blob: c0f9e4699f0b129d5acccfc84c085e4f973b940e [file] [log] [blame]
Amir Goldsteindae1e522011-06-27 19:40:50 -04001/*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
Amir Goldsteindae1e522011-06-27 19:40:50 -040023#include "ext4_jbd2.h"
24#include "truncate.h"
Theodore Ts'o4a092d72012-11-28 13:03:30 -050025#include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
Amir Goldsteindae1e522011-06-27 19:40:50 -040026
27#include <trace/events/ext4.h>
28
29typedef struct {
30 __le32 *p;
31 __le32 key;
32 struct buffer_head *bh;
33} Indirect;
34
35static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36{
37 p->key = *(p->p = v);
38 p->bh = bh;
39}
40
41/**
42 * ext4_block_to_path - parse the block number into array of offsets
43 * @inode: inode in question (we are only interested in its superblock)
44 * @i_block: block number to be parsed
45 * @offsets: array to store the offsets in
46 * @boundary: set this non-zero if the referred-to block is likely to be
47 * followed (on disk) by an indirect block.
48 *
49 * To store the locations of file's data ext4 uses a data structure common
50 * for UNIX filesystems - tree of pointers anchored in the inode, with
51 * data blocks at leaves and indirect blocks in intermediate nodes.
52 * This function translates the block number into path in that tree -
53 * return value is the path length and @offsets[n] is the offset of
54 * pointer to (n+1)th node in the nth one. If @block is out of range
55 * (negative or too large) warning is printed and zero returned.
56 *
57 * Note: function doesn't find node addresses, so no IO is needed. All
58 * we need to know is the capacity of indirect blocks (taken from the
59 * inode->i_sb).
60 */
61
62/*
63 * Portability note: the last comparison (check that we fit into triple
64 * indirect block) is spelled differently, because otherwise on an
65 * architecture with 32-bit longs and 8Kb pages we might get into trouble
66 * if our filesystem had 8Kb blocks. We might use long long, but that would
67 * kill us on x86. Oh, well, at least the sign propagation does not matter -
68 * i_block would have to be negative in the very beginning, so we would not
69 * get there at all.
70 */
71
72static int ext4_block_to_path(struct inode *inode,
73 ext4_lblk_t i_block,
74 ext4_lblk_t offsets[4], int *boundary)
75{
76 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78 const long direct_blocks = EXT4_NDIR_BLOCKS,
79 indirect_blocks = ptrs,
80 double_blocks = (1 << (ptrs_bits * 2));
81 int n = 0;
82 int final = 0;
83
84 if (i_block < direct_blocks) {
85 offsets[n++] = i_block;
86 final = direct_blocks;
87 } else if ((i_block -= direct_blocks) < indirect_blocks) {
88 offsets[n++] = EXT4_IND_BLOCK;
89 offsets[n++] = i_block;
90 final = ptrs;
91 } else if ((i_block -= indirect_blocks) < double_blocks) {
92 offsets[n++] = EXT4_DIND_BLOCK;
93 offsets[n++] = i_block >> ptrs_bits;
94 offsets[n++] = i_block & (ptrs - 1);
95 final = ptrs;
96 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97 offsets[n++] = EXT4_TIND_BLOCK;
98 offsets[n++] = i_block >> (ptrs_bits * 2);
99 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100 offsets[n++] = i_block & (ptrs - 1);
101 final = ptrs;
102 } else {
103 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104 i_block + direct_blocks +
105 indirect_blocks + double_blocks, inode->i_ino);
106 }
107 if (boundary)
108 *boundary = final - 1 - (i_block & (ptrs - 1));
109 return n;
110}
111
112/**
113 * ext4_get_branch - read the chain of indirect blocks leading to data
114 * @inode: inode in question
115 * @depth: depth of the chain (1 - direct pointer, etc.)
116 * @offsets: offsets of pointers in inode/indirect blocks
117 * @chain: place to store the result
118 * @err: here we store the error value
119 *
120 * Function fills the array of triples <key, p, bh> and returns %NULL
121 * if everything went OK or the pointer to the last filled triple
122 * (incomplete one) otherwise. Upon the return chain[i].key contains
123 * the number of (i+1)-th block in the chain (as it is stored in memory,
124 * i.e. little-endian 32-bit), chain[i].p contains the address of that
125 * number (it points into struct inode for i==0 and into the bh->b_data
126 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127 * block for i>0 and NULL for i==0. In other words, it holds the block
128 * numbers of the chain, addresses they were taken from (and where we can
129 * verify that chain did not change) and buffer_heads hosting these
130 * numbers.
131 *
132 * Function stops when it stumbles upon zero pointer (absent block)
133 * (pointer to last triple returned, *@err == 0)
134 * or when it gets an IO error reading an indirect block
135 * (ditto, *@err == -EIO)
136 * or when it reads all @depth-1 indirect blocks successfully and finds
137 * the whole chain, all way to the data (returns %NULL, *err == 0).
138 *
139 * Need to be called with
140 * down_read(&EXT4_I(inode)->i_data_sem)
141 */
142static Indirect *ext4_get_branch(struct inode *inode, int depth,
143 ext4_lblk_t *offsets,
144 Indirect chain[4], int *err)
145{
146 struct super_block *sb = inode->i_sb;
147 Indirect *p = chain;
148 struct buffer_head *bh;
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500149 int ret = -EIO;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400150
151 *err = 0;
152 /* i_data is not going away, no lock needed */
153 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154 if (!p->key)
155 goto no_block;
156 while (--depth) {
157 bh = sb_getblk(sb, le32_to_cpu(p->key));
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500158 if (unlikely(!bh)) {
159 ret = -ENOMEM;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400160 goto failure;
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500161 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400162
163 if (!bh_uptodate_or_lock(bh)) {
164 if (bh_submit_read(bh) < 0) {
165 put_bh(bh);
166 goto failure;
167 }
168 /* validate block references */
169 if (ext4_check_indirect_blockref(inode, bh)) {
170 put_bh(bh);
171 goto failure;
172 }
173 }
174
175 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176 /* Reader: end */
177 if (!p->key)
178 goto no_block;
179 }
180 return NULL;
181
182failure:
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500183 *err = ret;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400184no_block:
185 return p;
186}
187
188/**
189 * ext4_find_near - find a place for allocation with sufficient locality
190 * @inode: owner
191 * @ind: descriptor of indirect block.
192 *
193 * This function returns the preferred place for block allocation.
194 * It is used when heuristic for sequential allocation fails.
195 * Rules are:
196 * + if there is a block to the left of our position - allocate near it.
197 * + if pointer will live in indirect block - allocate near that block.
198 * + if pointer will live in inode - allocate in the same
199 * cylinder group.
200 *
201 * In the latter case we colour the starting block by the callers PID to
202 * prevent it from clashing with concurrent allocations for a different inode
203 * in the same block group. The PID is used here so that functionally related
204 * files will be close-by on-disk.
205 *
206 * Caller must make sure that @ind is valid and will stay that way.
207 */
208static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209{
210 struct ext4_inode_info *ei = EXT4_I(inode);
211 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212 __le32 *p;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400213
214 /* Try to find previous block */
215 for (p = ind->p - 1; p >= start; p--) {
216 if (*p)
217 return le32_to_cpu(*p);
218 }
219
220 /* No such thing, so let's try location of indirect block */
221 if (ind->bh)
222 return ind->bh->b_blocknr;
223
224 /*
225 * It is going to be referred to from the inode itself? OK, just put it
226 * into the same cylinder group then.
227 */
Eric Sandeenf86186b2011-06-28 10:01:31 -0400228 return ext4_inode_to_goal_block(inode);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400229}
230
231/**
232 * ext4_find_goal - find a preferred place for allocation.
233 * @inode: owner
234 * @block: block we want
235 * @partial: pointer to the last triple within a chain
236 *
237 * Normally this function find the preferred place for block allocation,
238 * returns it.
239 * Because this is only used for non-extent files, we limit the block nr
240 * to 32 bits.
241 */
242static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243 Indirect *partial)
244{
245 ext4_fsblk_t goal;
246
247 /*
248 * XXX need to get goal block from mballoc's data structures
249 */
250
251 goal = ext4_find_near(inode, partial);
252 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253 return goal;
254}
255
256/**
257 * ext4_blks_to_allocate - Look up the block map and count the number
258 * of direct blocks need to be allocated for the given branch.
259 *
260 * @branch: chain of indirect blocks
261 * @k: number of blocks need for indirect blocks
262 * @blks: number of data blocks to be mapped.
263 * @blocks_to_boundary: the offset in the indirect block
264 *
265 * return the total number of blocks to be allocate, including the
266 * direct and indirect blocks.
267 */
268static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269 int blocks_to_boundary)
270{
271 unsigned int count = 0;
272
273 /*
274 * Simple case, [t,d]Indirect block(s) has not allocated yet
275 * then it's clear blocks on that path have not allocated
276 */
277 if (k > 0) {
278 /* right now we don't handle cross boundary allocation */
279 if (blks < blocks_to_boundary + 1)
280 count += blks;
281 else
282 count += blocks_to_boundary + 1;
283 return count;
284 }
285
286 count++;
287 while (count < blks && count <= blocks_to_boundary &&
288 le32_to_cpu(*(branch[0].p + count)) == 0) {
289 count++;
290 }
291 return count;
292}
293
294/**
Amir Goldsteindae1e522011-06-27 19:40:50 -0400295 * ext4_alloc_branch - allocate and set up a chain of blocks.
296 * @handle: handle for this transaction
297 * @inode: owner
298 * @indirect_blks: number of allocated indirect blocks
299 * @blks: number of allocated direct blocks
300 * @goal: preferred place for allocation
301 * @offsets: offsets (in the blocks) to store the pointers to next.
302 * @branch: place to store the chain in.
303 *
304 * This function allocates blocks, zeroes out all but the last one,
305 * links them into chain and (if we are synchronous) writes them to disk.
306 * In other words, it prepares a branch that can be spliced onto the
307 * inode. It stores the information about that chain in the branch[], in
308 * the same format as ext4_get_branch() would do. We are calling it after
309 * we had read the existing part of chain and partial points to the last
310 * triple of that (one with zero ->key). Upon the exit we have the same
311 * picture as after the successful ext4_get_block(), except that in one
312 * place chain is disconnected - *branch->p is still zero (we did not
313 * set the last link), but branch->key contains the number that should
314 * be placed into *branch->p to fill that gap.
315 *
316 * If allocation fails we free all blocks we've allocated (and forget
317 * their buffer_heads) and return the error value the from failed
318 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319 * as described above and return 0.
320 */
321static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
322 ext4_lblk_t iblock, int indirect_blks,
323 int *blks, ext4_fsblk_t goal,
324 ext4_lblk_t *offsets, Indirect *branch)
325{
Theodore Ts'o781f1432013-04-03 12:43:17 -0400326 struct ext4_allocation_request ar;
327 struct buffer_head * bh;
328 ext4_fsblk_t b, new_blocks[4];
329 __le32 *p;
330 int i, j, err, len = 1;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400331
Amir Goldsteindae1e522011-06-27 19:40:50 -0400332 /*
Theodore Ts'o781f1432013-04-03 12:43:17 -0400333 * Set up for the direct block allocation
Amir Goldsteindae1e522011-06-27 19:40:50 -0400334 */
Theodore Ts'o781f1432013-04-03 12:43:17 -0400335 memset(&ar, 0, sizeof(ar));
336 ar.inode = inode;
337 ar.len = *blks;
338 ar.logical = iblock;
339 if (S_ISREG(inode->i_mode))
340 ar.flags = EXT4_MB_HINT_DATA;
341
342 for (i = 0; i <= indirect_blks; i++) {
343 if (i == indirect_blks) {
344 ar.goal = goal;
345 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
346 } else
347 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
348 goal, 0, NULL, &err);
349 if (err) {
350 i--;
351 goto failed;
352 }
353 branch[i].key = cpu_to_le32(new_blocks[i]);
354 if (i == 0)
355 continue;
356
357 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400358 if (unlikely(!bh)) {
Theodore Ts'o860d21e2013-01-12 16:19:36 -0500359 err = -ENOMEM;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400360 goto failed;
361 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400362 lock_buffer(bh);
363 BUFFER_TRACE(bh, "call get_create_access");
364 err = ext4_journal_get_create_access(handle, bh);
365 if (err) {
Amir Goldsteindae1e522011-06-27 19:40:50 -0400366 unlock_buffer(bh);
367 goto failed;
368 }
369
Theodore Ts'o781f1432013-04-03 12:43:17 -0400370 memset(bh->b_data, 0, bh->b_size);
371 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
372 b = new_blocks[i];
373
374 if (i == indirect_blks)
375 len = ar.len;
376 for (j = 0; j < len; j++)
377 *p++ = cpu_to_le32(b++);
378
Amir Goldsteindae1e522011-06-27 19:40:50 -0400379 BUFFER_TRACE(bh, "marking uptodate");
380 set_buffer_uptodate(bh);
381 unlock_buffer(bh);
382
383 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
384 err = ext4_handle_dirty_metadata(handle, inode, bh);
385 if (err)
386 goto failed;
387 }
Theodore Ts'o781f1432013-04-03 12:43:17 -0400388 *blks = ar.len;
389 return 0;
Amir Goldsteindae1e522011-06-27 19:40:50 -0400390failed:
Theodore Ts'o781f1432013-04-03 12:43:17 -0400391 for (; i >= 0; i--) {
392 if (i != indirect_blks && branch[i].bh)
393 ext4_forget(handle, 1, inode, branch[i].bh,
394 branch[i].bh->b_blocknr);
395 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
396 (i == indirect_blks) ? ar.len : 1, 0);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400397 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400398 return err;
399}
400
401/**
402 * ext4_splice_branch - splice the allocated branch onto inode.
403 * @handle: handle for this transaction
404 * @inode: owner
405 * @block: (logical) number of block we are adding
406 * @chain: chain of indirect blocks (with a missing link - see
407 * ext4_alloc_branch)
408 * @where: location of missing link
409 * @num: number of indirect blocks we are adding
410 * @blks: number of direct blocks we are adding
411 *
412 * This function fills the missing link and does all housekeeping needed in
413 * inode (->i_blocks, etc.). In case of success we end up with the full
414 * chain to new block and return 0.
415 */
416static int ext4_splice_branch(handle_t *handle, struct inode *inode,
417 ext4_lblk_t block, Indirect *where, int num,
418 int blks)
419{
420 int i;
421 int err = 0;
422 ext4_fsblk_t current_block;
423
424 /*
425 * If we're splicing into a [td]indirect block (as opposed to the
426 * inode) then we need to get write access to the [td]indirect block
427 * before the splice.
428 */
429 if (where->bh) {
430 BUFFER_TRACE(where->bh, "get_write_access");
431 err = ext4_journal_get_write_access(handle, where->bh);
432 if (err)
433 goto err_out;
434 }
435 /* That's it */
436
437 *where->p = where->key;
438
439 /*
440 * Update the host buffer_head or inode to point to more just allocated
441 * direct blocks blocks
442 */
443 if (num == 0 && blks > 1) {
444 current_block = le32_to_cpu(where->key) + 1;
445 for (i = 1; i < blks; i++)
446 *(where->p + i) = cpu_to_le32(current_block++);
447 }
448
449 /* We are done with atomic stuff, now do the rest of housekeeping */
450 /* had we spliced it onto indirect block? */
451 if (where->bh) {
452 /*
453 * If we spliced it onto an indirect block, we haven't
454 * altered the inode. Note however that if it is being spliced
455 * onto an indirect block at the very end of the file (the
456 * file is growing) then we *will* alter the inode to reflect
457 * the new i_size. But that is not done here - it is done in
458 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
459 */
460 jbd_debug(5, "splicing indirect only\n");
461 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
462 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
463 if (err)
464 goto err_out;
465 } else {
466 /*
467 * OK, we spliced it into the inode itself on a direct block.
468 */
469 ext4_mark_inode_dirty(handle, inode);
470 jbd_debug(5, "splicing direct\n");
471 }
472 return err;
473
474err_out:
475 for (i = 1; i <= num; i++) {
476 /*
477 * branch[i].bh is newly allocated, so there is no
478 * need to revoke the block, which is why we don't
479 * need to set EXT4_FREE_BLOCKS_METADATA.
480 */
481 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
482 EXT4_FREE_BLOCKS_FORGET);
483 }
484 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
485 blks, 0);
486
487 return err;
488}
489
490/*
491 * The ext4_ind_map_blocks() function handles non-extents inodes
492 * (i.e., using the traditional indirect/double-indirect i_blocks
493 * scheme) for ext4_map_blocks().
494 *
495 * Allocation strategy is simple: if we have to allocate something, we will
496 * have to go the whole way to leaf. So let's do it before attaching anything
497 * to tree, set linkage between the newborn blocks, write them if sync is
498 * required, recheck the path, free and repeat if check fails, otherwise
499 * set the last missing link (that will protect us from any truncate-generated
500 * removals - all blocks on the path are immune now) and possibly force the
501 * write on the parent block.
502 * That has a nice additional property: no special recovery from the failed
503 * allocations is needed - we simply release blocks and do not touch anything
504 * reachable from inode.
505 *
506 * `handle' can be NULL if create == 0.
507 *
508 * return > 0, # of blocks mapped or allocated.
509 * return = 0, if plain lookup failed.
510 * return < 0, error case.
511 *
512 * The ext4_ind_get_blocks() function should be called with
513 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
514 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
515 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
516 * blocks.
517 */
518int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
519 struct ext4_map_blocks *map,
520 int flags)
521{
522 int err = -EIO;
523 ext4_lblk_t offsets[4];
524 Indirect chain[4];
525 Indirect *partial;
526 ext4_fsblk_t goal;
527 int indirect_blks;
528 int blocks_to_boundary = 0;
529 int depth;
530 int count = 0;
531 ext4_fsblk_t first_block = 0;
532
533 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
534 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
535 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
536 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
537 &blocks_to_boundary);
538
539 if (depth == 0)
540 goto out;
541
542 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
543
544 /* Simplest case - block found, no allocation needed */
545 if (!partial) {
546 first_block = le32_to_cpu(chain[depth - 1].key);
547 count++;
548 /*map more blocks*/
549 while (count < map->m_len && count <= blocks_to_boundary) {
550 ext4_fsblk_t blk;
551
552 blk = le32_to_cpu(*(chain[depth-1].p + count));
553
554 if (blk == first_block + count)
555 count++;
556 else
557 break;
558 }
559 goto got_it;
560 }
561
562 /* Next simple case - plain lookup or failed read of indirect block */
563 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
564 goto cleanup;
565
566 /*
567 * Okay, we need to do block allocation.
568 */
Theodore Ts'obab08ab2011-09-09 18:36:51 -0400569 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
570 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
571 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
572 "non-extent mapped inodes with bigalloc");
573 return -ENOSPC;
574 }
575
Amir Goldsteindae1e522011-06-27 19:40:50 -0400576 goal = ext4_find_goal(inode, map->m_lblk, partial);
577
578 /* the number of blocks need to allocate for [d,t]indirect blocks */
579 indirect_blks = (chain + depth) - partial - 1;
580
581 /*
582 * Next look up the indirect map to count the totoal number of
583 * direct blocks to allocate for this branch.
584 */
585 count = ext4_blks_to_allocate(partial, indirect_blks,
586 map->m_len, blocks_to_boundary);
587 /*
588 * Block out ext4_truncate while we alter the tree
589 */
590 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
591 &count, goal,
592 offsets + (partial - chain), partial);
593
594 /*
595 * The ext4_splice_branch call will free and forget any buffers
596 * on the new chain if there is a failure, but that risks using
597 * up transaction credits, especially for bitmaps where the
598 * credits cannot be returned. Can we handle this somehow? We
599 * may need to return -EAGAIN upwards in the worst case. --sct
600 */
601 if (!err)
602 err = ext4_splice_branch(handle, inode, map->m_lblk,
603 partial, indirect_blks, count);
604 if (err)
605 goto cleanup;
606
607 map->m_flags |= EXT4_MAP_NEW;
608
609 ext4_update_inode_fsync_trans(handle, inode, 1);
610got_it:
611 map->m_flags |= EXT4_MAP_MAPPED;
612 map->m_pblk = le32_to_cpu(chain[depth-1].key);
613 map->m_len = count;
614 if (count > blocks_to_boundary)
615 map->m_flags |= EXT4_MAP_BOUNDARY;
616 err = count;
617 /* Clean up and exit */
618 partial = chain + depth - 1; /* the whole chain */
619cleanup:
620 while (partial > chain) {
621 BUFFER_TRACE(partial->bh, "call brelse");
622 brelse(partial->bh);
623 partial--;
624 }
625out:
Zheng Liu19b303d2012-11-08 14:34:04 -0500626 trace_ext4_ind_map_blocks_exit(inode, map, err);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400627 return err;
628}
629
630/*
631 * O_DIRECT for ext3 (or indirect map) based files
632 *
633 * If the O_DIRECT write will extend the file then add this inode to the
634 * orphan list. So recovery will truncate it back to the original size
635 * if the machine crashes during the write.
636 *
637 * If the O_DIRECT write is intantiating holes inside i_size and the machine
638 * crashes then stale disk data _may_ be exposed inside the file. But current
639 * VFS code falls back into buffered path in that case so we are safe.
640 */
641ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
642 const struct iovec *iov, loff_t offset,
643 unsigned long nr_segs)
644{
645 struct file *file = iocb->ki_filp;
646 struct inode *inode = file->f_mapping->host;
647 struct ext4_inode_info *ei = EXT4_I(inode);
648 handle_t *handle;
649 ssize_t ret;
650 int orphan = 0;
651 size_t count = iov_length(iov, nr_segs);
652 int retries = 0;
653
654 if (rw == WRITE) {
655 loff_t final_size = offset + count;
656
657 if (final_size > inode->i_size) {
658 /* Credits for sb + inode write */
Theodore Ts'o9924a922013-02-08 21:59:22 -0500659 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400660 if (IS_ERR(handle)) {
661 ret = PTR_ERR(handle);
662 goto out;
663 }
664 ret = ext4_orphan_add(handle, inode);
665 if (ret) {
666 ext4_journal_stop(handle);
667 goto out;
668 }
669 orphan = 1;
670 ei->i_disksize = inode->i_size;
671 ext4_journal_stop(handle);
672 }
673 }
674
675retry:
Jiaying Zhangdccaf332011-08-19 19:13:32 -0400676 if (rw == READ && ext4_should_dioread_nolock(inode)) {
Dmitry Monakhovc2785312012-10-05 11:31:55 -0400677 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
678 mutex_lock(&inode->i_mutex);
679 ext4_flush_unwritten_io(inode);
680 mutex_unlock(&inode->i_mutex);
681 }
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400682 /*
683 * Nolock dioread optimization may be dynamically disabled
684 * via ext4_inode_block_unlocked_dio(). Check inode's state
685 * while holding extra i_dio_count ref.
686 */
687 atomic_inc(&inode->i_dio_count);
688 smp_mb();
689 if (unlikely(ext4_test_inode_state(inode,
690 EXT4_STATE_DIOREAD_LOCK))) {
691 inode_dio_done(inode);
692 goto locked;
693 }
Amir Goldsteindae1e522011-06-27 19:40:50 -0400694 ret = __blockdev_direct_IO(rw, iocb, inode,
695 inode->i_sb->s_bdev, iov,
696 offset, nr_segs,
697 ext4_get_block, NULL, NULL, 0);
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400698 inode_dio_done(inode);
Jiaying Zhangdccaf332011-08-19 19:13:32 -0400699 } else {
Dmitry Monakhov17335dc2012-09-29 00:41:21 -0400700locked:
Linus Torvalds60ad4462011-08-01 13:56:03 -1000701 ret = blockdev_direct_IO(rw, iocb, inode, iov,
702 offset, nr_segs, ext4_get_block);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400703
704 if (unlikely((rw & WRITE) && ret < 0)) {
705 loff_t isize = i_size_read(inode);
706 loff_t end = offset + iov_length(iov, nr_segs);
707
708 if (end > isize)
709 ext4_truncate_failed_write(inode);
710 }
711 }
712 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
713 goto retry;
714
715 if (orphan) {
716 int err;
717
718 /* Credits for sb + inode write */
Theodore Ts'o9924a922013-02-08 21:59:22 -0500719 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
Amir Goldsteindae1e522011-06-27 19:40:50 -0400720 if (IS_ERR(handle)) {
721 /* This is really bad luck. We've written the data
722 * but cannot extend i_size. Bail out and pretend
723 * the write failed... */
724 ret = PTR_ERR(handle);
725 if (inode->i_nlink)
726 ext4_orphan_del(NULL, inode);
727
728 goto out;
729 }
730 if (inode->i_nlink)
731 ext4_orphan_del(handle, inode);
732 if (ret > 0) {
733 loff_t end = offset + ret;
734 if (end > inode->i_size) {
735 ei->i_disksize = end;
736 i_size_write(inode, end);
737 /*
738 * We're going to return a positive `ret'
739 * here due to non-zero-length I/O, so there's
740 * no way of reporting error returns from
741 * ext4_mark_inode_dirty() to userspace. So
742 * ignore it.
743 */
744 ext4_mark_inode_dirty(handle, inode);
745 }
746 }
747 err = ext4_journal_stop(handle);
748 if (ret == 0)
749 ret = err;
750 }
751out:
752 return ret;
753}
754
755/*
756 * Calculate the number of metadata blocks need to reserve
757 * to allocate a new block at @lblocks for non extent file based file
758 */
759int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
760{
761 struct ext4_inode_info *ei = EXT4_I(inode);
762 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
763 int blk_bits;
764
765 if (lblock < EXT4_NDIR_BLOCKS)
766 return 0;
767
768 lblock -= EXT4_NDIR_BLOCKS;
769
770 if (ei->i_da_metadata_calc_len &&
771 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
772 ei->i_da_metadata_calc_len++;
773 return 0;
774 }
775 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
776 ei->i_da_metadata_calc_len = 1;
777 blk_bits = order_base_2(lblock);
778 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
779}
780
781int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
782{
783 int indirects;
784
785 /* if nrblocks are contiguous */
786 if (chunk) {
787 /*
788 * With N contiguous data blocks, we need at most
789 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
790 * 2 dindirect blocks, and 1 tindirect block
791 */
792 return DIV_ROUND_UP(nrblocks,
793 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
794 }
795 /*
796 * if nrblocks are not contiguous, worse case, each block touch
797 * a indirect block, and each indirect block touch a double indirect
798 * block, plus a triple indirect block
799 */
800 indirects = nrblocks * 2 + 1;
801 return indirects;
802}
803
804/*
805 * Truncate transactions can be complex and absolutely huge. So we need to
806 * be able to restart the transaction at a conventient checkpoint to make
807 * sure we don't overflow the journal.
808 *
809 * start_transaction gets us a new handle for a truncate transaction,
810 * and extend_transaction tries to extend the existing one a bit. If
811 * extend fails, we need to propagate the failure up and restart the
812 * transaction in the top-level truncate loop. --sct
813 */
814static handle_t *start_transaction(struct inode *inode)
815{
816 handle_t *result;
817
Theodore Ts'o9924a922013-02-08 21:59:22 -0500818 result = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
819 ext4_blocks_for_truncate(inode));
Amir Goldsteindae1e522011-06-27 19:40:50 -0400820 if (!IS_ERR(result))
821 return result;
822
823 ext4_std_error(inode->i_sb, PTR_ERR(result));
824 return result;
825}
826
827/*
828 * Try to extend this transaction for the purposes of truncation.
829 *
830 * Returns 0 if we managed to create more room. If we can't create more
831 * room, and the transaction must be restarted we return 1.
832 */
833static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
834{
835 if (!ext4_handle_valid(handle))
836 return 0;
837 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
838 return 0;
839 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
840 return 0;
841 return 1;
842}
843
844/*
845 * Probably it should be a library function... search for first non-zero word
846 * or memcmp with zero_page, whatever is better for particular architecture.
847 * Linus?
848 */
849static inline int all_zeroes(__le32 *p, __le32 *q)
850{
851 while (p < q)
852 if (*p++)
853 return 0;
854 return 1;
855}
856
857/**
858 * ext4_find_shared - find the indirect blocks for partial truncation.
859 * @inode: inode in question
860 * @depth: depth of the affected branch
861 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
862 * @chain: place to store the pointers to partial indirect blocks
863 * @top: place to the (detached) top of branch
864 *
865 * This is a helper function used by ext4_truncate().
866 *
867 * When we do truncate() we may have to clean the ends of several
868 * indirect blocks but leave the blocks themselves alive. Block is
869 * partially truncated if some data below the new i_size is referred
870 * from it (and it is on the path to the first completely truncated
871 * data block, indeed). We have to free the top of that path along
872 * with everything to the right of the path. Since no allocation
873 * past the truncation point is possible until ext4_truncate()
874 * finishes, we may safely do the latter, but top of branch may
875 * require special attention - pageout below the truncation point
876 * might try to populate it.
877 *
878 * We atomically detach the top of branch from the tree, store the
879 * block number of its root in *@top, pointers to buffer_heads of
880 * partially truncated blocks - in @chain[].bh and pointers to
881 * their last elements that should not be removed - in
882 * @chain[].p. Return value is the pointer to last filled element
883 * of @chain.
884 *
885 * The work left to caller to do the actual freeing of subtrees:
886 * a) free the subtree starting from *@top
887 * b) free the subtrees whose roots are stored in
888 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
889 * c) free the subtrees growing from the inode past the @chain[0].
890 * (no partially truncated stuff there). */
891
892static Indirect *ext4_find_shared(struct inode *inode, int depth,
893 ext4_lblk_t offsets[4], Indirect chain[4],
894 __le32 *top)
895{
896 Indirect *partial, *p;
897 int k, err;
898
899 *top = 0;
900 /* Make k index the deepest non-null offset + 1 */
901 for (k = depth; k > 1 && !offsets[k-1]; k--)
902 ;
903 partial = ext4_get_branch(inode, k, offsets, chain, &err);
904 /* Writer: pointers */
905 if (!partial)
906 partial = chain + k-1;
907 /*
908 * If the branch acquired continuation since we've looked at it -
909 * fine, it should all survive and (new) top doesn't belong to us.
910 */
911 if (!partial->key && *partial->p)
912 /* Writer: end */
913 goto no_top;
914 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
915 ;
916 /*
917 * OK, we've found the last block that must survive. The rest of our
918 * branch should be detached before unlocking. However, if that rest
919 * of branch is all ours and does not grow immediately from the inode
920 * it's easier to cheat and just decrement partial->p.
921 */
922 if (p == chain + k - 1 && p > chain) {
923 p->p--;
924 } else {
925 *top = *p->p;
926 /* Nope, don't do this in ext4. Must leave the tree intact */
927#if 0
928 *p->p = 0;
929#endif
930 }
931 /* Writer: end */
932
933 while (partial > p) {
934 brelse(partial->bh);
935 partial--;
936 }
937no_top:
938 return partial;
939}
940
941/*
942 * Zero a number of block pointers in either an inode or an indirect block.
943 * If we restart the transaction we must again get write access to the
944 * indirect block for further modification.
945 *
946 * We release `count' blocks on disk, but (last - first) may be greater
947 * than `count' because there can be holes in there.
948 *
949 * Return 0 on success, 1 on invalid block range
950 * and < 0 on fatal error.
951 */
952static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
953 struct buffer_head *bh,
954 ext4_fsblk_t block_to_free,
955 unsigned long count, __le32 *first,
956 __le32 *last)
957{
958 __le32 *p;
959 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
960 int err;
961
962 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
963 flags |= EXT4_FREE_BLOCKS_METADATA;
964
965 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
966 count)) {
967 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
968 "blocks %llu len %lu",
969 (unsigned long long) block_to_free, count);
970 return 1;
971 }
972
973 if (try_to_extend_transaction(handle, inode)) {
974 if (bh) {
975 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
976 err = ext4_handle_dirty_metadata(handle, inode, bh);
977 if (unlikely(err))
978 goto out_err;
979 }
980 err = ext4_mark_inode_dirty(handle, inode);
981 if (unlikely(err))
982 goto out_err;
983 err = ext4_truncate_restart_trans(handle, inode,
984 ext4_blocks_for_truncate(inode));
985 if (unlikely(err))
986 goto out_err;
987 if (bh) {
988 BUFFER_TRACE(bh, "retaking write access");
989 err = ext4_journal_get_write_access(handle, bh);
990 if (unlikely(err))
991 goto out_err;
992 }
993 }
994
995 for (p = first; p < last; p++)
996 *p = 0;
997
998 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
999 return 0;
1000out_err:
1001 ext4_std_error(inode->i_sb, err);
1002 return err;
1003}
1004
1005/**
1006 * ext4_free_data - free a list of data blocks
1007 * @handle: handle for this transaction
1008 * @inode: inode we are dealing with
1009 * @this_bh: indirect buffer_head which contains *@first and *@last
1010 * @first: array of block numbers
1011 * @last: points immediately past the end of array
1012 *
1013 * We are freeing all blocks referred from that array (numbers are stored as
1014 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1015 *
1016 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1017 * blocks are contiguous then releasing them at one time will only affect one
1018 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1019 * actually use a lot of journal space.
1020 *
1021 * @this_bh will be %NULL if @first and @last point into the inode's direct
1022 * block pointers.
1023 */
1024static void ext4_free_data(handle_t *handle, struct inode *inode,
1025 struct buffer_head *this_bh,
1026 __le32 *first, __le32 *last)
1027{
1028 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1029 unsigned long count = 0; /* Number of blocks in the run */
1030 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1031 corresponding to
1032 block_to_free */
1033 ext4_fsblk_t nr; /* Current block # */
1034 __le32 *p; /* Pointer into inode/ind
1035 for current block */
1036 int err = 0;
1037
1038 if (this_bh) { /* For indirect block */
1039 BUFFER_TRACE(this_bh, "get_write_access");
1040 err = ext4_journal_get_write_access(handle, this_bh);
1041 /* Important: if we can't update the indirect pointers
1042 * to the blocks, we can't free them. */
1043 if (err)
1044 return;
1045 }
1046
1047 for (p = first; p < last; p++) {
1048 nr = le32_to_cpu(*p);
1049 if (nr) {
1050 /* accumulate blocks to free if they're contiguous */
1051 if (count == 0) {
1052 block_to_free = nr;
1053 block_to_free_p = p;
1054 count = 1;
1055 } else if (nr == block_to_free + count) {
1056 count++;
1057 } else {
1058 err = ext4_clear_blocks(handle, inode, this_bh,
1059 block_to_free, count,
1060 block_to_free_p, p);
1061 if (err)
1062 break;
1063 block_to_free = nr;
1064 block_to_free_p = p;
1065 count = 1;
1066 }
1067 }
1068 }
1069
1070 if (!err && count > 0)
1071 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1072 count, block_to_free_p, p);
1073 if (err < 0)
1074 /* fatal error */
1075 return;
1076
1077 if (this_bh) {
1078 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1079
1080 /*
1081 * The buffer head should have an attached journal head at this
1082 * point. However, if the data is corrupted and an indirect
1083 * block pointed to itself, it would have been detached when
1084 * the block was cleared. Check for this instead of OOPSing.
1085 */
1086 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1087 ext4_handle_dirty_metadata(handle, inode, this_bh);
1088 else
1089 EXT4_ERROR_INODE(inode,
1090 "circular indirect block detected at "
1091 "block %llu",
1092 (unsigned long long) this_bh->b_blocknr);
1093 }
1094}
1095
1096/**
1097 * ext4_free_branches - free an array of branches
1098 * @handle: JBD handle for this transaction
1099 * @inode: inode we are dealing with
1100 * @parent_bh: the buffer_head which contains *@first and *@last
1101 * @first: array of block numbers
1102 * @last: pointer immediately past the end of array
1103 * @depth: depth of the branches to free
1104 *
1105 * We are freeing all blocks referred from these branches (numbers are
1106 * stored as little-endian 32-bit) and updating @inode->i_blocks
1107 * appropriately.
1108 */
1109static void ext4_free_branches(handle_t *handle, struct inode *inode,
1110 struct buffer_head *parent_bh,
1111 __le32 *first, __le32 *last, int depth)
1112{
1113 ext4_fsblk_t nr;
1114 __le32 *p;
1115
1116 if (ext4_handle_is_aborted(handle))
1117 return;
1118
1119 if (depth--) {
1120 struct buffer_head *bh;
1121 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1122 p = last;
1123 while (--p >= first) {
1124 nr = le32_to_cpu(*p);
1125 if (!nr)
1126 continue; /* A hole */
1127
1128 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1129 nr, 1)) {
1130 EXT4_ERROR_INODE(inode,
1131 "invalid indirect mapped "
1132 "block %lu (level %d)",
1133 (unsigned long) nr, depth);
1134 break;
1135 }
1136
1137 /* Go read the buffer for the next level down */
1138 bh = sb_bread(inode->i_sb, nr);
1139
1140 /*
1141 * A read failure? Report error and clear slot
1142 * (should be rare).
1143 */
1144 if (!bh) {
1145 EXT4_ERROR_INODE_BLOCK(inode, nr,
1146 "Read failure");
1147 continue;
1148 }
1149
1150 /* This zaps the entire block. Bottom up. */
1151 BUFFER_TRACE(bh, "free child branches");
1152 ext4_free_branches(handle, inode, bh,
1153 (__le32 *) bh->b_data,
1154 (__le32 *) bh->b_data + addr_per_block,
1155 depth);
1156 brelse(bh);
1157
1158 /*
1159 * Everything below this this pointer has been
1160 * released. Now let this top-of-subtree go.
1161 *
1162 * We want the freeing of this indirect block to be
1163 * atomic in the journal with the updating of the
1164 * bitmap block which owns it. So make some room in
1165 * the journal.
1166 *
1167 * We zero the parent pointer *after* freeing its
1168 * pointee in the bitmaps, so if extend_transaction()
1169 * for some reason fails to put the bitmap changes and
1170 * the release into the same transaction, recovery
1171 * will merely complain about releasing a free block,
1172 * rather than leaking blocks.
1173 */
1174 if (ext4_handle_is_aborted(handle))
1175 return;
1176 if (try_to_extend_transaction(handle, inode)) {
1177 ext4_mark_inode_dirty(handle, inode);
1178 ext4_truncate_restart_trans(handle, inode,
1179 ext4_blocks_for_truncate(inode));
1180 }
1181
1182 /*
1183 * The forget flag here is critical because if
1184 * we are journaling (and not doing data
1185 * journaling), we have to make sure a revoke
1186 * record is written to prevent the journal
1187 * replay from overwriting the (former)
1188 * indirect block if it gets reallocated as a
1189 * data block. This must happen in the same
1190 * transaction where the data blocks are
1191 * actually freed.
1192 */
1193 ext4_free_blocks(handle, inode, NULL, nr, 1,
1194 EXT4_FREE_BLOCKS_METADATA|
1195 EXT4_FREE_BLOCKS_FORGET);
1196
1197 if (parent_bh) {
1198 /*
1199 * The block which we have just freed is
1200 * pointed to by an indirect block: journal it
1201 */
1202 BUFFER_TRACE(parent_bh, "get_write_access");
1203 if (!ext4_journal_get_write_access(handle,
1204 parent_bh)){
1205 *p = 0;
1206 BUFFER_TRACE(parent_bh,
1207 "call ext4_handle_dirty_metadata");
1208 ext4_handle_dirty_metadata(handle,
1209 inode,
1210 parent_bh);
1211 }
1212 }
1213 }
1214 } else {
1215 /* We have reached the bottom of the tree. */
1216 BUFFER_TRACE(parent_bh, "free data blocks");
1217 ext4_free_data(handle, inode, parent_bh, first, last);
1218 }
1219}
1220
1221void ext4_ind_truncate(struct inode *inode)
1222{
1223 handle_t *handle;
1224 struct ext4_inode_info *ei = EXT4_I(inode);
1225 __le32 *i_data = ei->i_data;
1226 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1227 struct address_space *mapping = inode->i_mapping;
1228 ext4_lblk_t offsets[4];
1229 Indirect chain[4];
1230 Indirect *partial;
1231 __le32 nr = 0;
1232 int n = 0;
1233 ext4_lblk_t last_block, max_block;
Allison Henderson189e8682011-09-06 21:49:44 -04001234 loff_t page_len;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001235 unsigned blocksize = inode->i_sb->s_blocksize;
Allison Henderson189e8682011-09-06 21:49:44 -04001236 int err;
Amir Goldsteindae1e522011-06-27 19:40:50 -04001237
1238 handle = start_transaction(inode);
1239 if (IS_ERR(handle))
1240 return; /* AKPM: return what? */
1241
1242 last_block = (inode->i_size + blocksize-1)
1243 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1244 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1245 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1246
Allison Henderson189e8682011-09-06 21:49:44 -04001247 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1248 page_len = PAGE_CACHE_SIZE -
1249 (inode->i_size & (PAGE_CACHE_SIZE - 1));
1250
1251 err = ext4_discard_partial_page_buffers(handle,
1252 mapping, inode->i_size, page_len, 0);
1253
1254 if (err)
Amir Goldsteindae1e522011-06-27 19:40:50 -04001255 goto out_stop;
Allison Henderson189e8682011-09-06 21:49:44 -04001256 }
Amir Goldsteindae1e522011-06-27 19:40:50 -04001257
1258 if (last_block != max_block) {
1259 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1260 if (n == 0)
1261 goto out_stop; /* error */
1262 }
1263
1264 /*
1265 * OK. This truncate is going to happen. We add the inode to the
1266 * orphan list, so that if this truncate spans multiple transactions,
1267 * and we crash, we will resume the truncate when the filesystem
1268 * recovers. It also marks the inode dirty, to catch the new size.
1269 *
1270 * Implication: the file must always be in a sane, consistent
1271 * truncatable state while each transaction commits.
1272 */
1273 if (ext4_orphan_add(handle, inode))
1274 goto out_stop;
1275
1276 /*
1277 * From here we block out all ext4_get_block() callers who want to
1278 * modify the block allocation tree.
1279 */
1280 down_write(&ei->i_data_sem);
1281
1282 ext4_discard_preallocations(inode);
Zheng Liu51865fd2012-11-08 21:57:32 -05001283 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
Amir Goldsteindae1e522011-06-27 19:40:50 -04001284
1285 /*
1286 * The orphan list entry will now protect us from any crash which
1287 * occurs before the truncate completes, so it is now safe to propagate
1288 * the new, shorter inode size (held for now in i_size) into the
1289 * on-disk inode. We do this via i_disksize, which is the value which
1290 * ext4 *really* writes onto the disk inode.
1291 */
1292 ei->i_disksize = inode->i_size;
1293
1294 if (last_block == max_block) {
1295 /*
1296 * It is unnecessary to free any data blocks if last_block is
1297 * equal to the indirect block limit.
1298 */
1299 goto out_unlock;
1300 } else if (n == 1) { /* direct blocks */
1301 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1302 i_data + EXT4_NDIR_BLOCKS);
1303 goto do_indirects;
1304 }
1305
1306 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1307 /* Kill the top of shared branch (not detached) */
1308 if (nr) {
1309 if (partial == chain) {
1310 /* Shared branch grows from the inode */
1311 ext4_free_branches(handle, inode, NULL,
1312 &nr, &nr+1, (chain+n-1) - partial);
1313 *partial->p = 0;
1314 /*
1315 * We mark the inode dirty prior to restart,
1316 * and prior to stop. No need for it here.
1317 */
1318 } else {
1319 /* Shared branch grows from an indirect block */
1320 BUFFER_TRACE(partial->bh, "get_write_access");
1321 ext4_free_branches(handle, inode, partial->bh,
1322 partial->p,
1323 partial->p+1, (chain+n-1) - partial);
1324 }
1325 }
1326 /* Clear the ends of indirect blocks on the shared branch */
1327 while (partial > chain) {
1328 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1329 (__le32*)partial->bh->b_data+addr_per_block,
1330 (chain+n-1) - partial);
1331 BUFFER_TRACE(partial->bh, "call brelse");
1332 brelse(partial->bh);
1333 partial--;
1334 }
1335do_indirects:
1336 /* Kill the remaining (whole) subtrees */
1337 switch (offsets[0]) {
1338 default:
1339 nr = i_data[EXT4_IND_BLOCK];
1340 if (nr) {
1341 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1342 i_data[EXT4_IND_BLOCK] = 0;
1343 }
1344 case EXT4_IND_BLOCK:
1345 nr = i_data[EXT4_DIND_BLOCK];
1346 if (nr) {
1347 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1348 i_data[EXT4_DIND_BLOCK] = 0;
1349 }
1350 case EXT4_DIND_BLOCK:
1351 nr = i_data[EXT4_TIND_BLOCK];
1352 if (nr) {
1353 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1354 i_data[EXT4_TIND_BLOCK] = 0;
1355 }
1356 case EXT4_TIND_BLOCK:
1357 ;
1358 }
1359
1360out_unlock:
1361 up_write(&ei->i_data_sem);
1362 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1363 ext4_mark_inode_dirty(handle, inode);
1364
1365 /*
1366 * In a multi-transaction truncate, we only make the final transaction
1367 * synchronous
1368 */
1369 if (IS_SYNC(inode))
1370 ext4_handle_sync(handle);
1371out_stop:
1372 /*
1373 * If this was a simple ftruncate(), and the file will remain alive
1374 * then we need to clear up the orphan record which we created above.
1375 * However, if this was a real unlink then we were called by
1376 * ext4_delete_inode(), and we allow that function to clean up the
1377 * orphan info for us.
1378 */
1379 if (inode->i_nlink)
1380 ext4_orphan_del(handle, inode);
1381
1382 ext4_journal_stop(handle);
1383 trace_ext4_truncate_exit(inode);
1384}
1385
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001386static int free_hole_blocks(handle_t *handle, struct inode *inode,
1387 struct buffer_head *parent_bh, __le32 *i_data,
1388 int level, ext4_lblk_t first,
1389 ext4_lblk_t count, int max)
1390{
1391 struct buffer_head *bh = NULL;
1392 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1393 int ret = 0;
1394 int i, inc;
1395 ext4_lblk_t offset;
1396 __le32 blk;
1397
1398 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1399 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1400 if (offset >= count + first)
1401 break;
1402 if (*i_data == 0 || (offset + inc) <= first)
1403 continue;
1404 blk = *i_data;
1405 if (level > 0) {
1406 ext4_lblk_t first2;
Zheng Liu8cde7ad2013-04-03 12:27:18 -04001407 bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001408 if (!bh) {
Zheng Liu8cde7ad2013-04-03 12:27:18 -04001409 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001410 "Read failure");
1411 return -EIO;
1412 }
1413 first2 = (first > offset) ? first - offset : 0;
1414 ret = free_hole_blocks(handle, inode, bh,
1415 (__le32 *)bh->b_data, level - 1,
1416 first2, count - offset,
1417 inode->i_sb->s_blocksize >> 2);
1418 if (ret) {
1419 brelse(bh);
1420 goto err;
1421 }
1422 }
1423 if (level == 0 ||
1424 (bh && all_zeroes((__le32 *)bh->b_data,
1425 (__le32 *)bh->b_data + addr_per_block))) {
1426 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1427 *i_data = 0;
1428 }
1429 brelse(bh);
1430 bh = NULL;
1431 }
1432
1433err:
1434 return ret;
1435}
1436
1437static int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1438 ext4_lblk_t first, ext4_lblk_t stop)
1439{
1440 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1441 int level, ret = 0;
1442 int num = EXT4_NDIR_BLOCKS;
1443 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1444 __le32 *i_data = EXT4_I(inode)->i_data;
1445
1446 count = stop - first;
1447 for (level = 0; level < 4; level++, max *= addr_per_block) {
1448 if (first < max) {
1449 ret = free_hole_blocks(handle, inode, NULL, i_data,
1450 level, first, count, num);
1451 if (ret)
1452 goto err;
1453 if (count > max - first)
1454 count -= max - first;
1455 else
1456 break;
1457 first = 0;
1458 } else {
1459 first -= max;
1460 }
1461 i_data += num;
1462 if (level == 0) {
1463 num = 1;
1464 max = 1;
1465 }
1466 }
1467
1468err:
1469 return ret;
1470}
1471
1472int ext4_ind_punch_hole(struct file *file, loff_t offset, loff_t length)
1473{
Al Viro6131ffa2013-02-27 16:59:05 -05001474 struct inode *inode = file_inode(file);
Zheng Liu8bad6fc2013-01-28 09:21:37 -05001475 struct super_block *sb = inode->i_sb;
1476 ext4_lblk_t first_block, stop_block;
1477 struct address_space *mapping = inode->i_mapping;
1478 handle_t *handle = NULL;
1479 loff_t first_page, last_page, page_len;
1480 loff_t first_page_offset, last_page_offset;
1481 int err = 0;
1482
1483 /*
1484 * Write out all dirty pages to avoid race conditions
1485 * Then release them.
1486 */
1487 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1488 err = filemap_write_and_wait_range(mapping,
1489 offset, offset + length - 1);
1490 if (err)
1491 return err;
1492 }
1493
1494 mutex_lock(&inode->i_mutex);
1495 /* It's not possible punch hole on append only file */
1496 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
1497 err = -EPERM;
1498 goto out_mutex;
1499 }
1500 if (IS_SWAPFILE(inode)) {
1501 err = -ETXTBSY;
1502 goto out_mutex;
1503 }
1504
1505 /* No need to punch hole beyond i_size */
1506 if (offset >= inode->i_size)
1507 goto out_mutex;
1508
1509 /*
1510 * If the hole extents beyond i_size, set the hole
1511 * to end after the page that contains i_size
1512 */
1513 if (offset + length > inode->i_size) {
1514 length = inode->i_size +
1515 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
1516 offset;
1517 }
1518
1519 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1520 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
1521
1522 first_page_offset = first_page << PAGE_CACHE_SHIFT;
1523 last_page_offset = last_page << PAGE_CACHE_SHIFT;
1524
1525 /* Now release the pages */
1526 if (last_page_offset > first_page_offset) {
1527 truncate_pagecache_range(inode, first_page_offset,
1528 last_page_offset - 1);
1529 }
1530
1531 /* Wait all existing dio works, newcomers will block on i_mutex */
1532 inode_dio_wait(inode);
1533
1534 handle = start_transaction(inode);
1535 if (IS_ERR(handle))
1536 goto out_mutex;
1537
1538 /*
1539 * Now we need to zero out the non-page-aligned data in the
1540 * pages at the start and tail of the hole, and unmap the buffer
1541 * heads for the block aligned regions of the page that were
1542 * completely zerod.
1543 */
1544 if (first_page > last_page) {
1545 /*
1546 * If the file space being truncated is contained within a page
1547 * just zero out and unmap the middle of that page
1548 */
1549 err = ext4_discard_partial_page_buffers(handle,
1550 mapping, offset, length, 0);
1551 if (err)
1552 goto out;
1553 } else {
1554 /*
1555 * Zero out and unmap the paritial page that contains
1556 * the start of the hole
1557 */
1558 page_len = first_page_offset - offset;
1559 if (page_len > 0) {
1560 err = ext4_discard_partial_page_buffers(handle, mapping,
1561 offset, page_len, 0);
1562 if (err)
1563 goto out;
1564 }
1565
1566 /*
1567 * Zero out and unmap the partial page that contains
1568 * the end of the hole
1569 */
1570 page_len = offset + length - last_page_offset;
1571 if (page_len > 0) {
1572 err = ext4_discard_partial_page_buffers(handle, mapping,
1573 last_page_offset, page_len, 0);
1574 if (err)
1575 goto out;
1576 }
1577 }
1578
1579 /*
1580 * If i_size contained in the last page, we need to
1581 * unmap and zero the paritial page after i_size
1582 */
1583 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
1584 inode->i_size % PAGE_CACHE_SIZE != 0) {
1585 page_len = PAGE_CACHE_SIZE -
1586 (inode->i_size & (PAGE_CACHE_SIZE - 1));
1587 if (page_len > 0) {
1588 err = ext4_discard_partial_page_buffers(handle,
1589 mapping, inode->i_size, page_len, 0);
1590 if (err)
1591 goto out;
1592 }
1593 }
1594
1595 first_block = (offset + sb->s_blocksize - 1) >>
1596 EXT4_BLOCK_SIZE_BITS(sb);
1597 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
1598
1599 if (first_block >= stop_block)
1600 goto out;
1601
1602 down_write(&EXT4_I(inode)->i_data_sem);
1603 ext4_discard_preallocations(inode);
1604
1605 err = ext4_es_remove_extent(inode, first_block,
1606 stop_block - first_block);
1607 err = ext4_free_hole_blocks(handle, inode, first_block, stop_block);
1608
1609 ext4_discard_preallocations(inode);
1610
1611 if (IS_SYNC(inode))
1612 ext4_handle_sync(handle);
1613
1614 up_write(&EXT4_I(inode)->i_data_sem);
1615
1616out:
1617 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1618 ext4_mark_inode_dirty(handle, inode);
1619 ext4_journal_stop(handle);
1620
1621out_mutex:
1622 mutex_unlock(&inode->i_mutex);
1623
1624 return err;
1625}