * For example, the quad read needs four IO lines, |
| 147 | * so you should use LUT_PAD(4). |
| 148 | */ |
| 149 | #define LUT_PAD(x) (fls(x) - 1) |
| 150 | |
| 151 | /* |
| 152 | * Macro for constructing the LUT entries with the following |
| 153 | * register layout: |
| 154 | * |
| 155 | * --------------------------------------------------- |
| 156 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
| 157 | * --------------------------------------------------- |
| 158 | */ |
| 159 | #define LUT_DEF(idx, ins, pad, opr) \ |
| 160 | ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16)) |
| 161 | |
| 162 | /* Controller needs driver to swap endianness */ |
| 163 | #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0) |
| 164 | |
| 165 | /* Controller needs 4x internal clock */ |
| 166 | #define QUADSPI_QUIRK_4X_INT_CLK BIT(1) |
| 167 | |
| 168 | /* |
| 169 | * TKT253890, the controller needs the driver to fill the txfifo with |
| 170 | * 16 bytes at least to trigger a data transfer, even though the extra |
| 171 | * data won't be transferred. |
| 172 | */ |
| 173 | #define QUADSPI_QUIRK_TKT253890 BIT(2) |
| 174 | |
| 175 | /* TKT245618, the controller cannot wake up from wait mode */ |
| 176 | #define QUADSPI_QUIRK_TKT245618 BIT(3) |
| 177 | |
| 178 | /* |
| 179 | * Controller adds QSPI_AMBA_BASE (base address of the mapped memory) |
| 180 | * internally. No need to add it when setting SFXXAD and SFAR registers |
| 181 | */ |
| 182 | #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4) |
| 183 | |
| 184 | struct fsl_qspi_devtype_data { |
| 185 | unsigned int rxfifo; |
| 186 | unsigned int txfifo; |
| 187 | unsigned int ahb_buf_size; |
| 188 | unsigned int quirks; |
| 189 | bool little_endian; |
| 190 | }; |
| 191 | |
| 192 | static const struct fsl_qspi_devtype_data vybrid_data = { |
| 193 | .rxfifo = SZ_128, |
| 194 | .txfifo = SZ_64, |
| 195 | .ahb_buf_size = SZ_1K, |
| 196 | .quirks = QUADSPI_QUIRK_SWAP_ENDIAN, |
| 197 | .little_endian = true, |
| 198 | }; |
| 199 | |
| 200 | static const struct fsl_qspi_devtype_data imx6sx_data = { |
| 201 | .rxfifo = SZ_128, |
| 202 | .txfifo = SZ_512, |
| 203 | .ahb_buf_size = SZ_1K, |
| 204 | .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618, |
| 205 | .little_endian = true, |
| 206 | }; |
| 207 | |
| 208 | static const struct fsl_qspi_devtype_data imx7d_data = { |
| 209 | .rxfifo = SZ_512, |
| 210 | .txfifo = SZ_512, |
| 211 | .ahb_buf_size = SZ_1K, |
| 212 | .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, |
| 213 | .little_endian = true, |
| 214 | }; |
| 215 | |
| 216 | static const struct fsl_qspi_devtype_data imx6ul_data = { |
| 217 | .rxfifo = SZ_128, |
| 218 | .txfifo = SZ_512, |
| 219 | .ahb_buf_size = SZ_1K, |
| 220 | .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK, |
| 221 | .little_endian = true, |
| 222 | }; |
| 223 | |
| 224 | static const struct fsl_qspi_devtype_data ls1021a_data = { |
| 225 | .rxfifo = SZ_128, |
| 226 | .txfifo = SZ_64, |
| 227 | .ahb_buf_size = SZ_1K, |
| 228 | .quirks = 0, |
| 229 | .little_endian = false, |
| 230 | }; |
| 231 | |
| 232 | static const struct fsl_qspi_devtype_data ls2080a_data = { |
| 233 | .rxfifo = SZ_128, |
| 234 | .txfifo = SZ_64, |
| 235 | .ahb_buf_size = SZ_1K, |
| 236 | .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL, |
| 237 | .little_endian = true, |
| 238 | }; |
| 239 | |
| 240 | struct fsl_qspi { |
| 241 | void __iomem *iobase; |
| 242 | void __iomem *ahb_addr; |
| 243 | u32 memmap_phy; |
| 244 | struct clk *clk, *clk_en; |
| 245 | struct device *dev; |
| 246 | struct completion c; |
| 247 | const struct fsl_qspi_devtype_data *devtype_data; |
| 248 | struct mutex lock; |
| 249 | struct pm_qos_request pm_qos_req; |
| 250 | int selected; |
| 251 | }; |
| 252 | |
| 253 | static inline int needs_swap_endian(struct fsl_qspi *q) |
| 254 | { |
| 255 | return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN; |
| 256 | } |
| 257 | |
| 258 | static inline int needs_4x_clock(struct fsl_qspi *q) |
| 259 | { |
| 260 | return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK; |
| 261 | } |
| 262 | |
| 263 | static inline int needs_fill_txfifo(struct fsl_qspi *q) |
| 264 | { |
| 265 | return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890; |
| 266 | } |
| 267 | |
| 268 | static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) |
| 269 | { |
| 270 | return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618; |
| 271 | } |
| 272 | |
| 273 | static inline int needs_amba_base_offset(struct fsl_qspi *q) |
| 274 | { |
| 275 | return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL); |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * An IC bug makes it necessary to rearrange the 32-bit data. |
| 280 | * Later chips, such as IMX6SLX, have fixed this bug. |
| 281 | */ |
| 282 | static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) |
| 283 | { |
| 284 | return needs_swap_endian(q) ? __swab32(a) : a; |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * R/W functions for big- or little-endian registers: |
| 289 | * The QSPI controller's endianness is independent of |
| 290 | * the CPU core's endianness. So far, although the CPU |
| 291 | * core is little-endian the QSPI controller can use |
| 292 | * big-endian or little-endian. |
| 293 | */ |
| 294 | static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) |
| 295 | { |
| 296 | if (q->devtype_data->little_endian) |
| 297 | iowrite32(val, addr); |
| 298 | else |
| 299 | iowrite32be(val, addr); |
| 300 | } |
| 301 | |
| 302 | static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) |
| 303 | { |
| 304 | if (q->devtype_data->little_endian) |
| 305 | return ioread32(addr); |
| 306 | |
| 307 | return ioread32be(addr); |
| 308 | } |
| 309 | |
| 310 | static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) |
| 311 | { |
| 312 | struct fsl_qspi *q = dev_id; |
| 313 | u32 reg; |
| 314 | |
| 315 | /* clear interrupt */ |
| 316 | reg = qspi_readl(q, q->iobase + QUADSPI_FR); |
| 317 | qspi_writel(q, reg, q->iobase + QUADSPI_FR); |
| 318 | |
| 319 | if (reg & QUADSPI_FR_TFF_MASK) |
| 320 | complete(&q->c); |
| 321 | |
| 322 | dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg); |
| 323 | return IRQ_HANDLED; |
| 324 | } |
| 325 | |
| 326 | static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width) |
| 327 | { |
| 328 | switch (width) { |
| 329 | case 1: |
| 330 | case 2: |
| 331 | case 4: |
| 332 | return 0; |
| 333 | } |
| 334 | |
| 335 | return -ENOTSUPP; |
| 336 | } |
| 337 | |
| 338 | static bool fsl_qspi_supports_op(struct spi_mem *mem, |
| 339 | const struct spi_mem_op *op) |
| 340 | { |
| 341 | struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); |
| 342 | int ret; |
| 343 | |
| 344 | ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth); |
| 345 | |
| 346 | if (op->addr.nbytes) |
| 347 | ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth); |
| 348 | |
| 349 | if (op->dummy.nbytes) |
| 350 | ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth); |
| 351 | |
| 352 | if (op->data.nbytes) |
| 353 | ret |= fsl_qspi_check_buswidth(q, op->data.buswidth); |
| 354 | |
| 355 | if (ret) |
| 356 | return false; |
| 357 | |
| 358 | /* |
| 359 | * The number of instructions needed for the op, needs |
| 360 | * to fit into a single LUT entry. |
| 361 | */ |
| 362 | if (op->addr.nbytes + |
| 363 | (op->dummy.nbytes ? 1:0) + |
| 364 | (op->data.nbytes ? 1:0) > 6) |
| 365 | return false; |
| 366 | |
| 367 | /* Max 64 dummy clock cycles supported */ |
| 368 | if (op->dummy.nbytes && |
| 369 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) |
| 370 | return false; |
| 371 | |
| 372 | /* Max data length, check controller limits and alignment */ |
| 373 | if (op->data.dir == SPI_MEM_DATA_IN && |
| 374 | (op->data.nbytes > q->devtype_data->ahb_buf_size || |
| 375 | (op->data.nbytes > q->devtype_data->rxfifo - 4 && |
| 376 | !IS_ALIGNED(op->data.nbytes, 8)))) |
| 377 | return false; |
| 378 | |
| 379 | if (op->data.dir == SPI_MEM_DATA_OUT && |
| 380 | op->data.nbytes > q->devtype_data->txfifo) |
| 381 | return false; |
| 382 | |
| 383 | return true; |
| 384 | } |
| 385 | |
| 386 | static void fsl_qspi_prepare_lut(struct fsl_qspi *q, |
| 387 | const struct spi_mem_op *op) |
| 388 | { |
| 389 | void __iomem *base = q->iobase; |
| 390 | u32 lutval[4] = {}; |
| 391 | int lutidx = 1, i; |
| 392 | |
| 393 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), |
| 394 | op->cmd.opcode); |
| 395 | |
| 396 | /* |
| 397 | * For some unknown reason, using LUT_ADDR doesn't work in some |
| 398 | * cases (at least with only one byte long addresses), so |
| 399 | * let's use LUT_MODE to write the address bytes one by one |
| 400 | */ |
| 401 | for (i = 0; i < op->addr.nbytes; i++) { |
| 402 | u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); |
| 403 | |
| 404 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE, |
| 405 | LUT_PAD(op->addr.buswidth), |
| 406 | addrbyte); |
| 407 | lutidx++; |
| 408 | } |
| 409 | |
| 410 | if (op->dummy.nbytes) { |
| 411 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, |
| 412 | LUT_PAD(op->dummy.buswidth), |
| 413 | op->dummy.nbytes * 8 / |
| 414 | op->dummy.buswidth); |
| 415 | lutidx++; |
| 416 | } |
| 417 | |
| 418 | if (op->data.nbytes) { |
| 419 | lutval[lutidx / 2] |= LUT_DEF(lutidx, |
| 420 | op->data.dir == SPI_MEM_DATA_IN ? |
| 421 | LUT_FSL_READ : LUT_FSL_WRITE, |
| 422 | LUT_PAD(op->data.buswidth), |
| 423 | 0); |
| 424 | lutidx++; |
| 425 | } |
| 426 | |
| 427 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); |
| 428 | |
| 429 | /* unlock LUT */ |
| 430 | qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); |
| 431 | qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); |
| 432 | |
| 433 | /* fill LUT */ |
| 434 | for (i = 0; i < ARRAY_SIZE(lutval); i++) |
| 435 | qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i)); |
| 436 | |
| 437 | /* lock LUT */ |
| 438 | qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); |
| 439 | qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); |
| 440 | } |
| 441 | |
| 442 | static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) |
| 443 | { |
| 444 | int ret; |
| 445 | |
| 446 | ret = clk_prepare_enable(q->clk_en); |
| 447 | if (ret) |
| 448 | return ret; |
| 449 | |
| 450 | ret = clk_prepare_enable(q->clk); |
| 451 | if (ret) { |
| 452 | clk_disable_unprepare(q->clk_en); |
| 453 | return ret; |
| 454 | } |
| 455 | |
| 456 | if (needs_wakeup_wait_mode(q)) |
| 457 | pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0); |
| 458 | |
| 459 | return 0; |
| 460 | } |
| 461 | |
| 462 | static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) |
| 463 | { |
| 464 | if (needs_wakeup_wait_mode(q)) |
| 465 | pm_qos_remove_request(&q->pm_qos_req); |
| 466 | |
| 467 | clk_disable_unprepare(q->clk); |
| 468 | clk_disable_unprepare(q->clk_en); |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * If we have changed the content of the flash by writing or erasing, or if we |
| 473 | * read from flash with a different offset into the page buffer, we need to |
| 474 | * invalidate the AHB buffer. If we do not do so, we may read out the wrong |
| 475 | * data. The spec tells us reset the AHB domain and Serial Flash domain at |
| 476 | * the same time. |
| 477 | */ |
| 478 | static void fsl_qspi_invalidate(struct fsl_qspi *q) |
| 479 | { |
| 480 | u32 reg; |
| 481 | |
| 482 | reg = qspi_readl(q, q->iobase + QUADSPI_MCR); |
| 483 | reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; |
| 484 | qspi_writel(q, reg, q->iobase + QUADSPI_MCR); |
| 485 | |
| 486 | /* |
| 487 | * The minimum delay : 1 AHB + 2 SFCK clocks. |
| 488 | * Delay 1 us is enough. |
| 489 | */ |
| 490 | udelay(1); |
| 491 | |
| 492 | reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); |
| 493 | qspi_writel(q, reg, q->iobase + QUADSPI_MCR); |
| 494 | } |
| 495 | |
| 496 | static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi) |
| 497 | { |
| 498 | unsigned long rate = spi->max_speed_hz; |
| 499 | int ret; |
| 500 | |
| 501 | if (q->selected == spi->chip_select) |
| 502 | return; |
| 503 | |
| 504 | if (needs_4x_clock(q)) |
| 505 | rate *= 4; |
| 506 | |
| 507 | fsl_qspi_clk_disable_unprep(q); |
| 508 | |
| 509 | ret = clk_set_rate(q->clk, rate); |
| 510 | if (ret) |
| 511 | return; |
| 512 | |
| 513 | ret = fsl_qspi_clk_prep_enable(q); |
| 514 | if (ret) |
| 515 | return; |
| 516 | |
| 517 | q->selected = spi->chip_select; |
| 518 | |
| 519 | fsl_qspi_invalidate(q); |
| 520 | } |
| 521 | |
| 522 | static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op) |
| 523 | { |
| 524 | memcpy_fromio(op->data.buf.in, |
| 525 | q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size, |
| 526 | op->data.nbytes); |
| 527 | } |
| 528 | |
| 529 | static void fsl_qspi_fill_txfifo(struct fsl_qspi *q, |
| 530 | const struct spi_mem_op *op) |
| 531 | { |
| 532 | void __iomem *base = q->iobase; |
| 533 | int i; |
| 534 | u32 val; |
| 535 | |
| 536 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { |
| 537 | memcpy(&val, op->data.buf.out + i, 4); |
| 538 | val = fsl_qspi_endian_xchg(q, val); |
| 539 | qspi_writel(q, val, base + QUADSPI_TBDR); |
| 540 | } |
| 541 | |
| 542 | if (i < op->data.nbytes) { |
| 543 | memcpy(&val, op->data.buf.out + i, op->data.nbytes - i); |
| 544 | val = fsl_qspi_endian_xchg(q, val); |
| 545 | qspi_writel(q, val, base + QUADSPI_TBDR); |
| 546 | } |
| 547 | |
| 548 | if (needs_fill_txfifo(q)) { |
| 549 | for (i = op->data.nbytes; i < 16; i += 4) |
| 550 | qspi_writel(q, 0, base + QUADSPI_TBDR); |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | static void fsl_qspi_read_rxfifo(struct fsl_qspi *q, |
| 555 | const struct spi_mem_op *op) |
| 556 | { |
| 557 | void __iomem *base = q->iobase; |
| 558 | int i; |
| 559 | u8 *buf = op->data.buf.in; |
| 560 | u32 val; |
| 561 | |
| 562 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) { |
| 563 | val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); |
| 564 | val = fsl_qspi_endian_xchg(q, val); |
| 565 | memcpy(buf + i, &val, 4); |
| 566 | } |
| 567 | |
| 568 | if (i < op->data.nbytes) { |
| 569 | val = qspi_readl(q, base + QUADSPI_RBDR(i / 4)); |
| 570 | val = fsl_qspi_endian_xchg(q, val); |
| 571 | memcpy(buf + i, &val, op->data.nbytes - i); |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op) |
| 576 | { |
| 577 | void __iomem *base = q->iobase; |
| 578 | int err = 0; |
| 579 | |
| 580 | init_completion(&q->c); |
| 581 | |
| 582 | /* |
| 583 | * Always start the sequence at the same index since we update |
| 584 | * the LUT at each exec_op() call. And also specify the DATA |
| 585 | * length, since it's has not been specified in the LUT. |
| 586 | */ |
| 587 | qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT), |
| 588 | base + QUADSPI_IPCR); |
| 589 | |
| 590 | /* Wait for the interrupt. */ |
| 591 | if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) |
| 592 | err = -ETIMEDOUT; |
| 593 | |
| 594 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) |
| 595 | fsl_qspi_read_rxfifo(q, op); |
| 596 | |
| 597 | return err; |
| 598 | } |
| 599 | |
| 600 | static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base, |
| 601 | u32 mask, u32 delay_us, u32 timeout_us) |
| 602 | { |
| 603 | u32 reg; |
| 604 | |
| 605 | if (!q->devtype_data->little_endian) |
| 606 | mask = (u32)cpu_to_be32(mask); |
| 607 | |
| 608 | return readl_poll_timeout(base, reg, !(reg & mask), delay_us, |
| 609 | timeout_us); |
| 610 | } |
| 611 | |
| 612 | static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 613 | { |
| 614 | struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); |
| 615 | void __iomem *base = q->iobase; |
| 616 | u32 addr_offset = 0; |
| 617 | int err = 0; |
| 618 | |
| 619 | mutex_lock(&q->lock); |
| 620 | |
| 621 | /* wait for the controller being ready */ |
| 622 | fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK | |
| 623 | QUADSPI_SR_AHB_ACC_MASK), 10, 1000); |
| 624 | |
| 625 | fsl_qspi_select_mem(q, mem->spi); |
| 626 | |
| 627 | if (needs_amba_base_offset(q)) |
| 628 | addr_offset = q->memmap_phy; |
| 629 | |
| 630 | qspi_writel(q, |
| 631 | q->selected * q->devtype_data->ahb_buf_size + addr_offset, |
| 632 | base + QUADSPI_SFAR); |
| 633 | |
| 634 | qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) | |
| 635 | QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK, |
| 636 | base + QUADSPI_MCR); |
| 637 | |
| 638 | qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC, |
| 639 | base + QUADSPI_SPTRCLR); |
| 640 | |
| 641 | fsl_qspi_prepare_lut(q, op); |
| 642 | |
| 643 | /* |
| 644 | * If we have large chunks of data, we read them through the AHB bus |
| 645 | * by accessing the mapped memory. In all other cases we use |
| 646 | * IP commands to access the flash. |
| 647 | */ |
| 648 | if (op->data.nbytes > (q->devtype_data->rxfifo - 4) && |
| 649 | op->data.dir == SPI_MEM_DATA_IN) { |
| 650 | fsl_qspi_read_ahb(q, op); |
| 651 | } else { |
| 652 | qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | |
| 653 | QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT); |
| 654 | |
| 655 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) |
| 656 | fsl_qspi_fill_txfifo(q, op); |
| 657 | |
| 658 | err = fsl_qspi_do_op(q, op); |
| 659 | } |
| 660 | |
| 661 | /* Invalidate the data in the AHB buffer. */ |
| 662 | fsl_qspi_invalidate(q); |
| 663 | |
| 664 | mutex_unlock(&q->lock); |
| 665 | |
| 666 | return err; |
| 667 | } |
| 668 | |
| 669 | static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| 670 | { |
| 671 | struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); |
| 672 | |
| 673 | if (op->data.dir == SPI_MEM_DATA_OUT) { |
| 674 | if (op->data.nbytes > q->devtype_data->txfifo) |
| 675 | op->data.nbytes = q->devtype_data->txfifo; |
| 676 | } else { |
| 677 | if (op->data.nbytes > q->devtype_data->ahb_buf_size) |
| 678 | op->data.nbytes = q->devtype_data->ahb_buf_size; |
| 679 | else if (op->data.nbytes > (q->devtype_data->rxfifo - 4)) |
| 680 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); |
| 681 | } |
| 682 | |
| 683 | return 0; |
| 684 | } |
| 685 | |
| 686 | static int fsl_qspi_default_setup(struct fsl_qspi *q) |
| 687 | { |
| 688 | void __iomem *base = q->iobase; |
| 689 | u32 reg, addr_offset = 0; |
| 690 | int ret; |
| 691 | |
| 692 | /* disable and unprepare clock to avoid glitch pass to controller */ |
| 693 | fsl_qspi_clk_disable_unprep(q); |
| 694 | |
| 695 | /* the default frequency, we will change it later if necessary. */ |
| 696 | ret = clk_set_rate(q->clk, 66000000); |
| 697 | if (ret) |
| 698 | return ret; |
| 699 | |
| 700 | ret = fsl_qspi_clk_prep_enable(q); |
| 701 | if (ret) |
| 702 | return ret; |
| 703 | |
| 704 | /* Reset the module */ |
| 705 | qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, |
| 706 | base + QUADSPI_MCR); |
| 707 | udelay(1); |
| 708 | |
| 709 | /* Disable the module */ |
| 710 | qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, |
| 711 | base + QUADSPI_MCR); |
| 712 | |
| 713 | reg = qspi_readl(q, base + QUADSPI_SMPR); |
| 714 | qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK |
| 715 | | QUADSPI_SMPR_FSPHS_MASK |
| 716 | | QUADSPI_SMPR_HSENA_MASK |
| 717 | | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); |
| 718 | |
| 719 | /* We only use the buffer3 for AHB read */ |
| 720 | qspi_writel(q, 0, base + QUADSPI_BUF0IND); |
| 721 | qspi_writel(q, 0, base + QUADSPI_BUF1IND); |
| 722 | qspi_writel(q, 0, base + QUADSPI_BUF2IND); |
| 723 | |
| 724 | qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT), |
| 725 | q->iobase + QUADSPI_BFGENCR); |
| 726 | qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT); |
| 727 | qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | |
| 728 | QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8), |
| 729 | base + QUADSPI_BUF3CR); |
| 730 | |
| 731 | if (needs_amba_base_offset(q)) |
| 732 | addr_offset = q->memmap_phy; |
| 733 | |
| 734 | /* |
| 735 | * In HW there can be a maximum of four chips on two buses with |
| 736 | * two chip selects on each bus. We use four chip selects in SW |
| 737 | * to differentiate between the four chips. |
| 738 | * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD, |
| 739 | * SFB2AD accordingly. |
| 740 | */ |
| 741 | qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset, |
| 742 | base + QUADSPI_SFA1AD); |
| 743 | qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset, |
| 744 | base + QUADSPI_SFA2AD); |
| 745 | qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset, |
| 746 | base + QUADSPI_SFB1AD); |
| 747 | qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset, |
| 748 | base + QUADSPI_SFB2AD); |
| 749 | |
| 750 | q->selected = -1; |
| 751 | |
| 752 | /* Enable the module */ |
| 753 | qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, |
| 754 | base + QUADSPI_MCR); |
| 755 | |
| 756 | /* clear all interrupt status */ |
| 757 | qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); |
| 758 | |
| 759 | /* enable the interrupt */ |
| 760 | qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); |
| 761 | |
| 762 | return 0; |
| 763 | } |
| 764 | |
| 765 | static const char *fsl_qspi_get_name(struct spi_mem *mem) |
| 766 | { |
| 767 | struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master); |
| 768 | struct device *dev = &mem->spi->dev; |
| 769 | const char *name; |
| 770 | |
| 771 | /* |
| 772 | * In order to keep mtdparts compatible with the old MTD driver at |
| 773 | * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the |
| 774 | * platform_device of the controller. |
| 775 | */ |
| 776 | if (of_get_available_child_count(q->dev->of_node) == 1) |
| 777 | return dev_name(q->dev); |
| 778 | |
| 779 | name = devm_kasprintf(dev, GFP_KERNEL, |
| 780 | "%s-%d", dev_name(q->dev), |
| 781 | mem->spi->chip_select); |
| 782 | |
| 783 | if (!name) { |
| 784 | dev_err(dev, "failed to get memory for custom flash name\n"); |
| 785 | return ERR_PTR(-ENOMEM); |
| 786 | } |
| 787 | |
| 788 | return name; |
| 789 | } |
| 790 | |
| 791 | static const struct spi_controller_mem_ops fsl_qspi_mem_ops = { |
| 792 | .adjust_op_size = fsl_qspi_adjust_op_size, |
| 793 | .supports_op = fsl_qspi_supports_op, |
| 794 | .exec_op = fsl_qspi_exec_op, |
| 795 | .get_name = fsl_qspi_get_name, |
| 796 | }; |
| 797 | |
| 798 | static int fsl_qspi_probe(struct platform_device *pdev) |
| 799 | { |
| 800 | struct spi_controller *ctlr; |
| 801 | struct device *dev = &pdev->dev; |
| 802 | struct device_node *np = dev->of_node; |
| 803 | struct resource *res; |
| 804 | struct fsl_qspi *q; |
| 805 | int ret; |
| 806 | |
| 807 | ctlr = spi_alloc_master(&pdev->dev, sizeof(*q)); |
| 808 | if (!ctlr) |
| 809 | return -ENOMEM; |
| 810 | |
| 811 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | |
| 812 | SPI_TX_DUAL | SPI_TX_QUAD; |
| 813 | |
| 814 | q = spi_controller_get_devdata(ctlr); |
| 815 | q->dev = dev; |
| 816 | q->devtype_data = of_device_get_match_data(dev); |
| 817 | if (!q->devtype_data) { |
| 818 | ret = -ENODEV; |
| 819 | goto err_put_ctrl; |
| 820 | } |
| 821 | |
| 822 | platform_set_drvdata(pdev, q); |
| 823 | |
| 824 | /* find the resources */ |
| 825 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); |
| 826 | q->iobase = devm_ioremap_resource(dev, res); |
| 827 | if (IS_ERR(q->iobase)) { |
| 828 | ret = PTR_ERR(q->iobase); |
| 829 | goto err_put_ctrl; |
| 830 | } |
| 831 | |
| 832 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| 833 | "QuadSPI-memory"); |
| 834 | q->ahb_addr = devm_ioremap_resource(dev, res); |
| 835 | if (IS_ERR(q->ahb_addr)) { |
| 836 | ret = PTR_ERR(q->ahb_addr); |
| 837 | goto err_put_ctrl; |
| 838 | } |
| 839 | |
| 840 | q->memmap_phy = res->start; |
| 841 | |
| 842 | /* find the clocks */ |
| 843 | q->clk_en = devm_clk_get(dev, "qspi_en"); |
| 844 | if (IS_ERR(q->clk_en)) { |
| 845 | ret = PTR_ERR(q->clk_en); |
| 846 | goto err_put_ctrl; |
| 847 | } |
| 848 | |
| 849 | q->clk = devm_clk_get(dev, "qspi"); |
| 850 | if (IS_ERR(q->clk)) { |
| 851 | ret = PTR_ERR(q->clk); |
| 852 | goto err_put_ctrl; |
| 853 | } |
| 854 | |
| 855 | ret = fsl_qspi_clk_prep_enable(q); |
| 856 | if (ret) { |
| 857 | dev_err(dev, "can not enable the clock\n"); |
| 858 | goto err_put_ctrl; |
| 859 | } |
| 860 | |
| 861 | /* find the irq */ |
| 862 | ret = platform_get_irq(pdev, 0); |
| 863 | if (ret < 0) { |
| 864 | dev_err(dev, "failed to get the irq: %d\n", ret); |
| 865 | goto err_disable_clk; |
| 866 | } |
| 867 | |
| 868 | ret = devm_request_irq(dev, ret, |
| 869 | fsl_qspi_irq_handler, 0, pdev->name, q); |
| 870 | if (ret) { |
| 871 | dev_err(dev, "failed to request irq: %d\n", ret); |
| 872 | goto err_disable_clk; |
| 873 | } |
| 874 | |
| 875 | mutex_init(&q->lock); |
| 876 | |
| 877 | ctlr->bus_num = -1; |
| 878 | ctlr->num_chipselect = 4; |
| 879 | ctlr->mem_ops = &fsl_qspi_mem_ops; |
| 880 | |
| 881 | fsl_qspi_default_setup(q); |
| 882 | |
| 883 | ctlr->dev.of_node = np; |
| 884 | |
Volker Haspel | 8fcb830 | 2019-03-12 11:12:03 +0100 | [diff] [blame] | 885 | ret = devm_spi_register_controller(dev, ctlr); |
Frieder Schrempf | 84d0431 | 2019-01-07 09:29:47 +0000 | [diff] [blame] | 886 | if (ret) |
| 887 | goto err_destroy_mutex; |
| 888 | |
| 889 | return 0; |
| 890 | |
| 891 | err_destroy_mutex: |
| 892 | mutex_destroy(&q->lock); |
| 893 | |
| 894 | err_disable_clk: |
| 895 | fsl_qspi_clk_disable_unprep(q); |
| 896 | |
| 897 | err_put_ctrl: |
| 898 | spi_controller_put(ctlr); |
| 899 | |
| 900 | dev_err(dev, "Freescale QuadSPI probe failed\n"); |
| 901 | return ret; |
| 902 | } |
| 903 | |
| 904 | static int fsl_qspi_remove(struct platform_device *pdev) |
| 905 | { |
| 906 | struct fsl_qspi *q = platform_get_drvdata(pdev); |
| 907 | |
| 908 | /* disable the hardware */ |
| 909 | qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); |
| 910 | qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); |
| 911 | |
| 912 | fsl_qspi_clk_disable_unprep(q); |
| 913 | |
| 914 | mutex_destroy(&q->lock); |
| 915 | |
| 916 | return 0; |
| 917 | } |
| 918 | |
| 919 | static int fsl_qspi_suspend(struct device *dev) |
| 920 | { |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | static int fsl_qspi_resume(struct device *dev) |
| 925 | { |
| 926 | struct fsl_qspi *q = dev_get_drvdata(dev); |
| 927 | |
| 928 | fsl_qspi_default_setup(q); |
| 929 | |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | static const struct of_device_id fsl_qspi_dt_ids[] = { |
| 934 | { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, |
| 935 | { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, |
| 936 | { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, |
| 937 | { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, |
| 938 | { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, }, |
| 939 | { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, |
| 940 | { /* sentinel */ } |
| 941 | }; |
| 942 | MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); |
| 943 | |
| 944 | static const struct dev_pm_ops fsl_qspi_pm_ops = { |
| 945 | .suspend = fsl_qspi_suspend, |
| 946 | .resume = fsl_qspi_resume, |
| 947 | }; |
| 948 | |
| 949 | static struct platform_driver fsl_qspi_driver = { |
| 950 | .driver = { |
| 951 | .name = "fsl-quadspi", |
| 952 | .of_match_table = fsl_qspi_dt_ids, |
| 953 | .pm = &fsl_qspi_pm_ops, |
| 954 | }, |
| 955 | .probe = fsl_qspi_probe, |
| 956 | .remove = fsl_qspi_remove, |
| 957 | }; |
| 958 | module_platform_driver(fsl_qspi_driver); |
| 959 | |
| 960 | MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); |
| 961 | MODULE_AUTHOR("Freescale Semiconductor Inc."); |
Yogesh Narayan Gaur | c55d0e8 | 2019-01-29 09:55:27 +0000 | [diff] [blame] | 962 | MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); |
Frieder Schrempf | 84d0431 | 2019-01-07 09:29:47 +0000 | [diff] [blame] | 963 | MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); |
| 964 | MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>"); |
| 965 | MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>"); |
| 966 | MODULE_LICENSE("GPL v2"); |