blob: b73f3c4e892b80788ed74015a0a636abc3f046a0 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
17 *
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
22 *
23 * 04-14-2004 tglx: first working version for 2k page size chips
24 *
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
26 *
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
30 *
David A. Marlin30f464b2005-01-17 18:35:25 +000031 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
38 * in the same area, and rewrite the BBT when any of them are erased.
39 *
40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
44 *
David A. Marlin068e3c02005-01-24 03:07:46 +000045 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
48 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070049 * Credits:
50 * David Woodhouse for adding multichip support
51 *
52 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
53 * rework for 2K page size chips
54 *
55 * TODO:
56 * Enable cached programming for 2k page size chips
57 * Check, if mtd->ecctype should be set to MTD_ECC_HW
58 * if we have HW ecc support.
59 * The AG-AND chips have nice features for speed improvement,
60 * which are not supported yet. Read / program 4 pages in one go.
61 *
Dan Brown82e1d192005-04-06 21:13:09 +010062 * $Id: nand_base.c,v 1.141 2005/04/06 20:13:05 dbrown Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070063 *
64 * This program is free software; you can redistribute it and/or modify
65 * it under the terms of the GNU General Public License version 2 as
66 * published by the Free Software Foundation.
67 *
68 */
69
70#include <linux/delay.h>
71#include <linux/errno.h>
72#include <linux/sched.h>
73#include <linux/slab.h>
74#include <linux/types.h>
75#include <linux/mtd/mtd.h>
76#include <linux/mtd/nand.h>
77#include <linux/mtd/nand_ecc.h>
78#include <linux/mtd/compatmac.h>
79#include <linux/interrupt.h>
80#include <linux/bitops.h>
81#include <asm/io.h>
82
83#ifdef CONFIG_MTD_PARTITIONS
84#include <linux/mtd/partitions.h>
85#endif
86
87/* Define default oob placement schemes for large and small page devices */
88static struct nand_oobinfo nand_oob_8 = {
89 .useecc = MTD_NANDECC_AUTOPLACE,
90 .eccbytes = 3,
91 .eccpos = {0, 1, 2},
92 .oobfree = { {3, 2}, {6, 2} }
93};
94
95static struct nand_oobinfo nand_oob_16 = {
96 .useecc = MTD_NANDECC_AUTOPLACE,
97 .eccbytes = 6,
98 .eccpos = {0, 1, 2, 3, 6, 7},
99 .oobfree = { {8, 8} }
100};
101
102static struct nand_oobinfo nand_oob_64 = {
103 .useecc = MTD_NANDECC_AUTOPLACE,
104 .eccbytes = 24,
105 .eccpos = {
106 40, 41, 42, 43, 44, 45, 46, 47,
107 48, 49, 50, 51, 52, 53, 54, 55,
108 56, 57, 58, 59, 60, 61, 62, 63},
109 .oobfree = { {2, 38} }
110};
111
112/* This is used for padding purposes in nand_write_oob */
113static u_char ffchars[] = {
114 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
115 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122};
123
124/*
125 * NAND low-level MTD interface functions
126 */
127static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
128static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
129static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
130
131static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
132static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
133 size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
134static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
135static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
136static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
137 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
138static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
139static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
140 unsigned long count, loff_t to, size_t * retlen);
141static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
142 unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
143static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
144static void nand_sync (struct mtd_info *mtd);
145
146/* Some internal functions */
147static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
148 struct nand_oobinfo *oobsel, int mode);
149#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
150static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
151 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
152#else
153#define nand_verify_pages(...) (0)
154#endif
155
156static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
157
158/**
159 * nand_release_device - [GENERIC] release chip
160 * @mtd: MTD device structure
161 *
162 * Deselect, release chip lock and wake up anyone waiting on the device
163 */
164static void nand_release_device (struct mtd_info *mtd)
165{
166 struct nand_chip *this = mtd->priv;
167
168 /* De-select the NAND device */
169 this->select_chip(mtd, -1);
170 /* Do we have a hardware controller ? */
171 if (this->controller) {
172 spin_lock(&this->controller->lock);
173 this->controller->active = NULL;
174 spin_unlock(&this->controller->lock);
175 }
176 /* Release the chip */
177 spin_lock (&this->chip_lock);
178 this->state = FL_READY;
179 wake_up (&this->wq);
180 spin_unlock (&this->chip_lock);
181}
182
183/**
184 * nand_read_byte - [DEFAULT] read one byte from the chip
185 * @mtd: MTD device structure
186 *
187 * Default read function for 8bit buswith
188 */
189static u_char nand_read_byte(struct mtd_info *mtd)
190{
191 struct nand_chip *this = mtd->priv;
192 return readb(this->IO_ADDR_R);
193}
194
195/**
196 * nand_write_byte - [DEFAULT] write one byte to the chip
197 * @mtd: MTD device structure
198 * @byte: pointer to data byte to write
199 *
200 * Default write function for 8it buswith
201 */
202static void nand_write_byte(struct mtd_info *mtd, u_char byte)
203{
204 struct nand_chip *this = mtd->priv;
205 writeb(byte, this->IO_ADDR_W);
206}
207
208/**
209 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
210 * @mtd: MTD device structure
211 *
212 * Default read function for 16bit buswith with
213 * endianess conversion
214 */
215static u_char nand_read_byte16(struct mtd_info *mtd)
216{
217 struct nand_chip *this = mtd->priv;
218 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
219}
220
221/**
222 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
223 * @mtd: MTD device structure
224 * @byte: pointer to data byte to write
225 *
226 * Default write function for 16bit buswith with
227 * endianess conversion
228 */
229static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
230{
231 struct nand_chip *this = mtd->priv;
232 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
233}
234
235/**
236 * nand_read_word - [DEFAULT] read one word from the chip
237 * @mtd: MTD device structure
238 *
239 * Default read function for 16bit buswith without
240 * endianess conversion
241 */
242static u16 nand_read_word(struct mtd_info *mtd)
243{
244 struct nand_chip *this = mtd->priv;
245 return readw(this->IO_ADDR_R);
246}
247
248/**
249 * nand_write_word - [DEFAULT] write one word to the chip
250 * @mtd: MTD device structure
251 * @word: data word to write
252 *
253 * Default write function for 16bit buswith without
254 * endianess conversion
255 */
256static void nand_write_word(struct mtd_info *mtd, u16 word)
257{
258 struct nand_chip *this = mtd->priv;
259 writew(word, this->IO_ADDR_W);
260}
261
262/**
263 * nand_select_chip - [DEFAULT] control CE line
264 * @mtd: MTD device structure
265 * @chip: chipnumber to select, -1 for deselect
266 *
267 * Default select function for 1 chip devices.
268 */
269static void nand_select_chip(struct mtd_info *mtd, int chip)
270{
271 struct nand_chip *this = mtd->priv;
272 switch(chip) {
273 case -1:
274 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
275 break;
276 case 0:
277 this->hwcontrol(mtd, NAND_CTL_SETNCE);
278 break;
279
280 default:
281 BUG();
282 }
283}
284
285/**
286 * nand_write_buf - [DEFAULT] write buffer to chip
287 * @mtd: MTD device structure
288 * @buf: data buffer
289 * @len: number of bytes to write
290 *
291 * Default write function for 8bit buswith
292 */
293static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
294{
295 int i;
296 struct nand_chip *this = mtd->priv;
297
298 for (i=0; i<len; i++)
299 writeb(buf[i], this->IO_ADDR_W);
300}
301
302/**
303 * nand_read_buf - [DEFAULT] read chip data into buffer
304 * @mtd: MTD device structure
305 * @buf: buffer to store date
306 * @len: number of bytes to read
307 *
308 * Default read function for 8bit buswith
309 */
310static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
311{
312 int i;
313 struct nand_chip *this = mtd->priv;
314
315 for (i=0; i<len; i++)
316 buf[i] = readb(this->IO_ADDR_R);
317}
318
319/**
320 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
321 * @mtd: MTD device structure
322 * @buf: buffer containing the data to compare
323 * @len: number of bytes to compare
324 *
325 * Default verify function for 8bit buswith
326 */
327static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
328{
329 int i;
330 struct nand_chip *this = mtd->priv;
331
332 for (i=0; i<len; i++)
333 if (buf[i] != readb(this->IO_ADDR_R))
334 return -EFAULT;
335
336 return 0;
337}
338
339/**
340 * nand_write_buf16 - [DEFAULT] write buffer to chip
341 * @mtd: MTD device structure
342 * @buf: data buffer
343 * @len: number of bytes to write
344 *
345 * Default write function for 16bit buswith
346 */
347static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
348{
349 int i;
350 struct nand_chip *this = mtd->priv;
351 u16 *p = (u16 *) buf;
352 len >>= 1;
353
354 for (i=0; i<len; i++)
355 writew(p[i], this->IO_ADDR_W);
356
357}
358
359/**
360 * nand_read_buf16 - [DEFAULT] read chip data into buffer
361 * @mtd: MTD device structure
362 * @buf: buffer to store date
363 * @len: number of bytes to read
364 *
365 * Default read function for 16bit buswith
366 */
367static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
368{
369 int i;
370 struct nand_chip *this = mtd->priv;
371 u16 *p = (u16 *) buf;
372 len >>= 1;
373
374 for (i=0; i<len; i++)
375 p[i] = readw(this->IO_ADDR_R);
376}
377
378/**
379 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
380 * @mtd: MTD device structure
381 * @buf: buffer containing the data to compare
382 * @len: number of bytes to compare
383 *
384 * Default verify function for 16bit buswith
385 */
386static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
387{
388 int i;
389 struct nand_chip *this = mtd->priv;
390 u16 *p = (u16 *) buf;
391 len >>= 1;
392
393 for (i=0; i<len; i++)
394 if (p[i] != readw(this->IO_ADDR_R))
395 return -EFAULT;
396
397 return 0;
398}
399
400/**
401 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
402 * @mtd: MTD device structure
403 * @ofs: offset from device start
404 * @getchip: 0, if the chip is already selected
405 *
406 * Check, if the block is bad.
407 */
408static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
409{
410 int page, chipnr, res = 0;
411 struct nand_chip *this = mtd->priv;
412 u16 bad;
413
414 if (getchip) {
415 page = (int)(ofs >> this->page_shift);
416 chipnr = (int)(ofs >> this->chip_shift);
417
418 /* Grab the lock and see if the device is available */
419 nand_get_device (this, mtd, FL_READING);
420
421 /* Select the NAND device */
422 this->select_chip(mtd, chipnr);
423 } else
424 page = (int) ofs;
425
426 if (this->options & NAND_BUSWIDTH_16) {
427 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
428 bad = cpu_to_le16(this->read_word(mtd));
429 if (this->badblockpos & 0x1)
430 bad >>= 1;
431 if ((bad & 0xFF) != 0xff)
432 res = 1;
433 } else {
434 this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
435 if (this->read_byte(mtd) != 0xff)
436 res = 1;
437 }
438
439 if (getchip) {
440 /* Deselect and wake up anyone waiting on the device */
441 nand_release_device(mtd);
442 }
443
444 return res;
445}
446
447/**
448 * nand_default_block_markbad - [DEFAULT] mark a block bad
449 * @mtd: MTD device structure
450 * @ofs: offset from device start
451 *
452 * This is the default implementation, which can be overridden by
453 * a hardware specific driver.
454*/
455static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
456{
457 struct nand_chip *this = mtd->priv;
458 u_char buf[2] = {0, 0};
459 size_t retlen;
460 int block;
461
462 /* Get block number */
463 block = ((int) ofs) >> this->bbt_erase_shift;
Artem B. Bityuckiy41ce9212005-02-09 14:50:00 +0000464 if (this->bbt)
465 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466
467 /* Do we have a flash based bad block table ? */
468 if (this->options & NAND_USE_FLASH_BBT)
469 return nand_update_bbt (mtd, ofs);
470
471 /* We write two bytes, so we dont have to mess with 16 bit access */
472 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
473 return nand_write_oob (mtd, ofs , 2, &retlen, buf);
474}
475
476/**
477 * nand_check_wp - [GENERIC] check if the chip is write protected
478 * @mtd: MTD device structure
479 * Check, if the device is write protected
480 *
481 * The function expects, that the device is already selected
482 */
483static int nand_check_wp (struct mtd_info *mtd)
484{
485 struct nand_chip *this = mtd->priv;
486 /* Check the WP bit */
487 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
David A. Marlina4ab4c52005-01-23 18:30:53 +0000488 return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700489}
490
491/**
492 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
493 * @mtd: MTD device structure
494 * @ofs: offset from device start
495 * @getchip: 0, if the chip is already selected
496 * @allowbbt: 1, if its allowed to access the bbt area
497 *
498 * Check, if the block is bad. Either by reading the bad block table or
499 * calling of the scan function.
500 */
501static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
502{
503 struct nand_chip *this = mtd->priv;
504
505 if (!this->bbt)
506 return this->block_bad(mtd, ofs, getchip);
507
508 /* Return info from the table */
509 return nand_isbad_bbt (mtd, ofs, allowbbt);
510}
511
Thomas Gleixner3b887752005-02-22 21:56:49 +0000512/*
513 * Wait for the ready pin, after a command
514 * The timeout is catched later.
515 */
516static void nand_wait_ready(struct mtd_info *mtd)
517{
518 struct nand_chip *this = mtd->priv;
519 unsigned long timeo = jiffies + 2;
520
521 /* wait until command is processed or timeout occures */
522 do {
523 if (this->dev_ready(mtd))
524 return;
525 } while (time_before(jiffies, timeo));
526}
527
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528/**
529 * nand_command - [DEFAULT] Send command to NAND device
530 * @mtd: MTD device structure
531 * @command: the command to be sent
532 * @column: the column address for this command, -1 if none
533 * @page_addr: the page address for this command, -1 if none
534 *
535 * Send command to NAND device. This function is used for small page
536 * devices (256/512 Bytes per page)
537 */
538static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
539{
540 register struct nand_chip *this = mtd->priv;
541
542 /* Begin command latch cycle */
543 this->hwcontrol(mtd, NAND_CTL_SETCLE);
544 /*
545 * Write out the command to the device.
546 */
547 if (command == NAND_CMD_SEQIN) {
548 int readcmd;
549
550 if (column >= mtd->oobblock) {
551 /* OOB area */
552 column -= mtd->oobblock;
553 readcmd = NAND_CMD_READOOB;
554 } else if (column < 256) {
555 /* First 256 bytes --> READ0 */
556 readcmd = NAND_CMD_READ0;
557 } else {
558 column -= 256;
559 readcmd = NAND_CMD_READ1;
560 }
561 this->write_byte(mtd, readcmd);
562 }
563 this->write_byte(mtd, command);
564
565 /* Set ALE and clear CLE to start address cycle */
566 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
567
568 if (column != -1 || page_addr != -1) {
569 this->hwcontrol(mtd, NAND_CTL_SETALE);
570
571 /* Serially input address */
572 if (column != -1) {
573 /* Adjust columns for 16 bit buswidth */
574 if (this->options & NAND_BUSWIDTH_16)
575 column >>= 1;
576 this->write_byte(mtd, column);
577 }
578 if (page_addr != -1) {
579 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
580 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
581 /* One more address cycle for devices > 32MiB */
582 if (this->chipsize > (32 << 20))
583 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
584 }
585 /* Latch in address */
586 this->hwcontrol(mtd, NAND_CTL_CLRALE);
587 }
588
589 /*
590 * program and erase have their own busy handlers
591 * status and sequential in needs no delay
592 */
593 switch (command) {
594
595 case NAND_CMD_PAGEPROG:
596 case NAND_CMD_ERASE1:
597 case NAND_CMD_ERASE2:
598 case NAND_CMD_SEQIN:
599 case NAND_CMD_STATUS:
600 return;
601
602 case NAND_CMD_RESET:
603 if (this->dev_ready)
604 break;
605 udelay(this->chip_delay);
606 this->hwcontrol(mtd, NAND_CTL_SETCLE);
607 this->write_byte(mtd, NAND_CMD_STATUS);
608 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
David A. Marlina4ab4c52005-01-23 18:30:53 +0000609 while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610 return;
611
612 /* This applies to read commands */
613 default:
614 /*
615 * If we don't have access to the busy pin, we apply the given
616 * command delay
617 */
618 if (!this->dev_ready) {
619 udelay (this->chip_delay);
620 return;
621 }
622 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 /* Apply this short delay always to ensure that we do wait tWB in
624 * any case on any machine. */
625 ndelay (100);
Thomas Gleixner3b887752005-02-22 21:56:49 +0000626
627 nand_wait_ready(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700628}
629
630/**
631 * nand_command_lp - [DEFAULT] Send command to NAND large page device
632 * @mtd: MTD device structure
633 * @command: the command to be sent
634 * @column: the column address for this command, -1 if none
635 * @page_addr: the page address for this command, -1 if none
636 *
637 * Send command to NAND device. This is the version for the new large page devices
638 * We dont have the seperate regions as we have in the small page devices.
639 * We must emulate NAND_CMD_READOOB to keep the code compatible.
640 *
641 */
642static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
643{
644 register struct nand_chip *this = mtd->priv;
645
646 /* Emulate NAND_CMD_READOOB */
647 if (command == NAND_CMD_READOOB) {
648 column += mtd->oobblock;
649 command = NAND_CMD_READ0;
650 }
651
652
653 /* Begin command latch cycle */
654 this->hwcontrol(mtd, NAND_CTL_SETCLE);
655 /* Write out the command to the device. */
David A. Marlin30f464b2005-01-17 18:35:25 +0000656 this->write_byte(mtd, (command & 0xff));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657 /* End command latch cycle */
658 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
659
660 if (column != -1 || page_addr != -1) {
661 this->hwcontrol(mtd, NAND_CTL_SETALE);
662
663 /* Serially input address */
664 if (column != -1) {
665 /* Adjust columns for 16 bit buswidth */
666 if (this->options & NAND_BUSWIDTH_16)
667 column >>= 1;
668 this->write_byte(mtd, column & 0xff);
669 this->write_byte(mtd, column >> 8);
670 }
671 if (page_addr != -1) {
672 this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
673 this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
674 /* One more address cycle for devices > 128MiB */
675 if (this->chipsize > (128 << 20))
676 this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
677 }
678 /* Latch in address */
679 this->hwcontrol(mtd, NAND_CTL_CLRALE);
680 }
681
682 /*
683 * program and erase have their own busy handlers
David A. Marlin30f464b2005-01-17 18:35:25 +0000684 * status, sequential in, and deplete1 need no delay
685 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686 switch (command) {
687
688 case NAND_CMD_CACHEDPROG:
689 case NAND_CMD_PAGEPROG:
690 case NAND_CMD_ERASE1:
691 case NAND_CMD_ERASE2:
692 case NAND_CMD_SEQIN:
693 case NAND_CMD_STATUS:
David A. Marlin30f464b2005-01-17 18:35:25 +0000694 case NAND_CMD_DEPLETE1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695 return;
696
David A. Marlin30f464b2005-01-17 18:35:25 +0000697 /*
698 * read error status commands require only a short delay
699 */
700 case NAND_CMD_STATUS_ERROR:
701 case NAND_CMD_STATUS_ERROR0:
702 case NAND_CMD_STATUS_ERROR1:
703 case NAND_CMD_STATUS_ERROR2:
704 case NAND_CMD_STATUS_ERROR3:
705 udelay(this->chip_delay);
706 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700707
708 case NAND_CMD_RESET:
709 if (this->dev_ready)
710 break;
711 udelay(this->chip_delay);
712 this->hwcontrol(mtd, NAND_CTL_SETCLE);
713 this->write_byte(mtd, NAND_CMD_STATUS);
714 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
David A. Marlina4ab4c52005-01-23 18:30:53 +0000715 while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716 return;
717
718 case NAND_CMD_READ0:
719 /* Begin command latch cycle */
720 this->hwcontrol(mtd, NAND_CTL_SETCLE);
721 /* Write out the start read command */
722 this->write_byte(mtd, NAND_CMD_READSTART);
723 /* End command latch cycle */
724 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
725 /* Fall through into ready check */
726
727 /* This applies to read commands */
728 default:
729 /*
730 * If we don't have access to the busy pin, we apply the given
731 * command delay
732 */
733 if (!this->dev_ready) {
734 udelay (this->chip_delay);
735 return;
736 }
737 }
Thomas Gleixner3b887752005-02-22 21:56:49 +0000738
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739 /* Apply this short delay always to ensure that we do wait tWB in
740 * any case on any machine. */
741 ndelay (100);
Thomas Gleixner3b887752005-02-22 21:56:49 +0000742
743 nand_wait_ready(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744}
745
746/**
747 * nand_get_device - [GENERIC] Get chip for selected access
748 * @this: the nand chip descriptor
749 * @mtd: MTD device structure
750 * @new_state: the state which is requested
751 *
752 * Get the device and lock it for exclusive access
753 */
754static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
755{
756 struct nand_chip *active = this;
757
758 DECLARE_WAITQUEUE (wait, current);
759
760 /*
761 * Grab the lock and see if the device is available
762 */
763retry:
764 /* Hardware controller shared among independend devices */
765 if (this->controller) {
766 spin_lock (&this->controller->lock);
767 if (this->controller->active)
768 active = this->controller->active;
769 else
770 this->controller->active = this;
771 spin_unlock (&this->controller->lock);
772 }
773
774 if (active == this) {
775 spin_lock (&this->chip_lock);
776 if (this->state == FL_READY) {
777 this->state = new_state;
778 spin_unlock (&this->chip_lock);
779 return;
780 }
781 }
782 set_current_state (TASK_UNINTERRUPTIBLE);
783 add_wait_queue (&active->wq, &wait);
784 spin_unlock (&active->chip_lock);
785 schedule ();
786 remove_wait_queue (&active->wq, &wait);
787 goto retry;
788}
789
790/**
791 * nand_wait - [DEFAULT] wait until the command is done
792 * @mtd: MTD device structure
793 * @this: NAND chip structure
794 * @state: state to select the max. timeout value
795 *
796 * Wait for command done. This applies to erase and program only
797 * Erase can take up to 400ms and program up to 20ms according to
798 * general NAND and SmartMedia specs
799 *
800*/
801static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
802{
803
804 unsigned long timeo = jiffies;
805 int status;
806
807 if (state == FL_ERASING)
808 timeo += (HZ * 400) / 1000;
809 else
810 timeo += (HZ * 20) / 1000;
811
812 /* Apply this short delay always to ensure that we do wait tWB in
813 * any case on any machine. */
814 ndelay (100);
815
816 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
817 this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
818 else
819 this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
820
821 while (time_before(jiffies, timeo)) {
822 /* Check, if we were interrupted */
823 if (this->state != state)
824 return 0;
825
826 if (this->dev_ready) {
827 if (this->dev_ready(mtd))
828 break;
829 } else {
830 if (this->read_byte(mtd) & NAND_STATUS_READY)
831 break;
832 }
Thomas Gleixner20a6c212005-03-01 09:32:48 +0000833 cond_resched();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834 }
835 status = (int) this->read_byte(mtd);
836 return status;
837}
838
839/**
840 * nand_write_page - [GENERIC] write one page
841 * @mtd: MTD device structure
842 * @this: NAND chip structure
843 * @page: startpage inside the chip, must be called with (page & this->pagemask)
844 * @oob_buf: out of band data buffer
845 * @oobsel: out of band selecttion structre
846 * @cached: 1 = enable cached programming if supported by chip
847 *
848 * Nand_page_program function is used for write and writev !
849 * This function will always program a full page of data
850 * If you call it with a non page aligned buffer, you're lost :)
851 *
852 * Cached programming is not supported yet.
853 */
854static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
855 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
856{
857 int i, status;
Artem B. Bityuckiy15fc1082005-03-24 14:33:26 +0000858 u_char ecc_code[oobsel->eccbytes];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
860 int *oob_config = oobsel->eccpos;
861 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
862 int eccbytes = 0;
863
864 /* FIXME: Enable cached programming */
865 cached = 0;
866
867 /* Send command to begin auto page programming */
868 this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
869
870 /* Write out complete page of data, take care of eccmode */
871 switch (eccmode) {
872 /* No ecc, write all */
873 case NAND_ECC_NONE:
874 printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
875 this->write_buf(mtd, this->data_poi, mtd->oobblock);
876 break;
877
878 /* Software ecc 3/256, write all */
879 case NAND_ECC_SOFT:
880 for (; eccsteps; eccsteps--) {
881 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
882 for (i = 0; i < 3; i++, eccidx++)
883 oob_buf[oob_config[eccidx]] = ecc_code[i];
884 datidx += this->eccsize;
885 }
886 this->write_buf(mtd, this->data_poi, mtd->oobblock);
887 break;
888 default:
889 eccbytes = this->eccbytes;
890 for (; eccsteps; eccsteps--) {
891 /* enable hardware ecc logic for write */
892 this->enable_hwecc(mtd, NAND_ECC_WRITE);
893 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
894 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
895 for (i = 0; i < eccbytes; i++, eccidx++)
896 oob_buf[oob_config[eccidx]] = ecc_code[i];
897 /* If the hardware ecc provides syndromes then
898 * the ecc code must be written immidiately after
899 * the data bytes (words) */
900 if (this->options & NAND_HWECC_SYNDROME)
901 this->write_buf(mtd, ecc_code, eccbytes);
902 datidx += this->eccsize;
903 }
904 break;
905 }
906
907 /* Write out OOB data */
908 if (this->options & NAND_HWECC_SYNDROME)
909 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
910 else
911 this->write_buf(mtd, oob_buf, mtd->oobsize);
912
913 /* Send command to actually program the data */
914 this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
915
916 if (!cached) {
917 /* call wait ready function */
918 status = this->waitfunc (mtd, this, FL_WRITING);
David A. Marlin068e3c02005-01-24 03:07:46 +0000919
920 /* See if operation failed and additional status checks are available */
921 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
922 status = this->errstat(mtd, this, FL_WRITING, status, page);
923 }
924
Linus Torvalds1da177e2005-04-16 15:20:36 -0700925 /* See if device thinks it succeeded */
David A. Marlina4ab4c52005-01-23 18:30:53 +0000926 if (status & NAND_STATUS_FAIL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
928 return -EIO;
929 }
930 } else {
931 /* FIXME: Implement cached programming ! */
932 /* wait until cache is ready*/
933 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
934 }
935 return 0;
936}
937
938#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
939/**
940 * nand_verify_pages - [GENERIC] verify the chip contents after a write
941 * @mtd: MTD device structure
942 * @this: NAND chip structure
943 * @page: startpage inside the chip, must be called with (page & this->pagemask)
944 * @numpages: number of pages to verify
945 * @oob_buf: out of band data buffer
946 * @oobsel: out of band selecttion structre
947 * @chipnr: number of the current chip
948 * @oobmode: 1 = full buffer verify, 0 = ecc only
949 *
950 * The NAND device assumes that it is always writing to a cleanly erased page.
951 * Hence, it performs its internal write verification only on bits that
952 * transitioned from 1 to 0. The device does NOT verify the whole page on a
953 * byte by byte basis. It is possible that the page was not completely erased
954 * or the page is becoming unusable due to wear. The read with ECC would catch
955 * the error later when the ECC page check fails, but we would rather catch
956 * it early in the page write stage. Better to write no data than invalid data.
957 */
958static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
959 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
960{
961 int i, j, datidx = 0, oobofs = 0, res = -EIO;
962 int eccsteps = this->eccsteps;
963 int hweccbytes;
Artem B. Bityuckiy15fc1082005-03-24 14:33:26 +0000964 u_char oobdata[mtd->oobsize];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965
966 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
967
968 /* Send command to read back the first page */
969 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
970
971 for(;;) {
972 for (j = 0; j < eccsteps; j++) {
973 /* Loop through and verify the data */
974 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
975 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
976 goto out;
977 }
978 datidx += mtd->eccsize;
979 /* Have we a hw generator layout ? */
980 if (!hweccbytes)
981 continue;
982 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
983 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
984 goto out;
985 }
986 oobofs += hweccbytes;
987 }
988
989 /* check, if we must compare all data or if we just have to
990 * compare the ecc bytes
991 */
992 if (oobmode) {
993 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
994 DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
995 goto out;
996 }
997 } else {
998 /* Read always, else autoincrement fails */
999 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1000
1001 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1002 int ecccnt = oobsel->eccbytes;
1003
1004 for (i = 0; i < ecccnt; i++) {
1005 int idx = oobsel->eccpos[i];
1006 if (oobdata[idx] != oob_buf[oobofs + idx] ) {
1007 DEBUG (MTD_DEBUG_LEVEL0,
1008 "%s: Failed ECC write "
1009 "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
1010 goto out;
1011 }
1012 }
1013 }
1014 }
1015 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1016 page++;
1017 numpages--;
1018
1019 /* Apply delay or wait for ready/busy pin
1020 * Do this before the AUTOINCR check, so no problems
1021 * arise if a chip which does auto increment
1022 * is marked as NOAUTOINCR by the board driver.
1023 * Do this also before returning, so the chip is
1024 * ready for the next command.
1025 */
1026 if (!this->dev_ready)
1027 udelay (this->chip_delay);
1028 else
Thomas Gleixner3b887752005-02-22 21:56:49 +00001029 nand_wait_ready(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030
1031 /* All done, return happy */
1032 if (!numpages)
1033 return 0;
1034
1035
1036 /* Check, if the chip supports auto page increment */
1037 if (!NAND_CANAUTOINCR(this))
1038 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1039 }
1040 /*
1041 * Terminate the read command. We come here in case of an error
1042 * So we must issue a reset command.
1043 */
1044out:
1045 this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
1046 return res;
1047}
1048#endif
1049
1050/**
David A. Marlin068e3c02005-01-24 03:07:46 +00001051 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052 * @mtd: MTD device structure
1053 * @from: offset to read from
1054 * @len: number of bytes to read
1055 * @retlen: pointer to variable to store the number of read bytes
1056 * @buf: the databuffer to put data
1057 *
David A. Marlin068e3c02005-01-24 03:07:46 +00001058 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1059 * and flags = 0xff
1060 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001061static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1062{
Thomas Gleixner22c60f52005-04-04 19:56:32 +01001063 return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
1064}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
1066
1067/**
David A. Marlin068e3c02005-01-24 03:07:46 +00001068 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069 * @mtd: MTD device structure
1070 * @from: offset to read from
1071 * @len: number of bytes to read
1072 * @retlen: pointer to variable to store the number of read bytes
1073 * @buf: the databuffer to put data
1074 * @oob_buf: filesystem supplied oob data buffer
1075 * @oobsel: oob selection structure
1076 *
David A. Marlin068e3c02005-01-24 03:07:46 +00001077 * This function simply calls nand_do_read_ecc with flags = 0xff
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078 */
1079static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1080 size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
1081{
Thomas Gleixner22c60f52005-04-04 19:56:32 +01001082 /* use userspace supplied oobinfo, if zero */
1083 if (oobsel == NULL)
1084 oobsel = &mtd->oobinfo;
David A. Marlin068e3c02005-01-24 03:07:46 +00001085 return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
1086}
1087
1088
1089/**
1090 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1091 * @mtd: MTD device structure
1092 * @from: offset to read from
1093 * @len: number of bytes to read
1094 * @retlen: pointer to variable to store the number of read bytes
1095 * @buf: the databuffer to put data
Dan Brownbb75ba42005-04-04 19:02:26 +01001096 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
Thomas Gleixner22c60f52005-04-04 19:56:32 +01001097 * @oobsel: oob selection structure
David A. Marlin068e3c02005-01-24 03:07:46 +00001098 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1099 * and how many corrected error bits are acceptable:
1100 * bits 0..7 - number of tolerable errors
1101 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1102 *
1103 * NAND read with ECC
1104 */
1105int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
1106 size_t * retlen, u_char * buf, u_char * oob_buf,
1107 struct nand_oobinfo *oobsel, int flags)
1108{
Thomas Gleixner22c60f52005-04-04 19:56:32 +01001109
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1111 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1112 struct nand_chip *this = mtd->priv;
1113 u_char *data_poi, *oob_data = oob_buf;
Artem B. Bityuckiy15fc1082005-03-24 14:33:26 +00001114 u_char ecc_calc[oobsel->eccbytes];
1115 u_char ecc_code[oobsel->eccbytes];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116 int eccmode, eccsteps;
1117 int *oob_config, datidx;
1118 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1119 int eccbytes;
1120 int compareecc = 1;
1121 int oobreadlen;
1122
1123
1124 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1125
1126 /* Do not allow reads past end of device */
1127 if ((from + len) > mtd->size) {
1128 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1129 *retlen = 0;
1130 return -EINVAL;
1131 }
1132
1133 /* Grab the lock and see if the device is available */
David A. Marlin068e3c02005-01-24 03:07:46 +00001134 if (flags & NAND_GET_DEVICE)
1135 nand_get_device (this, mtd, FL_READING);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001136
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137 /* Autoplace of oob data ? Use the default placement scheme */
1138 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1139 oobsel = this->autooob;
1140
1141 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1142 oob_config = oobsel->eccpos;
1143
1144 /* Select the NAND device */
1145 chipnr = (int)(from >> this->chip_shift);
1146 this->select_chip(mtd, chipnr);
1147
1148 /* First we calculate the starting page */
1149 realpage = (int) (from >> this->page_shift);
1150 page = realpage & this->pagemask;
1151
1152 /* Get raw starting column */
1153 col = from & (mtd->oobblock - 1);
1154
1155 end = mtd->oobblock;
1156 ecc = this->eccsize;
1157 eccbytes = this->eccbytes;
1158
1159 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1160 compareecc = 0;
1161
1162 oobreadlen = mtd->oobsize;
1163 if (this->options & NAND_HWECC_SYNDROME)
1164 oobreadlen -= oobsel->eccbytes;
1165
1166 /* Loop until all data read */
1167 while (read < len) {
1168
1169 int aligned = (!col && (len - read) >= end);
1170 /*
1171 * If the read is not page aligned, we have to read into data buffer
1172 * due to ecc, else we read into return buffer direct
1173 */
1174 if (aligned)
1175 data_poi = &buf[read];
1176 else
1177 data_poi = this->data_buf;
1178
1179 /* Check, if we have this page in the buffer
1180 *
1181 * FIXME: Make it work when we must provide oob data too,
1182 * check the usage of data_buf oob field
1183 */
1184 if (realpage == this->pagebuf && !oob_buf) {
1185 /* aligned read ? */
1186 if (aligned)
1187 memcpy (data_poi, this->data_buf, end);
1188 goto readdata;
1189 }
1190
1191 /* Check, if we must send the read command */
1192 if (sndcmd) {
1193 this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
1194 sndcmd = 0;
1195 }
1196
1197 /* get oob area, if we have no oob buffer from fs-driver */
1198 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1199 oob_data = &this->data_buf[end];
1200
1201 eccsteps = this->eccsteps;
1202
1203 switch (eccmode) {
1204 case NAND_ECC_NONE: { /* No ECC, Read in a page */
1205 static unsigned long lastwhinge = 0;
1206 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1207 printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
1208 lastwhinge = jiffies;
1209 }
1210 this->read_buf(mtd, data_poi, end);
1211 break;
1212 }
1213
1214 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1215 this->read_buf(mtd, data_poi, end);
1216 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
1217 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1218 break;
1219
1220 default:
1221 for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
1222 this->enable_hwecc(mtd, NAND_ECC_READ);
1223 this->read_buf(mtd, &data_poi[datidx], ecc);
1224
1225 /* HW ecc with syndrome calculation must read the
1226 * syndrome from flash immidiately after the data */
1227 if (!compareecc) {
1228 /* Some hw ecc generators need to know when the
1229 * syndrome is read from flash */
1230 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1231 this->read_buf(mtd, &oob_data[i], eccbytes);
1232 /* We calc error correction directly, it checks the hw
1233 * generator for an error, reads back the syndrome and
1234 * does the error correction on the fly */
David A. Marlin068e3c02005-01-24 03:07:46 +00001235 ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
1236 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001237 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1238 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1239 ecc_failed++;
1240 }
1241 } else {
1242 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1243 }
1244 }
1245 break;
1246 }
1247
1248 /* read oobdata */
1249 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1250
1251 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1252 if (!compareecc)
1253 goto readoob;
1254
1255 /* Pick the ECC bytes out of the oob data */
1256 for (j = 0; j < oobsel->eccbytes; j++)
1257 ecc_code[j] = oob_data[oob_config[j]];
1258
1259 /* correct data, if neccecary */
1260 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1261 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1262
1263 /* Get next chunk of ecc bytes */
1264 j += eccbytes;
1265
1266 /* Check, if we have a fs supplied oob-buffer,
1267 * This is the legacy mode. Used by YAFFS1
1268 * Should go away some day
1269 */
1270 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1271 int *p = (int *)(&oob_data[mtd->oobsize]);
1272 p[i] = ecc_status;
1273 }
1274
David A. Marlin068e3c02005-01-24 03:07:46 +00001275 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001276 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1277 ecc_failed++;
1278 }
1279 }
1280
1281 readoob:
1282 /* check, if we have a fs supplied oob-buffer */
1283 if (oob_buf) {
1284 /* without autoplace. Legacy mode used by YAFFS1 */
1285 switch(oobsel->useecc) {
1286 case MTD_NANDECC_AUTOPLACE:
1287 /* Walk through the autoplace chunks */
Dan Brown82e1d192005-04-06 21:13:09 +01001288 for (i = 0; oobsel->oobfree[i][1]; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 int from = oobsel->oobfree[i][0];
1290 int num = oobsel->oobfree[i][1];
1291 memcpy(&oob_buf[oob], &oob_data[from], num);
Dan Brown82e1d192005-04-06 21:13:09 +01001292 oob += num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 break;
1295 case MTD_NANDECC_PLACE:
1296 /* YAFFS1 legacy mode */
1297 oob_data += this->eccsteps * sizeof (int);
1298 default:
1299 oob_data += mtd->oobsize;
1300 }
1301 }
1302 readdata:
1303 /* Partial page read, transfer data into fs buffer */
1304 if (!aligned) {
1305 for (j = col; j < end && read < len; j++)
1306 buf[read++] = data_poi[j];
1307 this->pagebuf = realpage;
1308 } else
1309 read += mtd->oobblock;
1310
1311 /* Apply delay or wait for ready/busy pin
1312 * Do this before the AUTOINCR check, so no problems
1313 * arise if a chip which does auto increment
1314 * is marked as NOAUTOINCR by the board driver.
1315 */
1316 if (!this->dev_ready)
1317 udelay (this->chip_delay);
1318 else
Thomas Gleixner3b887752005-02-22 21:56:49 +00001319 nand_wait_ready(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001320
1321 if (read == len)
1322 break;
1323
1324 /* For subsequent reads align to page boundary. */
1325 col = 0;
1326 /* Increment page address */
1327 realpage++;
1328
1329 page = realpage & this->pagemask;
1330 /* Check, if we cross a chip boundary */
1331 if (!page) {
1332 chipnr++;
1333 this->select_chip(mtd, -1);
1334 this->select_chip(mtd, chipnr);
1335 }
1336 /* Check, if the chip supports auto page increment
1337 * or if we have hit a block boundary.
1338 */
1339 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1340 sndcmd = 1;
1341 }
1342
1343 /* Deselect and wake up anyone waiting on the device */
David A. Marlin068e3c02005-01-24 03:07:46 +00001344 if (flags & NAND_GET_DEVICE)
1345 nand_release_device(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001346
1347 /*
1348 * Return success, if no ECC failures, else -EBADMSG
1349 * fs driver will take care of that, because
1350 * retlen == desired len and result == -EBADMSG
1351 */
1352 *retlen = read;
1353 return ecc_failed ? -EBADMSG : 0;
1354}
1355
1356/**
1357 * nand_read_oob - [MTD Interface] NAND read out-of-band
1358 * @mtd: MTD device structure
1359 * @from: offset to read from
1360 * @len: number of bytes to read
1361 * @retlen: pointer to variable to store the number of read bytes
1362 * @buf: the databuffer to put data
1363 *
1364 * NAND read out-of-band data from the spare area
1365 */
1366static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
1367{
1368 int i, col, page, chipnr;
1369 struct nand_chip *this = mtd->priv;
1370 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1371
1372 DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1373
1374 /* Shift to get page */
1375 page = (int)(from >> this->page_shift);
1376 chipnr = (int)(from >> this->chip_shift);
1377
1378 /* Mask to get column */
1379 col = from & (mtd->oobsize - 1);
1380
1381 /* Initialize return length value */
1382 *retlen = 0;
1383
1384 /* Do not allow reads past end of device */
1385 if ((from + len) > mtd->size) {
1386 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1387 *retlen = 0;
1388 return -EINVAL;
1389 }
1390
1391 /* Grab the lock and see if the device is available */
1392 nand_get_device (this, mtd , FL_READING);
1393
1394 /* Select the NAND device */
1395 this->select_chip(mtd, chipnr);
1396
1397 /* Send the read command */
1398 this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1399 /*
1400 * Read the data, if we read more than one page
1401 * oob data, let the device transfer the data !
1402 */
1403 i = 0;
1404 while (i < len) {
1405 int thislen = mtd->oobsize - col;
1406 thislen = min_t(int, thislen, len);
1407 this->read_buf(mtd, &buf[i], thislen);
1408 i += thislen;
1409
1410 /* Apply delay or wait for ready/busy pin
1411 * Do this before the AUTOINCR check, so no problems
1412 * arise if a chip which does auto increment
1413 * is marked as NOAUTOINCR by the board driver.
1414 */
1415 if (!this->dev_ready)
1416 udelay (this->chip_delay);
1417 else
Thomas Gleixner3b887752005-02-22 21:56:49 +00001418 nand_wait_ready(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419
1420 /* Read more ? */
1421 if (i < len) {
1422 page++;
1423 col = 0;
1424
1425 /* Check, if we cross a chip boundary */
1426 if (!(page & this->pagemask)) {
1427 chipnr++;
1428 this->select_chip(mtd, -1);
1429 this->select_chip(mtd, chipnr);
1430 }
1431
1432 /* Check, if the chip supports auto page increment
1433 * or if we have hit a block boundary.
1434 */
1435 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1436 /* For subsequent page reads set offset to 0 */
1437 this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1438 }
1439 }
1440 }
1441
1442 /* Deselect and wake up anyone waiting on the device */
1443 nand_release_device(mtd);
1444
1445 /* Return happy */
1446 *retlen = len;
1447 return 0;
1448}
1449
1450/**
1451 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1452 * @mtd: MTD device structure
1453 * @buf: temporary buffer
1454 * @from: offset to read from
1455 * @len: number of bytes to read
1456 * @ooblen: number of oob data bytes to read
1457 *
1458 * Read raw data including oob into buffer
1459 */
1460int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1461{
1462 struct nand_chip *this = mtd->priv;
1463 int page = (int) (from >> this->page_shift);
1464 int chip = (int) (from >> this->chip_shift);
1465 int sndcmd = 1;
1466 int cnt = 0;
1467 int pagesize = mtd->oobblock + mtd->oobsize;
1468 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1469
1470 /* Do not allow reads past end of device */
1471 if ((from + len) > mtd->size) {
1472 DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1473 return -EINVAL;
1474 }
1475
1476 /* Grab the lock and see if the device is available */
1477 nand_get_device (this, mtd , FL_READING);
1478
1479 this->select_chip (mtd, chip);
1480
1481 /* Add requested oob length */
1482 len += ooblen;
1483
1484 while (len) {
1485 if (sndcmd)
1486 this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1487 sndcmd = 0;
1488
1489 this->read_buf (mtd, &buf[cnt], pagesize);
1490
1491 len -= pagesize;
1492 cnt += pagesize;
1493 page++;
1494
1495 if (!this->dev_ready)
1496 udelay (this->chip_delay);
1497 else
Thomas Gleixner3b887752005-02-22 21:56:49 +00001498 nand_wait_ready(mtd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001499
1500 /* Check, if the chip supports auto page increment */
1501 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1502 sndcmd = 1;
1503 }
1504
1505 /* Deselect and wake up anyone waiting on the device */
1506 nand_release_device(mtd);
1507 return 0;
1508}
1509
1510
1511/**
1512 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1513 * @mtd: MTD device structure
1514 * @fsbuf: buffer given by fs driver
1515 * @oobsel: out of band selection structre
1516 * @autoplace: 1 = place given buffer into the oob bytes
1517 * @numpages: number of pages to prepare
1518 *
1519 * Return:
1520 * 1. Filesystem buffer available and autoplacement is off,
1521 * return filesystem buffer
1522 * 2. No filesystem buffer or autoplace is off, return internal
1523 * buffer
1524 * 3. Filesystem buffer is given and autoplace selected
1525 * put data from fs buffer into internal buffer and
1526 * retrun internal buffer
1527 *
1528 * Note: The internal buffer is filled with 0xff. This must
1529 * be done only once, when no autoplacement happens
1530 * Autoplacement sets the buffer dirty flag, which
1531 * forces the 0xff fill before using the buffer again.
1532 *
1533*/
1534static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1535 int autoplace, int numpages)
1536{
1537 struct nand_chip *this = mtd->priv;
1538 int i, len, ofs;
1539
1540 /* Zero copy fs supplied buffer */
1541 if (fsbuf && !autoplace)
1542 return fsbuf;
1543
1544 /* Check, if the buffer must be filled with ff again */
1545 if (this->oobdirty) {
1546 memset (this->oob_buf, 0xff,
1547 mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1548 this->oobdirty = 0;
1549 }
1550
1551 /* If we have no autoplacement or no fs buffer use the internal one */
1552 if (!autoplace || !fsbuf)
1553 return this->oob_buf;
1554
1555 /* Walk through the pages and place the data */
1556 this->oobdirty = 1;
1557 ofs = 0;
1558 while (numpages--) {
1559 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1560 int to = ofs + oobsel->oobfree[i][0];
1561 int num = oobsel->oobfree[i][1];
1562 memcpy (&this->oob_buf[to], fsbuf, num);
1563 len += num;
1564 fsbuf += num;
1565 }
1566 ofs += mtd->oobavail;
1567 }
1568 return this->oob_buf;
1569}
1570
1571#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1572
1573/**
1574 * nand_write - [MTD Interface] compability function for nand_write_ecc
1575 * @mtd: MTD device structure
1576 * @to: offset to write to
1577 * @len: number of bytes to write
1578 * @retlen: pointer to variable to store the number of written bytes
1579 * @buf: the data to write
1580 *
1581 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1582 *
1583*/
1584static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1585{
1586 return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
1587}
1588
1589/**
1590 * nand_write_ecc - [MTD Interface] NAND write with ECC
1591 * @mtd: MTD device structure
1592 * @to: offset to write to
1593 * @len: number of bytes to write
1594 * @retlen: pointer to variable to store the number of written bytes
1595 * @buf: the data to write
1596 * @eccbuf: filesystem supplied oob data buffer
1597 * @oobsel: oob selection structure
1598 *
1599 * NAND write with ECC
1600 */
1601static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
1602 size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
1603{
1604 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1605 int autoplace = 0, numpages, totalpages;
1606 struct nand_chip *this = mtd->priv;
1607 u_char *oobbuf, *bufstart;
1608 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1609
1610 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1611
1612 /* Initialize retlen, in case of early exit */
1613 *retlen = 0;
1614
1615 /* Do not allow write past end of device */
1616 if ((to + len) > mtd->size) {
1617 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1618 return -EINVAL;
1619 }
1620
1621 /* reject writes, which are not page aligned */
1622 if (NOTALIGNED (to) || NOTALIGNED(len)) {
1623 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1624 return -EINVAL;
1625 }
1626
1627 /* Grab the lock and see if the device is available */
1628 nand_get_device (this, mtd, FL_WRITING);
1629
1630 /* Calculate chipnr */
1631 chipnr = (int)(to >> this->chip_shift);
1632 /* Select the NAND device */
1633 this->select_chip(mtd, chipnr);
1634
1635 /* Check, if it is write protected */
1636 if (nand_check_wp(mtd))
1637 goto out;
1638
1639 /* if oobsel is NULL, use chip defaults */
1640 if (oobsel == NULL)
1641 oobsel = &mtd->oobinfo;
1642
1643 /* Autoplace of oob data ? Use the default placement scheme */
1644 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1645 oobsel = this->autooob;
1646 autoplace = 1;
1647 }
1648
1649 /* Setup variables and oob buffer */
1650 totalpages = len >> this->page_shift;
1651 page = (int) (to >> this->page_shift);
1652 /* Invalidate the page cache, if we write to the cached page */
1653 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1654 this->pagebuf = -1;
1655
1656 /* Set it relative to chip */
1657 page &= this->pagemask;
1658 startpage = page;
1659 /* Calc number of pages we can write in one go */
1660 numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
1661 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
1662 bufstart = (u_char *)buf;
1663
1664 /* Loop until all data is written */
1665 while (written < len) {
1666
1667 this->data_poi = (u_char*) &buf[written];
1668 /* Write one page. If this is the last page to write
1669 * or the last page in this block, then use the
1670 * real pageprogram command, else select cached programming
1671 * if supported by the chip.
1672 */
1673 ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1674 if (ret) {
1675 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1676 goto out;
1677 }
1678 /* Next oob page */
1679 oob += mtd->oobsize;
1680 /* Update written bytes count */
1681 written += mtd->oobblock;
1682 if (written == len)
1683 goto cmp;
1684
1685 /* Increment page address */
1686 page++;
1687
1688 /* Have we hit a block boundary ? Then we have to verify and
1689 * if verify is ok, we have to setup the oob buffer for
1690 * the next pages.
1691 */
1692 if (!(page & (ppblock - 1))){
1693 int ofs;
1694 this->data_poi = bufstart;
1695 ret = nand_verify_pages (mtd, this, startpage,
1696 page - startpage,
1697 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1698 if (ret) {
1699 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1700 goto out;
1701 }
1702 *retlen = written;
1703
1704 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1705 if (eccbuf)
1706 eccbuf += (page - startpage) * ofs;
1707 totalpages -= page - startpage;
1708 numpages = min (totalpages, ppblock);
1709 page &= this->pagemask;
1710 startpage = page;
1711 oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
1712 autoplace, numpages);
1713 /* Check, if we cross a chip boundary */
1714 if (!page) {
1715 chipnr++;
1716 this->select_chip(mtd, -1);
1717 this->select_chip(mtd, chipnr);
1718 }
1719 }
1720 }
1721 /* Verify the remaining pages */
1722cmp:
1723 this->data_poi = bufstart;
1724 ret = nand_verify_pages (mtd, this, startpage, totalpages,
1725 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1726 if (!ret)
1727 *retlen = written;
1728 else
1729 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1730
1731out:
1732 /* Deselect and wake up anyone waiting on the device */
1733 nand_release_device(mtd);
1734
1735 return ret;
1736}
1737
1738
1739/**
1740 * nand_write_oob - [MTD Interface] NAND write out-of-band
1741 * @mtd: MTD device structure
1742 * @to: offset to write to
1743 * @len: number of bytes to write
1744 * @retlen: pointer to variable to store the number of written bytes
1745 * @buf: the data to write
1746 *
1747 * NAND write out-of-band
1748 */
1749static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
1750{
1751 int column, page, status, ret = -EIO, chipnr;
1752 struct nand_chip *this = mtd->priv;
1753
1754 DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1755
1756 /* Shift to get page */
1757 page = (int) (to >> this->page_shift);
1758 chipnr = (int) (to >> this->chip_shift);
1759
1760 /* Mask to get column */
1761 column = to & (mtd->oobsize - 1);
1762
1763 /* Initialize return length value */
1764 *retlen = 0;
1765
1766 /* Do not allow write past end of page */
1767 if ((column + len) > mtd->oobsize) {
1768 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1769 return -EINVAL;
1770 }
1771
1772 /* Grab the lock and see if the device is available */
1773 nand_get_device (this, mtd, FL_WRITING);
1774
1775 /* Select the NAND device */
1776 this->select_chip(mtd, chipnr);
1777
1778 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1779 in one of my DiskOnChip 2000 test units) will clear the whole
1780 data page too if we don't do this. I have no clue why, but
1781 I seem to have 'fixed' it in the doc2000 driver in
1782 August 1999. dwmw2. */
1783 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1784
1785 /* Check, if it is write protected */
1786 if (nand_check_wp(mtd))
1787 goto out;
1788
1789 /* Invalidate the page cache, if we write to the cached page */
1790 if (page == this->pagebuf)
1791 this->pagebuf = -1;
1792
1793 if (NAND_MUST_PAD(this)) {
1794 /* Write out desired data */
1795 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1796 /* prepad 0xff for partial programming */
1797 this->write_buf(mtd, ffchars, column);
1798 /* write data */
1799 this->write_buf(mtd, buf, len);
1800 /* postpad 0xff for partial programming */
1801 this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
1802 } else {
1803 /* Write out desired data */
1804 this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1805 /* write data */
1806 this->write_buf(mtd, buf, len);
1807 }
1808 /* Send command to program the OOB data */
1809 this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
1810
1811 status = this->waitfunc (mtd, this, FL_WRITING);
1812
1813 /* See if device thinks it succeeded */
David A. Marlina4ab4c52005-01-23 18:30:53 +00001814 if (status & NAND_STATUS_FAIL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1816 ret = -EIO;
1817 goto out;
1818 }
1819 /* Return happy */
1820 *retlen = len;
1821
1822#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1823 /* Send command to read back the data */
1824 this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1825
1826 if (this->verify_buf(mtd, buf, len)) {
1827 DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1828 ret = -EIO;
1829 goto out;
1830 }
1831#endif
1832 ret = 0;
1833out:
1834 /* Deselect and wake up anyone waiting on the device */
1835 nand_release_device(mtd);
1836
1837 return ret;
1838}
1839
1840
1841/**
1842 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1843 * @mtd: MTD device structure
1844 * @vecs: the iovectors to write
1845 * @count: number of vectors
1846 * @to: offset to write to
1847 * @retlen: pointer to variable to store the number of written bytes
1848 *
1849 * NAND write with kvec. This just calls the ecc function
1850 */
1851static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1852 loff_t to, size_t * retlen)
1853{
1854 return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
1855}
1856
1857/**
1858 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1859 * @mtd: MTD device structure
1860 * @vecs: the iovectors to write
1861 * @count: number of vectors
1862 * @to: offset to write to
1863 * @retlen: pointer to variable to store the number of written bytes
1864 * @eccbuf: filesystem supplied oob data buffer
1865 * @oobsel: oob selection structure
1866 *
1867 * NAND write with iovec with ecc
1868 */
1869static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1870 loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1871{
1872 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1873 int oob, numpages, autoplace = 0, startpage;
1874 struct nand_chip *this = mtd->priv;
1875 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1876 u_char *oobbuf, *bufstart;
1877
1878 /* Preset written len for early exit */
1879 *retlen = 0;
1880
1881 /* Calculate total length of data */
1882 total_len = 0;
1883 for (i = 0; i < count; i++)
1884 total_len += (int) vecs[i].iov_len;
1885
1886 DEBUG (MTD_DEBUG_LEVEL3,
1887 "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
1888
1889 /* Do not allow write past end of page */
1890 if ((to + total_len) > mtd->size) {
1891 DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1892 return -EINVAL;
1893 }
1894
1895 /* reject writes, which are not page aligned */
1896 if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
1897 printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1898 return -EINVAL;
1899 }
1900
1901 /* Grab the lock and see if the device is available */
1902 nand_get_device (this, mtd, FL_WRITING);
1903
1904 /* Get the current chip-nr */
1905 chipnr = (int) (to >> this->chip_shift);
1906 /* Select the NAND device */
1907 this->select_chip(mtd, chipnr);
1908
1909 /* Check, if it is write protected */
1910 if (nand_check_wp(mtd))
1911 goto out;
1912
1913 /* if oobsel is NULL, use chip defaults */
1914 if (oobsel == NULL)
1915 oobsel = &mtd->oobinfo;
1916
1917 /* Autoplace of oob data ? Use the default placement scheme */
1918 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1919 oobsel = this->autooob;
1920 autoplace = 1;
1921 }
1922
1923 /* Setup start page */
1924 page = (int) (to >> this->page_shift);
1925 /* Invalidate the page cache, if we write to the cached page */
1926 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1927 this->pagebuf = -1;
1928
1929 startpage = page & this->pagemask;
1930
1931 /* Loop until all kvec' data has been written */
1932 len = 0;
1933 while (count) {
1934 /* If the given tuple is >= pagesize then
1935 * write it out from the iov
1936 */
1937 if ((vecs->iov_len - len) >= mtd->oobblock) {
1938 /* Calc number of pages we can write
1939 * out of this iov in one go */
1940 numpages = (vecs->iov_len - len) >> this->page_shift;
1941 /* Do not cross block boundaries */
1942 numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
1943 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1944 bufstart = (u_char *)vecs->iov_base;
1945 bufstart += len;
1946 this->data_poi = bufstart;
1947 oob = 0;
1948 for (i = 1; i <= numpages; i++) {
1949 /* Write one page. If this is the last page to write
1950 * then use the real pageprogram command, else select
1951 * cached programming if supported by the chip.
1952 */
1953 ret = nand_write_page (mtd, this, page & this->pagemask,
1954 &oobbuf[oob], oobsel, i != numpages);
1955 if (ret)
1956 goto out;
1957 this->data_poi += mtd->oobblock;
1958 len += mtd->oobblock;
1959 oob += mtd->oobsize;
1960 page++;
1961 }
1962 /* Check, if we have to switch to the next tuple */
1963 if (len >= (int) vecs->iov_len) {
1964 vecs++;
1965 len = 0;
1966 count--;
1967 }
1968 } else {
1969 /* We must use the internal buffer, read data out of each
1970 * tuple until we have a full page to write
1971 */
1972 int cnt = 0;
1973 while (cnt < mtd->oobblock) {
1974 if (vecs->iov_base != NULL && vecs->iov_len)
1975 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1976 /* Check, if we have to switch to the next tuple */
1977 if (len >= (int) vecs->iov_len) {
1978 vecs++;
1979 len = 0;
1980 count--;
1981 }
1982 }
1983 this->pagebuf = page;
1984 this->data_poi = this->data_buf;
1985 bufstart = this->data_poi;
1986 numpages = 1;
1987 oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
1988 ret = nand_write_page (mtd, this, page & this->pagemask,
1989 oobbuf, oobsel, 0);
1990 if (ret)
1991 goto out;
1992 page++;
1993 }
1994
1995 this->data_poi = bufstart;
1996 ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
1997 if (ret)
1998 goto out;
1999
2000 written += mtd->oobblock * numpages;
2001 /* All done ? */
2002 if (!count)
2003 break;
2004
2005 startpage = page & this->pagemask;
2006 /* Check, if we cross a chip boundary */
2007 if (!startpage) {
2008 chipnr++;
2009 this->select_chip(mtd, -1);
2010 this->select_chip(mtd, chipnr);
2011 }
2012 }
2013 ret = 0;
2014out:
2015 /* Deselect and wake up anyone waiting on the device */
2016 nand_release_device(mtd);
2017
2018 *retlen = written;
2019 return ret;
2020}
2021
2022/**
2023 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2024 * @mtd: MTD device structure
2025 * @page: the page address of the block which will be erased
2026 *
2027 * Standard erase command for NAND chips
2028 */
2029static void single_erase_cmd (struct mtd_info *mtd, int page)
2030{
2031 struct nand_chip *this = mtd->priv;
2032 /* Send commands to erase a block */
2033 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2034 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2035}
2036
2037/**
2038 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2039 * @mtd: MTD device structure
2040 * @page: the page address of the block which will be erased
2041 *
2042 * AND multi block erase command function
2043 * Erase 4 consecutive blocks
2044 */
2045static void multi_erase_cmd (struct mtd_info *mtd, int page)
2046{
2047 struct nand_chip *this = mtd->priv;
2048 /* Send commands to erase a block */
2049 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2050 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2051 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
2052 this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
2053 this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
2054}
2055
2056/**
2057 * nand_erase - [MTD Interface] erase block(s)
2058 * @mtd: MTD device structure
2059 * @instr: erase instruction
2060 *
2061 * Erase one ore more blocks
2062 */
2063static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
2064{
2065 return nand_erase_nand (mtd, instr, 0);
2066}
2067
David A. Marlin30f464b2005-01-17 18:35:25 +00002068#define BBT_PAGE_MASK 0xffffff3f
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069/**
2070 * nand_erase_intern - [NAND Interface] erase block(s)
2071 * @mtd: MTD device structure
2072 * @instr: erase instruction
2073 * @allowbbt: allow erasing the bbt area
2074 *
2075 * Erase one ore more blocks
2076 */
2077int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2078{
2079 int page, len, status, pages_per_block, ret, chipnr;
2080 struct nand_chip *this = mtd->priv;
David A. Marlin30f464b2005-01-17 18:35:25 +00002081 int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2082 unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
2083 /* It is used to see if the current page is in the same */
2084 /* 256 block group and the same bank as the bbt. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002085
2086 DEBUG (MTD_DEBUG_LEVEL3,
2087 "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
2088
2089 /* Start address must align on block boundary */
2090 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2091 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2092 return -EINVAL;
2093 }
2094
2095 /* Length must align on block boundary */
2096 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2097 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2098 return -EINVAL;
2099 }
2100
2101 /* Do not allow erase past end of device */
2102 if ((instr->len + instr->addr) > mtd->size) {
2103 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2104 return -EINVAL;
2105 }
2106
2107 instr->fail_addr = 0xffffffff;
2108
2109 /* Grab the lock and see if the device is available */
2110 nand_get_device (this, mtd, FL_ERASING);
2111
2112 /* Shift to get first page */
2113 page = (int) (instr->addr >> this->page_shift);
2114 chipnr = (int) (instr->addr >> this->chip_shift);
2115
2116 /* Calculate pages in each block */
2117 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2118
2119 /* Select the NAND device */
2120 this->select_chip(mtd, chipnr);
2121
2122 /* Check the WP bit */
2123 /* Check, if it is write protected */
2124 if (nand_check_wp(mtd)) {
2125 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2126 instr->state = MTD_ERASE_FAILED;
2127 goto erase_exit;
2128 }
2129
David A. Marlin30f464b2005-01-17 18:35:25 +00002130 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2131 if (this->options & BBT_AUTO_REFRESH) {
2132 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2133 } else {
2134 bbt_masked_page = 0xffffffff; /* should not match anything */
2135 }
2136
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137 /* Loop through the pages */
2138 len = instr->len;
2139
2140 instr->state = MTD_ERASING;
2141
2142 while (len) {
2143 /* Check if we have a bad block, we do not erase bad blocks ! */
2144 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2145 printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2146 instr->state = MTD_ERASE_FAILED;
2147 goto erase_exit;
2148 }
2149
2150 /* Invalidate the page cache, if we erase the block which contains
2151 the current cached page */
2152 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2153 this->pagebuf = -1;
2154
2155 this->erase_cmd (mtd, page & this->pagemask);
2156
2157 status = this->waitfunc (mtd, this, FL_ERASING);
2158
David A. Marlin068e3c02005-01-24 03:07:46 +00002159 /* See if operation failed and additional status checks are available */
2160 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
2161 status = this->errstat(mtd, this, FL_ERASING, status, page);
2162 }
2163
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 /* See if block erase succeeded */
David A. Marlina4ab4c52005-01-23 18:30:53 +00002165 if (status & NAND_STATUS_FAIL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002166 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2167 instr->state = MTD_ERASE_FAILED;
2168 instr->fail_addr = (page << this->page_shift);
2169 goto erase_exit;
2170 }
David A. Marlin30f464b2005-01-17 18:35:25 +00002171
2172 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2173 if (this->options & BBT_AUTO_REFRESH) {
2174 if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
2175 (page != this->bbt_td->pages[chipnr])) {
2176 rewrite_bbt[chipnr] = (page << this->page_shift);
2177 }
2178 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179
2180 /* Increment page address and decrement length */
2181 len -= (1 << this->phys_erase_shift);
2182 page += pages_per_block;
2183
2184 /* Check, if we cross a chip boundary */
2185 if (len && !(page & this->pagemask)) {
2186 chipnr++;
2187 this->select_chip(mtd, -1);
2188 this->select_chip(mtd, chipnr);
David A. Marlin30f464b2005-01-17 18:35:25 +00002189
2190 /* if BBT requires refresh and BBT-PERCHIP,
2191 * set the BBT page mask to see if this BBT should be rewritten */
2192 if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
2193 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2194 }
2195
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196 }
2197 }
2198 instr->state = MTD_ERASE_DONE;
2199
2200erase_exit:
2201
2202 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2203 /* Do call back function */
2204 if (!ret)
2205 mtd_erase_callback(instr);
2206
2207 /* Deselect and wake up anyone waiting on the device */
2208 nand_release_device(mtd);
2209
David A. Marlin30f464b2005-01-17 18:35:25 +00002210 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2211 if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
2212 for (chipnr = 0; chipnr < this->numchips; chipnr++) {
2213 if (rewrite_bbt[chipnr]) {
2214 /* update the BBT for chip */
2215 DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2216 chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
2217 nand_update_bbt (mtd, rewrite_bbt[chipnr]);
2218 }
2219 }
2220 }
2221
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222 /* Return more or less happy */
2223 return ret;
2224}
2225
2226/**
2227 * nand_sync - [MTD Interface] sync
2228 * @mtd: MTD device structure
2229 *
2230 * Sync is actually a wait for chip ready function
2231 */
2232static void nand_sync (struct mtd_info *mtd)
2233{
2234 struct nand_chip *this = mtd->priv;
2235
2236 DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2237
2238 /* Grab the lock and see if the device is available */
2239 nand_get_device (this, mtd, FL_SYNCING);
2240 /* Release it and go back */
2241 nand_release_device (mtd);
2242}
2243
2244
2245/**
2246 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2247 * @mtd: MTD device structure
2248 * @ofs: offset relative to mtd start
2249 */
2250static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
2251{
2252 /* Check for invalid offset */
2253 if (ofs > mtd->size)
2254 return -EINVAL;
2255
2256 return nand_block_checkbad (mtd, ofs, 1, 0);
2257}
2258
2259/**
2260 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2261 * @mtd: MTD device structure
2262 * @ofs: offset relative to mtd start
2263 */
2264static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
2265{
2266 struct nand_chip *this = mtd->priv;
2267 int ret;
2268
2269 if ((ret = nand_block_isbad(mtd, ofs))) {
2270 /* If it was bad already, return success and do nothing. */
2271 if (ret > 0)
2272 return 0;
2273 return ret;
2274 }
2275
2276 return this->block_markbad(mtd, ofs);
2277}
2278
2279/**
2280 * nand_scan - [NAND Interface] Scan for the NAND device
2281 * @mtd: MTD device structure
2282 * @maxchips: Number of chips to scan for
2283 *
2284 * This fills out all the not initialized function pointers
2285 * with the defaults.
2286 * The flash ID is read and the mtd/chip structures are
2287 * filled with the appropriate values. Buffers are allocated if
2288 * they are not provided by the board driver
2289 *
2290 */
2291int nand_scan (struct mtd_info *mtd, int maxchips)
2292{
Ben Dooks3b946e32005-03-14 18:30:48 +00002293 int i, nand_maf_id, nand_dev_id, busw, maf_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002294 struct nand_chip *this = mtd->priv;
2295
2296 /* Get buswidth to select the correct functions*/
2297 busw = this->options & NAND_BUSWIDTH_16;
2298
2299 /* check for proper chip_delay setup, set 20us if not */
2300 if (!this->chip_delay)
2301 this->chip_delay = 20;
2302
2303 /* check, if a user supplied command function given */
2304 if (this->cmdfunc == NULL)
2305 this->cmdfunc = nand_command;
2306
2307 /* check, if a user supplied wait function given */
2308 if (this->waitfunc == NULL)
2309 this->waitfunc = nand_wait;
2310
2311 if (!this->select_chip)
2312 this->select_chip = nand_select_chip;
2313 if (!this->write_byte)
2314 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2315 if (!this->read_byte)
2316 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2317 if (!this->write_word)
2318 this->write_word = nand_write_word;
2319 if (!this->read_word)
2320 this->read_word = nand_read_word;
2321 if (!this->block_bad)
2322 this->block_bad = nand_block_bad;
2323 if (!this->block_markbad)
2324 this->block_markbad = nand_default_block_markbad;
2325 if (!this->write_buf)
2326 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2327 if (!this->read_buf)
2328 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2329 if (!this->verify_buf)
2330 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2331 if (!this->scan_bbt)
2332 this->scan_bbt = nand_default_bbt;
2333
2334 /* Select the device */
2335 this->select_chip(mtd, 0);
2336
2337 /* Send the command for reading device ID */
2338 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2339
2340 /* Read manufacturer and device IDs */
2341 nand_maf_id = this->read_byte(mtd);
2342 nand_dev_id = this->read_byte(mtd);
2343
2344 /* Print and store flash device information */
2345 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2346
2347 if (nand_dev_id != nand_flash_ids[i].id)
2348 continue;
2349
2350 if (!mtd->name) mtd->name = nand_flash_ids[i].name;
2351 this->chipsize = nand_flash_ids[i].chipsize << 20;
2352
2353 /* New devices have all the information in additional id bytes */
2354 if (!nand_flash_ids[i].pagesize) {
2355 int extid;
2356 /* The 3rd id byte contains non relevant data ATM */
2357 extid = this->read_byte(mtd);
2358 /* The 4th id byte is the important one */
2359 extid = this->read_byte(mtd);
2360 /* Calc pagesize */
2361 mtd->oobblock = 1024 << (extid & 0x3);
2362 extid >>= 2;
2363 /* Calc oobsize */
2364 mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
2365 extid >>= 2;
2366 /* Calc blocksize. Blocksize is multiples of 64KiB */
2367 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2368 extid >>= 2;
2369 /* Get buswidth information */
2370 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2371
2372 } else {
2373 /* Old devices have this data hardcoded in the
2374 * device id table */
2375 mtd->erasesize = nand_flash_ids[i].erasesize;
2376 mtd->oobblock = nand_flash_ids[i].pagesize;
2377 mtd->oobsize = mtd->oobblock / 32;
2378 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2379 }
2380
Kyungmin Park0ea4a752005-02-16 09:39:39 +00002381 /* Try to identify manufacturer */
2382 for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
2383 if (nand_manuf_ids[maf_id].id == nand_maf_id)
2384 break;
2385 }
2386
Linus Torvalds1da177e2005-04-16 15:20:36 -07002387 /* Check, if buswidth is correct. Hardware drivers should set
2388 * this correct ! */
2389 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2390 printk (KERN_INFO "NAND device: Manufacturer ID:"
2391 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
Kyungmin Park0ea4a752005-02-16 09:39:39 +00002392 nand_manuf_ids[maf_id].name , mtd->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393 printk (KERN_WARNING
2394 "NAND bus width %d instead %d bit\n",
2395 (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
2396 busw ? 16 : 8);
2397 this->select_chip(mtd, -1);
2398 return 1;
2399 }
2400
2401 /* Calculate the address shift from the page size */
2402 this->page_shift = ffs(mtd->oobblock) - 1;
2403 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2404 this->chip_shift = ffs(this->chipsize) - 1;
2405
2406 /* Set the bad block position */
2407 this->badblockpos = mtd->oobblock > 512 ?
2408 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2409
2410 /* Get chip options, preserve non chip based options */
2411 this->options &= ~NAND_CHIPOPTIONS_MSK;
2412 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2413 /* Set this as a default. Board drivers can override it, if neccecary */
2414 this->options |= NAND_NO_AUTOINCR;
2415 /* Check if this is a not a samsung device. Do not clear the options
2416 * for chips which are not having an extended id.
2417 */
2418 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2419 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2420
2421 /* Check for AND chips with 4 page planes */
2422 if (this->options & NAND_4PAGE_ARRAY)
2423 this->erase_cmd = multi_erase_cmd;
2424 else
2425 this->erase_cmd = single_erase_cmd;
2426
2427 /* Do not replace user supplied command function ! */
2428 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2429 this->cmdfunc = nand_command_lp;
2430
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431 printk (KERN_INFO "NAND device: Manufacturer ID:"
2432 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
Kyungmin Park0ea4a752005-02-16 09:39:39 +00002433 nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002434 break;
2435 }
2436
2437 if (!nand_flash_ids[i].name) {
2438 printk (KERN_WARNING "No NAND device found!!!\n");
2439 this->select_chip(mtd, -1);
2440 return 1;
2441 }
2442
2443 for (i=1; i < maxchips; i++) {
2444 this->select_chip(mtd, i);
2445
2446 /* Send the command for reading device ID */
2447 this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
2448
2449 /* Read manufacturer and device IDs */
2450 if (nand_maf_id != this->read_byte(mtd) ||
2451 nand_dev_id != this->read_byte(mtd))
2452 break;
2453 }
2454 if (i > 1)
2455 printk(KERN_INFO "%d NAND chips detected\n", i);
2456
2457 /* Allocate buffers, if neccecary */
2458 if (!this->oob_buf) {
2459 size_t len;
2460 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2461 this->oob_buf = kmalloc (len, GFP_KERNEL);
2462 if (!this->oob_buf) {
2463 printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2464 return -ENOMEM;
2465 }
2466 this->options |= NAND_OOBBUF_ALLOC;
2467 }
2468
2469 if (!this->data_buf) {
2470 size_t len;
2471 len = mtd->oobblock + mtd->oobsize;
2472 this->data_buf = kmalloc (len, GFP_KERNEL);
2473 if (!this->data_buf) {
2474 if (this->options & NAND_OOBBUF_ALLOC)
2475 kfree (this->oob_buf);
2476 printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2477 return -ENOMEM;
2478 }
2479 this->options |= NAND_DATABUF_ALLOC;
2480 }
2481
2482 /* Store the number of chips and calc total size for mtd */
2483 this->numchips = i;
2484 mtd->size = i * this->chipsize;
2485 /* Convert chipsize to number of pages per chip -1. */
2486 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2487 /* Preset the internal oob buffer */
2488 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2489
2490 /* If no default placement scheme is given, select an
2491 * appropriate one */
2492 if (!this->autooob) {
2493 /* Select the appropriate default oob placement scheme for
2494 * placement agnostic filesystems */
2495 switch (mtd->oobsize) {
2496 case 8:
2497 this->autooob = &nand_oob_8;
2498 break;
2499 case 16:
2500 this->autooob = &nand_oob_16;
2501 break;
2502 case 64:
2503 this->autooob = &nand_oob_64;
2504 break;
2505 default:
2506 printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
2507 mtd->oobsize);
2508 BUG();
2509 }
2510 }
2511
2512 /* The number of bytes available for the filesystem to place fs dependend
2513 * oob data */
Thomas Gleixner998cf642005-04-01 08:21:48 +01002514 mtd->oobavail = 0;
2515 for (i = 0; this->autooob->oobfree[i][1]; i++)
2516 mtd->oobavail += this->autooob->oobfree[i][1];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517
2518 /*
2519 * check ECC mode, default to software
2520 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2521 * fallback to software ECC
2522 */
2523 this->eccsize = 256; /* set default eccsize */
2524 this->eccbytes = 3;
2525
2526 switch (this->eccmode) {
2527 case NAND_ECC_HW12_2048:
2528 if (mtd->oobblock < 2048) {
2529 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2530 mtd->oobblock);
2531 this->eccmode = NAND_ECC_SOFT;
2532 this->calculate_ecc = nand_calculate_ecc;
2533 this->correct_data = nand_correct_data;
2534 } else
2535 this->eccsize = 2048;
2536 break;
2537
2538 case NAND_ECC_HW3_512:
2539 case NAND_ECC_HW6_512:
2540 case NAND_ECC_HW8_512:
2541 if (mtd->oobblock == 256) {
2542 printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2543 this->eccmode = NAND_ECC_SOFT;
2544 this->calculate_ecc = nand_calculate_ecc;
2545 this->correct_data = nand_correct_data;
2546 } else
2547 this->eccsize = 512; /* set eccsize to 512 */
2548 break;
2549
2550 case NAND_ECC_HW3_256:
2551 break;
2552
2553 case NAND_ECC_NONE:
2554 printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2555 this->eccmode = NAND_ECC_NONE;
2556 break;
2557
2558 case NAND_ECC_SOFT:
2559 this->calculate_ecc = nand_calculate_ecc;
2560 this->correct_data = nand_correct_data;
2561 break;
2562
2563 default:
2564 printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2565 BUG();
2566 }
2567
2568 /* Check hardware ecc function availability and adjust number of ecc bytes per
2569 * calculation step
2570 */
2571 switch (this->eccmode) {
2572 case NAND_ECC_HW12_2048:
2573 this->eccbytes += 4;
2574 case NAND_ECC_HW8_512:
2575 this->eccbytes += 2;
2576 case NAND_ECC_HW6_512:
2577 this->eccbytes += 3;
2578 case NAND_ECC_HW3_512:
2579 case NAND_ECC_HW3_256:
2580 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2581 break;
2582 printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2583 BUG();
2584 }
2585
2586 mtd->eccsize = this->eccsize;
2587
2588 /* Set the number of read / write steps for one page to ensure ECC generation */
2589 switch (this->eccmode) {
2590 case NAND_ECC_HW12_2048:
2591 this->eccsteps = mtd->oobblock / 2048;
2592 break;
2593 case NAND_ECC_HW3_512:
2594 case NAND_ECC_HW6_512:
2595 case NAND_ECC_HW8_512:
2596 this->eccsteps = mtd->oobblock / 512;
2597 break;
2598 case NAND_ECC_HW3_256:
2599 case NAND_ECC_SOFT:
2600 this->eccsteps = mtd->oobblock / 256;
2601 break;
2602
2603 case NAND_ECC_NONE:
2604 this->eccsteps = 1;
2605 break;
2606 }
2607
2608 /* Initialize state, waitqueue and spinlock */
2609 this->state = FL_READY;
2610 init_waitqueue_head (&this->wq);
2611 spin_lock_init (&this->chip_lock);
2612
2613 /* De-select the device */
2614 this->select_chip(mtd, -1);
2615
2616 /* Invalidate the pagebuffer reference */
2617 this->pagebuf = -1;
2618
2619 /* Fill in remaining MTD driver data */
2620 mtd->type = MTD_NANDFLASH;
2621 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2622 mtd->ecctype = MTD_ECC_SW;
2623 mtd->erase = nand_erase;
2624 mtd->point = NULL;
2625 mtd->unpoint = NULL;
2626 mtd->read = nand_read;
2627 mtd->write = nand_write;
2628 mtd->read_ecc = nand_read_ecc;
2629 mtd->write_ecc = nand_write_ecc;
2630 mtd->read_oob = nand_read_oob;
2631 mtd->write_oob = nand_write_oob;
2632 mtd->readv = NULL;
2633 mtd->writev = nand_writev;
2634 mtd->writev_ecc = nand_writev_ecc;
2635 mtd->sync = nand_sync;
2636 mtd->lock = NULL;
2637 mtd->unlock = NULL;
2638 mtd->suspend = NULL;
2639 mtd->resume = NULL;
2640 mtd->block_isbad = nand_block_isbad;
2641 mtd->block_markbad = nand_block_markbad;
2642
2643 /* and make the autooob the default one */
2644 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2645
2646 mtd->owner = THIS_MODULE;
Thomas Gleixner0040bf32005-02-09 12:20:00 +00002647
2648 /* Check, if we should skip the bad block table scan */
2649 if (this->options & NAND_SKIP_BBTSCAN)
2650 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651
2652 /* Build bad block table */
2653 return this->scan_bbt (mtd);
2654}
2655
2656/**
2657 * nand_release - [NAND Interface] Free resources held by the NAND device
2658 * @mtd: MTD device structure
2659*/
2660void nand_release (struct mtd_info *mtd)
2661{
2662 struct nand_chip *this = mtd->priv;
2663
2664#ifdef CONFIG_MTD_PARTITIONS
2665 /* Deregister partitions */
2666 del_mtd_partitions (mtd);
2667#endif
2668 /* Deregister the device */
2669 del_mtd_device (mtd);
2670
2671 /* Free bad block table memory, if allocated */
2672 if (this->bbt)
2673 kfree (this->bbt);
2674 /* Buffer allocated by nand_scan ? */
2675 if (this->options & NAND_OOBBUF_ALLOC)
2676 kfree (this->oob_buf);
2677 /* Buffer allocated by nand_scan ? */
2678 if (this->options & NAND_DATABUF_ALLOC)
2679 kfree (this->data_buf);
2680}
2681
2682EXPORT_SYMBOL (nand_scan);
2683EXPORT_SYMBOL (nand_release);
2684
2685MODULE_LICENSE ("GPL");
2686MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2687MODULE_DESCRIPTION ("Generic NAND flash driver code");