Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Freescale GPMI NAND Flash Driver |
| 3 | * |
| 4 | * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. |
| 5 | * Copyright (C) 2008 Embedded Alley Solutions, Inc. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License along |
| 18 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 19 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| 20 | */ |
| 21 | #include <linux/clk.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/interrupt.h> |
Wolfram Sang | df16c86 | 2011-11-23 15:57:06 +0100 | [diff] [blame] | 24 | #include <linux/module.h> |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 25 | #include <linux/mtd/gpmi-nand.h> |
| 26 | #include <linux/mtd/partitions.h> |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 27 | #include "gpmi-nand.h" |
| 28 | |
| 29 | /* add our owner bbt descriptor */ |
| 30 | static uint8_t scan_ff_pattern[] = { 0xff }; |
| 31 | static struct nand_bbt_descr gpmi_bbt_descr = { |
| 32 | .options = 0, |
| 33 | .offs = 0, |
| 34 | .len = 1, |
| 35 | .pattern = scan_ff_pattern |
| 36 | }; |
| 37 | |
| 38 | /* We will use all the (page + OOB). */ |
| 39 | static struct nand_ecclayout gpmi_hw_ecclayout = { |
| 40 | .eccbytes = 0, |
| 41 | .eccpos = { 0, }, |
| 42 | .oobfree = { {.offset = 0, .length = 0} } |
| 43 | }; |
| 44 | |
| 45 | static irqreturn_t bch_irq(int irq, void *cookie) |
| 46 | { |
| 47 | struct gpmi_nand_data *this = cookie; |
| 48 | |
| 49 | gpmi_clear_bch(this); |
| 50 | complete(&this->bch_done); |
| 51 | return IRQ_HANDLED; |
| 52 | } |
| 53 | |
| 54 | /* |
| 55 | * Calculate the ECC strength by hand: |
| 56 | * E : The ECC strength. |
| 57 | * G : the length of Galois Field. |
| 58 | * N : The chunk count of per page. |
| 59 | * O : the oobsize of the NAND chip. |
| 60 | * M : the metasize of per page. |
| 61 | * |
| 62 | * The formula is : |
| 63 | * E * G * N |
| 64 | * ------------ <= (O - M) |
| 65 | * 8 |
| 66 | * |
| 67 | * So, we get E by: |
| 68 | * (O - M) * 8 |
| 69 | * E <= ------------- |
| 70 | * G * N |
| 71 | */ |
| 72 | static inline int get_ecc_strength(struct gpmi_nand_data *this) |
| 73 | { |
| 74 | struct bch_geometry *geo = &this->bch_geometry; |
| 75 | struct mtd_info *mtd = &this->mtd; |
| 76 | int ecc_strength; |
| 77 | |
| 78 | ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) |
| 79 | / (geo->gf_len * geo->ecc_chunk_count); |
| 80 | |
| 81 | /* We need the minor even number. */ |
| 82 | return round_down(ecc_strength, 2); |
| 83 | } |
| 84 | |
| 85 | int common_nfc_set_geometry(struct gpmi_nand_data *this) |
| 86 | { |
| 87 | struct bch_geometry *geo = &this->bch_geometry; |
| 88 | struct mtd_info *mtd = &this->mtd; |
| 89 | unsigned int metadata_size; |
| 90 | unsigned int status_size; |
| 91 | unsigned int block_mark_bit_offset; |
| 92 | |
| 93 | /* |
| 94 | * The size of the metadata can be changed, though we set it to 10 |
| 95 | * bytes now. But it can't be too large, because we have to save |
| 96 | * enough space for BCH. |
| 97 | */ |
| 98 | geo->metadata_size = 10; |
| 99 | |
| 100 | /* The default for the length of Galois Field. */ |
| 101 | geo->gf_len = 13; |
| 102 | |
| 103 | /* The default for chunk size. There is no oobsize greater then 512. */ |
| 104 | geo->ecc_chunk_size = 512; |
| 105 | while (geo->ecc_chunk_size < mtd->oobsize) |
| 106 | geo->ecc_chunk_size *= 2; /* keep C >= O */ |
| 107 | |
| 108 | geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; |
| 109 | |
| 110 | /* We use the same ECC strength for all chunks. */ |
| 111 | geo->ecc_strength = get_ecc_strength(this); |
| 112 | if (!geo->ecc_strength) { |
| 113 | pr_err("We get a wrong ECC strength.\n"); |
| 114 | return -EINVAL; |
| 115 | } |
| 116 | |
| 117 | geo->page_size = mtd->writesize + mtd->oobsize; |
| 118 | geo->payload_size = mtd->writesize; |
| 119 | |
| 120 | /* |
| 121 | * The auxiliary buffer contains the metadata and the ECC status. The |
| 122 | * metadata is padded to the nearest 32-bit boundary. The ECC status |
| 123 | * contains one byte for every ECC chunk, and is also padded to the |
| 124 | * nearest 32-bit boundary. |
| 125 | */ |
| 126 | metadata_size = ALIGN(geo->metadata_size, 4); |
| 127 | status_size = ALIGN(geo->ecc_chunk_count, 4); |
| 128 | |
| 129 | geo->auxiliary_size = metadata_size + status_size; |
| 130 | geo->auxiliary_status_offset = metadata_size; |
| 131 | |
| 132 | if (!this->swap_block_mark) |
| 133 | return 0; |
| 134 | |
| 135 | /* |
| 136 | * We need to compute the byte and bit offsets of |
| 137 | * the physical block mark within the ECC-based view of the page. |
| 138 | * |
| 139 | * NAND chip with 2K page shows below: |
| 140 | * (Block Mark) |
| 141 | * | | |
| 142 | * | D | |
| 143 | * |<---->| |
| 144 | * V V |
| 145 | * +---+----------+-+----------+-+----------+-+----------+-+ |
| 146 | * | M | data |E| data |E| data |E| data |E| |
| 147 | * +---+----------+-+----------+-+----------+-+----------+-+ |
| 148 | * |
| 149 | * The position of block mark moves forward in the ECC-based view |
| 150 | * of page, and the delta is: |
| 151 | * |
| 152 | * E * G * (N - 1) |
| 153 | * D = (---------------- + M) |
| 154 | * 8 |
| 155 | * |
| 156 | * With the formula to compute the ECC strength, and the condition |
| 157 | * : C >= O (C is the ecc chunk size) |
| 158 | * |
| 159 | * It's easy to deduce to the following result: |
| 160 | * |
| 161 | * E * G (O - M) C - M C - M |
| 162 | * ----------- <= ------- <= -------- < --------- |
| 163 | * 8 N N (N - 1) |
| 164 | * |
| 165 | * So, we get: |
| 166 | * |
| 167 | * E * G * (N - 1) |
| 168 | * D = (---------------- + M) < C |
| 169 | * 8 |
| 170 | * |
| 171 | * The above inequality means the position of block mark |
| 172 | * within the ECC-based view of the page is still in the data chunk, |
| 173 | * and it's NOT in the ECC bits of the chunk. |
| 174 | * |
| 175 | * Use the following to compute the bit position of the |
| 176 | * physical block mark within the ECC-based view of the page: |
| 177 | * (page_size - D) * 8 |
| 178 | * |
| 179 | * --Huang Shijie |
| 180 | */ |
| 181 | block_mark_bit_offset = mtd->writesize * 8 - |
| 182 | (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) |
| 183 | + geo->metadata_size * 8); |
| 184 | |
| 185 | geo->block_mark_byte_offset = block_mark_bit_offset / 8; |
| 186 | geo->block_mark_bit_offset = block_mark_bit_offset % 8; |
| 187 | return 0; |
| 188 | } |
| 189 | |
| 190 | struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) |
| 191 | { |
| 192 | int chipnr = this->current_chip; |
| 193 | |
| 194 | return this->dma_chans[chipnr]; |
| 195 | } |
| 196 | |
| 197 | /* Can we use the upper's buffer directly for DMA? */ |
| 198 | void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) |
| 199 | { |
| 200 | struct scatterlist *sgl = &this->data_sgl; |
| 201 | int ret; |
| 202 | |
| 203 | this->direct_dma_map_ok = true; |
| 204 | |
| 205 | /* first try to map the upper buffer directly */ |
| 206 | sg_init_one(sgl, this->upper_buf, this->upper_len); |
| 207 | ret = dma_map_sg(this->dev, sgl, 1, dr); |
| 208 | if (ret == 0) { |
| 209 | /* We have to use our own DMA buffer. */ |
| 210 | sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); |
| 211 | |
| 212 | if (dr == DMA_TO_DEVICE) |
| 213 | memcpy(this->data_buffer_dma, this->upper_buf, |
| 214 | this->upper_len); |
| 215 | |
| 216 | ret = dma_map_sg(this->dev, sgl, 1, dr); |
| 217 | if (ret == 0) |
| 218 | pr_err("map failed.\n"); |
| 219 | |
| 220 | this->direct_dma_map_ok = false; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | /* This will be called after the DMA operation is finished. */ |
| 225 | static void dma_irq_callback(void *param) |
| 226 | { |
| 227 | struct gpmi_nand_data *this = param; |
| 228 | struct completion *dma_c = &this->dma_done; |
| 229 | |
| 230 | complete(dma_c); |
| 231 | |
| 232 | switch (this->dma_type) { |
| 233 | case DMA_FOR_COMMAND: |
| 234 | dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); |
| 235 | break; |
| 236 | |
| 237 | case DMA_FOR_READ_DATA: |
| 238 | dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); |
| 239 | if (this->direct_dma_map_ok == false) |
| 240 | memcpy(this->upper_buf, this->data_buffer_dma, |
| 241 | this->upper_len); |
| 242 | break; |
| 243 | |
| 244 | case DMA_FOR_WRITE_DATA: |
| 245 | dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); |
| 246 | break; |
| 247 | |
| 248 | case DMA_FOR_READ_ECC_PAGE: |
| 249 | case DMA_FOR_WRITE_ECC_PAGE: |
| 250 | /* We have to wait the BCH interrupt to finish. */ |
| 251 | break; |
| 252 | |
| 253 | default: |
| 254 | pr_err("in wrong DMA operation.\n"); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | int start_dma_without_bch_irq(struct gpmi_nand_data *this, |
| 259 | struct dma_async_tx_descriptor *desc) |
| 260 | { |
| 261 | struct completion *dma_c = &this->dma_done; |
| 262 | int err; |
| 263 | |
| 264 | init_completion(dma_c); |
| 265 | |
| 266 | desc->callback = dma_irq_callback; |
| 267 | desc->callback_param = this; |
| 268 | dmaengine_submit(desc); |
Shawn Guo | d04525e | 2012-04-11 13:29:31 +0800 | [diff] [blame] | 269 | dma_async_issue_pending(get_dma_chan(this)); |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 270 | |
| 271 | /* Wait for the interrupt from the DMA block. */ |
| 272 | err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); |
| 273 | if (!err) { |
| 274 | pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); |
| 275 | gpmi_dump_info(this); |
| 276 | return -ETIMEDOUT; |
| 277 | } |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * This function is used in BCH reading or BCH writing pages. |
| 283 | * It will wait for the BCH interrupt as long as ONE second. |
| 284 | * Actually, we must wait for two interrupts : |
| 285 | * [1] firstly the DMA interrupt and |
| 286 | * [2] secondly the BCH interrupt. |
| 287 | */ |
| 288 | int start_dma_with_bch_irq(struct gpmi_nand_data *this, |
| 289 | struct dma_async_tx_descriptor *desc) |
| 290 | { |
| 291 | struct completion *bch_c = &this->bch_done; |
| 292 | int err; |
| 293 | |
| 294 | /* Prepare to receive an interrupt from the BCH block. */ |
| 295 | init_completion(bch_c); |
| 296 | |
| 297 | /* start the DMA */ |
| 298 | start_dma_without_bch_irq(this, desc); |
| 299 | |
| 300 | /* Wait for the interrupt from the BCH block. */ |
| 301 | err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); |
| 302 | if (!err) { |
| 303 | pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); |
| 304 | gpmi_dump_info(this); |
| 305 | return -ETIMEDOUT; |
| 306 | } |
| 307 | return 0; |
| 308 | } |
| 309 | |
| 310 | static int __devinit |
| 311 | acquire_register_block(struct gpmi_nand_data *this, const char *res_name) |
| 312 | { |
| 313 | struct platform_device *pdev = this->pdev; |
| 314 | struct resources *res = &this->resources; |
| 315 | struct resource *r; |
| 316 | void *p; |
| 317 | |
| 318 | r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); |
| 319 | if (!r) { |
| 320 | pr_err("Can't get resource for %s\n", res_name); |
| 321 | return -ENXIO; |
| 322 | } |
| 323 | |
| 324 | p = ioremap(r->start, resource_size(r)); |
| 325 | if (!p) { |
| 326 | pr_err("Can't remap %s\n", res_name); |
| 327 | return -ENOMEM; |
| 328 | } |
| 329 | |
| 330 | if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) |
| 331 | res->gpmi_regs = p; |
| 332 | else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) |
| 333 | res->bch_regs = p; |
| 334 | else |
| 335 | pr_err("unknown resource name : %s\n", res_name); |
| 336 | |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | static void release_register_block(struct gpmi_nand_data *this) |
| 341 | { |
| 342 | struct resources *res = &this->resources; |
| 343 | if (res->gpmi_regs) |
| 344 | iounmap(res->gpmi_regs); |
| 345 | if (res->bch_regs) |
| 346 | iounmap(res->bch_regs); |
| 347 | res->gpmi_regs = NULL; |
| 348 | res->bch_regs = NULL; |
| 349 | } |
| 350 | |
| 351 | static int __devinit |
| 352 | acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) |
| 353 | { |
| 354 | struct platform_device *pdev = this->pdev; |
| 355 | struct resources *res = &this->resources; |
| 356 | const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; |
| 357 | struct resource *r; |
| 358 | int err; |
| 359 | |
| 360 | r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); |
| 361 | if (!r) { |
| 362 | pr_err("Can't get resource for %s\n", res_name); |
| 363 | return -ENXIO; |
| 364 | } |
| 365 | |
| 366 | err = request_irq(r->start, irq_h, 0, res_name, this); |
| 367 | if (err) { |
| 368 | pr_err("Can't own %s\n", res_name); |
| 369 | return err; |
| 370 | } |
| 371 | |
| 372 | res->bch_low_interrupt = r->start; |
| 373 | res->bch_high_interrupt = r->end; |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | static void release_bch_irq(struct gpmi_nand_data *this) |
| 378 | { |
| 379 | struct resources *res = &this->resources; |
| 380 | int i = res->bch_low_interrupt; |
| 381 | |
| 382 | for (; i <= res->bch_high_interrupt; i++) |
| 383 | free_irq(i, this); |
| 384 | } |
| 385 | |
| 386 | static bool gpmi_dma_filter(struct dma_chan *chan, void *param) |
| 387 | { |
| 388 | struct gpmi_nand_data *this = param; |
| 389 | struct resource *r = this->private; |
| 390 | |
| 391 | if (!mxs_dma_is_apbh(chan)) |
| 392 | return false; |
| 393 | /* |
| 394 | * only catch the GPMI dma channels : |
| 395 | * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 |
| 396 | * (These four channels share the same IRQ!) |
| 397 | * |
| 398 | * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 |
| 399 | * (These eight channels share the same IRQ!) |
| 400 | */ |
| 401 | if (r->start <= chan->chan_id && chan->chan_id <= r->end) { |
| 402 | chan->private = &this->dma_data; |
| 403 | return true; |
| 404 | } |
| 405 | return false; |
| 406 | } |
| 407 | |
| 408 | static void release_dma_channels(struct gpmi_nand_data *this) |
| 409 | { |
| 410 | unsigned int i; |
| 411 | for (i = 0; i < DMA_CHANS; i++) |
| 412 | if (this->dma_chans[i]) { |
| 413 | dma_release_channel(this->dma_chans[i]); |
| 414 | this->dma_chans[i] = NULL; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) |
| 419 | { |
| 420 | struct platform_device *pdev = this->pdev; |
| 421 | struct gpmi_nand_platform_data *pdata = this->pdata; |
| 422 | struct resources *res = &this->resources; |
| 423 | struct resource *r, *r_dma; |
| 424 | unsigned int i; |
| 425 | |
| 426 | r = platform_get_resource_byname(pdev, IORESOURCE_DMA, |
| 427 | GPMI_NAND_DMA_CHANNELS_RES_NAME); |
| 428 | r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, |
| 429 | GPMI_NAND_DMA_INTERRUPT_RES_NAME); |
| 430 | if (!r || !r_dma) { |
| 431 | pr_err("Can't get resource for DMA\n"); |
| 432 | return -ENXIO; |
| 433 | } |
| 434 | |
| 435 | /* used in gpmi_dma_filter() */ |
| 436 | this->private = r; |
| 437 | |
| 438 | for (i = r->start; i <= r->end; i++) { |
| 439 | struct dma_chan *dma_chan; |
| 440 | dma_cap_mask_t mask; |
| 441 | |
| 442 | if (i - r->start >= pdata->max_chip_count) |
| 443 | break; |
| 444 | |
| 445 | dma_cap_zero(mask); |
| 446 | dma_cap_set(DMA_SLAVE, mask); |
| 447 | |
| 448 | /* get the DMA interrupt */ |
| 449 | if (r_dma->start == r_dma->end) { |
| 450 | /* only register the first. */ |
| 451 | if (i == r->start) |
| 452 | this->dma_data.chan_irq = r_dma->start; |
| 453 | else |
| 454 | this->dma_data.chan_irq = NO_IRQ; |
| 455 | } else |
| 456 | this->dma_data.chan_irq = r_dma->start + (i - r->start); |
| 457 | |
| 458 | dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); |
| 459 | if (!dma_chan) |
| 460 | goto acquire_err; |
| 461 | |
| 462 | /* fill the first empty item */ |
| 463 | this->dma_chans[i - r->start] = dma_chan; |
| 464 | } |
| 465 | |
| 466 | res->dma_low_channel = r->start; |
| 467 | res->dma_high_channel = i; |
| 468 | return 0; |
| 469 | |
| 470 | acquire_err: |
| 471 | pr_err("Can't acquire DMA channel %u\n", i); |
| 472 | release_dma_channels(this); |
| 473 | return -EINVAL; |
| 474 | } |
| 475 | |
| 476 | static int __devinit acquire_resources(struct gpmi_nand_data *this) |
| 477 | { |
| 478 | struct resources *res = &this->resources; |
| 479 | int ret; |
| 480 | |
| 481 | ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); |
| 482 | if (ret) |
| 483 | goto exit_regs; |
| 484 | |
| 485 | ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); |
| 486 | if (ret) |
| 487 | goto exit_regs; |
| 488 | |
| 489 | ret = acquire_bch_irq(this, bch_irq); |
| 490 | if (ret) |
| 491 | goto exit_regs; |
| 492 | |
| 493 | ret = acquire_dma_channels(this); |
| 494 | if (ret) |
| 495 | goto exit_dma_channels; |
| 496 | |
| 497 | res->clock = clk_get(&this->pdev->dev, NULL); |
| 498 | if (IS_ERR(res->clock)) { |
| 499 | pr_err("can not get the clock\n"); |
| 500 | ret = -ENOENT; |
| 501 | goto exit_clock; |
| 502 | } |
| 503 | return 0; |
| 504 | |
| 505 | exit_clock: |
| 506 | release_dma_channels(this); |
| 507 | exit_dma_channels: |
| 508 | release_bch_irq(this); |
| 509 | exit_regs: |
| 510 | release_register_block(this); |
| 511 | return ret; |
| 512 | } |
| 513 | |
| 514 | static void release_resources(struct gpmi_nand_data *this) |
| 515 | { |
| 516 | struct resources *r = &this->resources; |
| 517 | |
| 518 | clk_put(r->clock); |
| 519 | release_register_block(this); |
| 520 | release_bch_irq(this); |
| 521 | release_dma_channels(this); |
| 522 | } |
| 523 | |
| 524 | static int __devinit init_hardware(struct gpmi_nand_data *this) |
| 525 | { |
| 526 | int ret; |
| 527 | |
| 528 | /* |
| 529 | * This structure contains the "safe" GPMI timing that should succeed |
| 530 | * with any NAND Flash device |
| 531 | * (although, with less-than-optimal performance). |
| 532 | */ |
| 533 | struct nand_timing safe_timing = { |
| 534 | .data_setup_in_ns = 80, |
| 535 | .data_hold_in_ns = 60, |
| 536 | .address_setup_in_ns = 25, |
| 537 | .gpmi_sample_delay_in_ns = 6, |
| 538 | .tREA_in_ns = -1, |
| 539 | .tRLOH_in_ns = -1, |
| 540 | .tRHOH_in_ns = -1, |
| 541 | }; |
| 542 | |
| 543 | /* Initialize the hardwares. */ |
| 544 | ret = gpmi_init(this); |
| 545 | if (ret) |
| 546 | return ret; |
| 547 | |
| 548 | this->timing = safe_timing; |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | static int read_page_prepare(struct gpmi_nand_data *this, |
| 553 | void *destination, unsigned length, |
| 554 | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| 555 | void **use_virt, dma_addr_t *use_phys) |
| 556 | { |
| 557 | struct device *dev = this->dev; |
| 558 | |
| 559 | if (virt_addr_valid(destination)) { |
| 560 | dma_addr_t dest_phys; |
| 561 | |
| 562 | dest_phys = dma_map_single(dev, destination, |
| 563 | length, DMA_FROM_DEVICE); |
| 564 | if (dma_mapping_error(dev, dest_phys)) { |
| 565 | if (alt_size < length) { |
| 566 | pr_err("Alternate buffer is too small\n"); |
| 567 | return -ENOMEM; |
| 568 | } |
| 569 | goto map_failed; |
| 570 | } |
| 571 | *use_virt = destination; |
| 572 | *use_phys = dest_phys; |
| 573 | this->direct_dma_map_ok = true; |
| 574 | return 0; |
| 575 | } |
| 576 | |
| 577 | map_failed: |
| 578 | *use_virt = alt_virt; |
| 579 | *use_phys = alt_phys; |
| 580 | this->direct_dma_map_ok = false; |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | static inline void read_page_end(struct gpmi_nand_data *this, |
| 585 | void *destination, unsigned length, |
| 586 | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| 587 | void *used_virt, dma_addr_t used_phys) |
| 588 | { |
| 589 | if (this->direct_dma_map_ok) |
| 590 | dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); |
| 591 | } |
| 592 | |
| 593 | static inline void read_page_swap_end(struct gpmi_nand_data *this, |
| 594 | void *destination, unsigned length, |
| 595 | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| 596 | void *used_virt, dma_addr_t used_phys) |
| 597 | { |
| 598 | if (!this->direct_dma_map_ok) |
| 599 | memcpy(destination, alt_virt, length); |
| 600 | } |
| 601 | |
| 602 | static int send_page_prepare(struct gpmi_nand_data *this, |
| 603 | const void *source, unsigned length, |
| 604 | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| 605 | const void **use_virt, dma_addr_t *use_phys) |
| 606 | { |
| 607 | struct device *dev = this->dev; |
| 608 | |
| 609 | if (virt_addr_valid(source)) { |
| 610 | dma_addr_t source_phys; |
| 611 | |
| 612 | source_phys = dma_map_single(dev, (void *)source, length, |
| 613 | DMA_TO_DEVICE); |
| 614 | if (dma_mapping_error(dev, source_phys)) { |
| 615 | if (alt_size < length) { |
| 616 | pr_err("Alternate buffer is too small\n"); |
| 617 | return -ENOMEM; |
| 618 | } |
| 619 | goto map_failed; |
| 620 | } |
| 621 | *use_virt = source; |
| 622 | *use_phys = source_phys; |
| 623 | return 0; |
| 624 | } |
| 625 | map_failed: |
| 626 | /* |
| 627 | * Copy the content of the source buffer into the alternate |
| 628 | * buffer and set up the return values accordingly. |
| 629 | */ |
| 630 | memcpy(alt_virt, source, length); |
| 631 | |
| 632 | *use_virt = alt_virt; |
| 633 | *use_phys = alt_phys; |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | static void send_page_end(struct gpmi_nand_data *this, |
| 638 | const void *source, unsigned length, |
| 639 | void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, |
| 640 | const void *used_virt, dma_addr_t used_phys) |
| 641 | { |
| 642 | struct device *dev = this->dev; |
| 643 | if (used_virt == source) |
| 644 | dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); |
| 645 | } |
| 646 | |
| 647 | static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) |
| 648 | { |
| 649 | struct device *dev = this->dev; |
| 650 | |
| 651 | if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) |
| 652 | dma_free_coherent(dev, this->page_buffer_size, |
| 653 | this->page_buffer_virt, |
| 654 | this->page_buffer_phys); |
| 655 | kfree(this->cmd_buffer); |
| 656 | kfree(this->data_buffer_dma); |
| 657 | |
| 658 | this->cmd_buffer = NULL; |
| 659 | this->data_buffer_dma = NULL; |
| 660 | this->page_buffer_virt = NULL; |
| 661 | this->page_buffer_size = 0; |
| 662 | } |
| 663 | |
| 664 | /* Allocate the DMA buffers */ |
| 665 | static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) |
| 666 | { |
| 667 | struct bch_geometry *geo = &this->bch_geometry; |
| 668 | struct device *dev = this->dev; |
| 669 | |
| 670 | /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ |
| 671 | this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); |
| 672 | if (this->cmd_buffer == NULL) |
| 673 | goto error_alloc; |
| 674 | |
| 675 | /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ |
| 676 | this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); |
| 677 | if (this->data_buffer_dma == NULL) |
| 678 | goto error_alloc; |
| 679 | |
| 680 | /* |
| 681 | * [3] Allocate the page buffer. |
| 682 | * |
| 683 | * Both the payload buffer and the auxiliary buffer must appear on |
| 684 | * 32-bit boundaries. We presume the size of the payload buffer is a |
| 685 | * power of two and is much larger than four, which guarantees the |
| 686 | * auxiliary buffer will appear on a 32-bit boundary. |
| 687 | */ |
| 688 | this->page_buffer_size = geo->payload_size + geo->auxiliary_size; |
| 689 | this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, |
| 690 | &this->page_buffer_phys, GFP_DMA); |
| 691 | if (!this->page_buffer_virt) |
| 692 | goto error_alloc; |
| 693 | |
| 694 | |
| 695 | /* Slice up the page buffer. */ |
| 696 | this->payload_virt = this->page_buffer_virt; |
| 697 | this->payload_phys = this->page_buffer_phys; |
| 698 | this->auxiliary_virt = this->payload_virt + geo->payload_size; |
| 699 | this->auxiliary_phys = this->payload_phys + geo->payload_size; |
| 700 | return 0; |
| 701 | |
| 702 | error_alloc: |
| 703 | gpmi_free_dma_buffer(this); |
| 704 | pr_err("allocate DMA buffer ret!!\n"); |
| 705 | return -ENOMEM; |
| 706 | } |
| 707 | |
| 708 | static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) |
| 709 | { |
| 710 | struct nand_chip *chip = mtd->priv; |
| 711 | struct gpmi_nand_data *this = chip->priv; |
| 712 | int ret; |
| 713 | |
| 714 | /* |
| 715 | * Every operation begins with a command byte and a series of zero or |
| 716 | * more address bytes. These are distinguished by either the Address |
| 717 | * Latch Enable (ALE) or Command Latch Enable (CLE) signals being |
| 718 | * asserted. When MTD is ready to execute the command, it will deassert |
| 719 | * both latch enables. |
| 720 | * |
| 721 | * Rather than run a separate DMA operation for every single byte, we |
| 722 | * queue them up and run a single DMA operation for the entire series |
| 723 | * of command and data bytes. NAND_CMD_NONE means the END of the queue. |
| 724 | */ |
| 725 | if ((ctrl & (NAND_ALE | NAND_CLE))) { |
| 726 | if (data != NAND_CMD_NONE) |
| 727 | this->cmd_buffer[this->command_length++] = data; |
| 728 | return; |
| 729 | } |
| 730 | |
| 731 | if (!this->command_length) |
| 732 | return; |
| 733 | |
| 734 | ret = gpmi_send_command(this); |
| 735 | if (ret) |
| 736 | pr_err("Chip: %u, Error %d\n", this->current_chip, ret); |
| 737 | |
| 738 | this->command_length = 0; |
| 739 | } |
| 740 | |
| 741 | static int gpmi_dev_ready(struct mtd_info *mtd) |
| 742 | { |
| 743 | struct nand_chip *chip = mtd->priv; |
| 744 | struct gpmi_nand_data *this = chip->priv; |
| 745 | |
| 746 | return gpmi_is_ready(this, this->current_chip); |
| 747 | } |
| 748 | |
| 749 | static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) |
| 750 | { |
| 751 | struct nand_chip *chip = mtd->priv; |
| 752 | struct gpmi_nand_data *this = chip->priv; |
| 753 | |
| 754 | if ((this->current_chip < 0) && (chipnr >= 0)) |
| 755 | gpmi_begin(this); |
| 756 | else if ((this->current_chip >= 0) && (chipnr < 0)) |
| 757 | gpmi_end(this); |
| 758 | |
| 759 | this->current_chip = chipnr; |
| 760 | } |
| 761 | |
| 762 | static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| 763 | { |
| 764 | struct nand_chip *chip = mtd->priv; |
| 765 | struct gpmi_nand_data *this = chip->priv; |
| 766 | |
| 767 | pr_debug("len is %d\n", len); |
| 768 | this->upper_buf = buf; |
| 769 | this->upper_len = len; |
| 770 | |
| 771 | gpmi_read_data(this); |
| 772 | } |
| 773 | |
| 774 | static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| 775 | { |
| 776 | struct nand_chip *chip = mtd->priv; |
| 777 | struct gpmi_nand_data *this = chip->priv; |
| 778 | |
| 779 | pr_debug("len is %d\n", len); |
| 780 | this->upper_buf = (uint8_t *)buf; |
| 781 | this->upper_len = len; |
| 782 | |
| 783 | gpmi_send_data(this); |
| 784 | } |
| 785 | |
| 786 | static uint8_t gpmi_read_byte(struct mtd_info *mtd) |
| 787 | { |
| 788 | struct nand_chip *chip = mtd->priv; |
| 789 | struct gpmi_nand_data *this = chip->priv; |
| 790 | uint8_t *buf = this->data_buffer_dma; |
| 791 | |
| 792 | gpmi_read_buf(mtd, buf, 1); |
| 793 | return buf[0]; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Handles block mark swapping. |
| 798 | * It can be called in swapping the block mark, or swapping it back, |
| 799 | * because the the operations are the same. |
| 800 | */ |
| 801 | static void block_mark_swapping(struct gpmi_nand_data *this, |
| 802 | void *payload, void *auxiliary) |
| 803 | { |
| 804 | struct bch_geometry *nfc_geo = &this->bch_geometry; |
| 805 | unsigned char *p; |
| 806 | unsigned char *a; |
| 807 | unsigned int bit; |
| 808 | unsigned char mask; |
| 809 | unsigned char from_data; |
| 810 | unsigned char from_oob; |
| 811 | |
| 812 | if (!this->swap_block_mark) |
| 813 | return; |
| 814 | |
| 815 | /* |
| 816 | * If control arrives here, we're swapping. Make some convenience |
| 817 | * variables. |
| 818 | */ |
| 819 | bit = nfc_geo->block_mark_bit_offset; |
| 820 | p = payload + nfc_geo->block_mark_byte_offset; |
| 821 | a = auxiliary; |
| 822 | |
| 823 | /* |
| 824 | * Get the byte from the data area that overlays the block mark. Since |
| 825 | * the ECC engine applies its own view to the bits in the page, the |
| 826 | * physical block mark won't (in general) appear on a byte boundary in |
| 827 | * the data. |
| 828 | */ |
| 829 | from_data = (p[0] >> bit) | (p[1] << (8 - bit)); |
| 830 | |
| 831 | /* Get the byte from the OOB. */ |
| 832 | from_oob = a[0]; |
| 833 | |
| 834 | /* Swap them. */ |
| 835 | a[0] = from_data; |
| 836 | |
| 837 | mask = (0x1 << bit) - 1; |
| 838 | p[0] = (p[0] & mask) | (from_oob << bit); |
| 839 | |
| 840 | mask = ~0 << bit; |
| 841 | p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); |
| 842 | } |
| 843 | |
| 844 | static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 845 | uint8_t *buf, int oob_required, int page) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 846 | { |
| 847 | struct gpmi_nand_data *this = chip->priv; |
| 848 | struct bch_geometry *nfc_geo = &this->bch_geometry; |
| 849 | void *payload_virt; |
| 850 | dma_addr_t payload_phys; |
| 851 | void *auxiliary_virt; |
| 852 | dma_addr_t auxiliary_phys; |
| 853 | unsigned int i; |
| 854 | unsigned char *status; |
| 855 | unsigned int failed; |
| 856 | unsigned int corrected; |
| 857 | int ret; |
| 858 | |
| 859 | pr_debug("page number is : %d\n", page); |
| 860 | ret = read_page_prepare(this, buf, mtd->writesize, |
| 861 | this->payload_virt, this->payload_phys, |
| 862 | nfc_geo->payload_size, |
| 863 | &payload_virt, &payload_phys); |
| 864 | if (ret) { |
| 865 | pr_err("Inadequate DMA buffer\n"); |
| 866 | ret = -ENOMEM; |
| 867 | return ret; |
| 868 | } |
| 869 | auxiliary_virt = this->auxiliary_virt; |
| 870 | auxiliary_phys = this->auxiliary_phys; |
| 871 | |
| 872 | /* go! */ |
| 873 | ret = gpmi_read_page(this, payload_phys, auxiliary_phys); |
| 874 | read_page_end(this, buf, mtd->writesize, |
| 875 | this->payload_virt, this->payload_phys, |
| 876 | nfc_geo->payload_size, |
| 877 | payload_virt, payload_phys); |
| 878 | if (ret) { |
| 879 | pr_err("Error in ECC-based read: %d\n", ret); |
| 880 | goto exit_nfc; |
| 881 | } |
| 882 | |
| 883 | /* handle the block mark swapping */ |
| 884 | block_mark_swapping(this, payload_virt, auxiliary_virt); |
| 885 | |
| 886 | /* Loop over status bytes, accumulating ECC status. */ |
| 887 | failed = 0; |
| 888 | corrected = 0; |
| 889 | status = auxiliary_virt + nfc_geo->auxiliary_status_offset; |
| 890 | |
| 891 | for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { |
| 892 | if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) |
| 893 | continue; |
| 894 | |
| 895 | if (*status == STATUS_UNCORRECTABLE) { |
| 896 | failed++; |
| 897 | continue; |
| 898 | } |
| 899 | corrected += *status; |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * Propagate ECC status to the owning MTD only when failed or |
| 904 | * corrected times nearly reaches our ECC correction threshold. |
| 905 | */ |
| 906 | if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { |
| 907 | mtd->ecc_stats.failed += failed; |
| 908 | mtd->ecc_stats.corrected += corrected; |
| 909 | } |
| 910 | |
Brian Norris | 7725cc8 | 2012-05-02 10:15:02 -0700 | [diff] [blame^] | 911 | if (oob_required) { |
| 912 | /* |
| 913 | * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() |
| 914 | * for details about our policy for delivering the OOB. |
| 915 | * |
| 916 | * We fill the caller's buffer with set bits, and then copy the |
| 917 | * block mark to th caller's buffer. Note that, if block mark |
| 918 | * swapping was necessary, it has already been done, so we can |
| 919 | * rely on the first byte of the auxiliary buffer to contain |
| 920 | * the block mark. |
| 921 | */ |
| 922 | memset(chip->oob_poi, ~0, mtd->oobsize); |
| 923 | chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 924 | |
Brian Norris | 7725cc8 | 2012-05-02 10:15:02 -0700 | [diff] [blame^] | 925 | read_page_swap_end(this, buf, mtd->writesize, |
| 926 | this->payload_virt, this->payload_phys, |
| 927 | nfc_geo->payload_size, |
| 928 | payload_virt, payload_phys); |
| 929 | } |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 930 | exit_nfc: |
| 931 | return ret; |
| 932 | } |
| 933 | |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 934 | static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 935 | const uint8_t *buf, int oob_required) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 936 | { |
| 937 | struct gpmi_nand_data *this = chip->priv; |
| 938 | struct bch_geometry *nfc_geo = &this->bch_geometry; |
| 939 | const void *payload_virt; |
| 940 | dma_addr_t payload_phys; |
| 941 | const void *auxiliary_virt; |
| 942 | dma_addr_t auxiliary_phys; |
| 943 | int ret; |
| 944 | |
| 945 | pr_debug("ecc write page.\n"); |
| 946 | if (this->swap_block_mark) { |
| 947 | /* |
| 948 | * If control arrives here, we're doing block mark swapping. |
| 949 | * Since we can't modify the caller's buffers, we must copy them |
| 950 | * into our own. |
| 951 | */ |
| 952 | memcpy(this->payload_virt, buf, mtd->writesize); |
| 953 | payload_virt = this->payload_virt; |
| 954 | payload_phys = this->payload_phys; |
| 955 | |
| 956 | memcpy(this->auxiliary_virt, chip->oob_poi, |
| 957 | nfc_geo->auxiliary_size); |
| 958 | auxiliary_virt = this->auxiliary_virt; |
| 959 | auxiliary_phys = this->auxiliary_phys; |
| 960 | |
| 961 | /* Handle block mark swapping. */ |
| 962 | block_mark_swapping(this, |
| 963 | (void *) payload_virt, (void *) auxiliary_virt); |
| 964 | } else { |
| 965 | /* |
| 966 | * If control arrives here, we're not doing block mark swapping, |
| 967 | * so we can to try and use the caller's buffers. |
| 968 | */ |
| 969 | ret = send_page_prepare(this, |
| 970 | buf, mtd->writesize, |
| 971 | this->payload_virt, this->payload_phys, |
| 972 | nfc_geo->payload_size, |
| 973 | &payload_virt, &payload_phys); |
| 974 | if (ret) { |
| 975 | pr_err("Inadequate payload DMA buffer\n"); |
| 976 | return; |
| 977 | } |
| 978 | |
| 979 | ret = send_page_prepare(this, |
| 980 | chip->oob_poi, mtd->oobsize, |
| 981 | this->auxiliary_virt, this->auxiliary_phys, |
| 982 | nfc_geo->auxiliary_size, |
| 983 | &auxiliary_virt, &auxiliary_phys); |
| 984 | if (ret) { |
| 985 | pr_err("Inadequate auxiliary DMA buffer\n"); |
| 986 | goto exit_auxiliary; |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | /* Ask the NFC. */ |
| 991 | ret = gpmi_send_page(this, payload_phys, auxiliary_phys); |
| 992 | if (ret) |
| 993 | pr_err("Error in ECC-based write: %d\n", ret); |
| 994 | |
| 995 | if (!this->swap_block_mark) { |
| 996 | send_page_end(this, chip->oob_poi, mtd->oobsize, |
| 997 | this->auxiliary_virt, this->auxiliary_phys, |
| 998 | nfc_geo->auxiliary_size, |
| 999 | auxiliary_virt, auxiliary_phys); |
| 1000 | exit_auxiliary: |
| 1001 | send_page_end(this, buf, mtd->writesize, |
| 1002 | this->payload_virt, this->payload_phys, |
| 1003 | nfc_geo->payload_size, |
| 1004 | payload_virt, payload_phys); |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | /* |
| 1009 | * There are several places in this driver where we have to handle the OOB and |
| 1010 | * block marks. This is the function where things are the most complicated, so |
| 1011 | * this is where we try to explain it all. All the other places refer back to |
| 1012 | * here. |
| 1013 | * |
| 1014 | * These are the rules, in order of decreasing importance: |
| 1015 | * |
| 1016 | * 1) Nothing the caller does can be allowed to imperil the block mark. |
| 1017 | * |
| 1018 | * 2) In read operations, the first byte of the OOB we return must reflect the |
| 1019 | * true state of the block mark, no matter where that block mark appears in |
| 1020 | * the physical page. |
| 1021 | * |
| 1022 | * 3) ECC-based read operations return an OOB full of set bits (since we never |
| 1023 | * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads |
| 1024 | * return). |
| 1025 | * |
| 1026 | * 4) "Raw" read operations return a direct view of the physical bytes in the |
| 1027 | * page, using the conventional definition of which bytes are data and which |
| 1028 | * are OOB. This gives the caller a way to see the actual, physical bytes |
| 1029 | * in the page, without the distortions applied by our ECC engine. |
| 1030 | * |
| 1031 | * |
| 1032 | * What we do for this specific read operation depends on two questions: |
| 1033 | * |
| 1034 | * 1) Are we doing a "raw" read, or an ECC-based read? |
| 1035 | * |
| 1036 | * 2) Are we using block mark swapping or transcription? |
| 1037 | * |
| 1038 | * There are four cases, illustrated by the following Karnaugh map: |
| 1039 | * |
| 1040 | * | Raw | ECC-based | |
| 1041 | * -------------+-------------------------+-------------------------+ |
| 1042 | * | Read the conventional | | |
| 1043 | * | OOB at the end of the | | |
| 1044 | * Swapping | page and return it. It | | |
| 1045 | * | contains exactly what | | |
| 1046 | * | we want. | Read the block mark and | |
| 1047 | * -------------+-------------------------+ return it in a buffer | |
| 1048 | * | Read the conventional | full of set bits. | |
| 1049 | * | OOB at the end of the | | |
| 1050 | * | page and also the block | | |
| 1051 | * Transcribing | mark in the metadata. | | |
| 1052 | * | Copy the block mark | | |
| 1053 | * | into the first byte of | | |
| 1054 | * | the OOB. | | |
| 1055 | * -------------+-------------------------+-------------------------+ |
| 1056 | * |
| 1057 | * Note that we break rule #4 in the Transcribing/Raw case because we're not |
| 1058 | * giving an accurate view of the actual, physical bytes in the page (we're |
| 1059 | * overwriting the block mark). That's OK because it's more important to follow |
| 1060 | * rule #2. |
| 1061 | * |
| 1062 | * It turns out that knowing whether we want an "ECC-based" or "raw" read is not |
| 1063 | * easy. When reading a page, for example, the NAND Flash MTD code calls our |
| 1064 | * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an |
| 1065 | * ECC-based or raw view of the page is implicit in which function it calls |
| 1066 | * (there is a similar pair of ECC-based/raw functions for writing). |
| 1067 | * |
| 1068 | * Since MTD assumes the OOB is not covered by ECC, there is no pair of |
| 1069 | * ECC-based/raw functions for reading or or writing the OOB. The fact that the |
| 1070 | * caller wants an ECC-based or raw view of the page is not propagated down to |
| 1071 | * this driver. |
| 1072 | */ |
| 1073 | static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 1074 | int page, int sndcmd) |
| 1075 | { |
| 1076 | struct gpmi_nand_data *this = chip->priv; |
| 1077 | |
| 1078 | pr_debug("page number is %d\n", page); |
| 1079 | /* clear the OOB buffer */ |
| 1080 | memset(chip->oob_poi, ~0, mtd->oobsize); |
| 1081 | |
| 1082 | /* Read out the conventional OOB. */ |
| 1083 | chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| 1084 | chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| 1085 | |
| 1086 | /* |
| 1087 | * Now, we want to make sure the block mark is correct. In the |
| 1088 | * Swapping/Raw case, we already have it. Otherwise, we need to |
| 1089 | * explicitly read it. |
| 1090 | */ |
| 1091 | if (!this->swap_block_mark) { |
| 1092 | /* Read the block mark into the first byte of the OOB buffer. */ |
| 1093 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| 1094 | chip->oob_poi[0] = chip->read_byte(mtd); |
| 1095 | } |
| 1096 | |
| 1097 | /* |
| 1098 | * Return true, indicating that the next call to this function must send |
| 1099 | * a command. |
| 1100 | */ |
| 1101 | return true; |
| 1102 | } |
| 1103 | |
| 1104 | static int |
| 1105 | gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) |
| 1106 | { |
| 1107 | /* |
| 1108 | * The BCH will use all the (page + oob). |
| 1109 | * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. |
| 1110 | * But it can not stop some ioctls such MEMWRITEOOB which uses |
Brian Norris | 0612b9d | 2011-08-30 18:45:40 -0700 | [diff] [blame] | 1111 | * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1112 | * these ioctls too. |
| 1113 | */ |
| 1114 | return -EPERM; |
| 1115 | } |
| 1116 | |
| 1117 | static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| 1118 | { |
| 1119 | struct nand_chip *chip = mtd->priv; |
| 1120 | struct gpmi_nand_data *this = chip->priv; |
| 1121 | int block, ret = 0; |
| 1122 | uint8_t *block_mark; |
| 1123 | int column, page, status, chipnr; |
| 1124 | |
| 1125 | /* Get block number */ |
| 1126 | block = (int)(ofs >> chip->bbt_erase_shift); |
| 1127 | if (chip->bbt) |
| 1128 | chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); |
| 1129 | |
| 1130 | /* Do we have a flash based bad block table ? */ |
Wolfram Sang | 5289966 | 2012-01-31 13:10:43 +0100 | [diff] [blame] | 1131 | if (chip->bbt_options & NAND_BBT_USE_FLASH) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1132 | ret = nand_update_bbt(mtd, ofs); |
| 1133 | else { |
| 1134 | chipnr = (int)(ofs >> chip->chip_shift); |
| 1135 | chip->select_chip(mtd, chipnr); |
| 1136 | |
| 1137 | column = this->swap_block_mark ? mtd->writesize : 0; |
| 1138 | |
| 1139 | /* Write the block mark. */ |
| 1140 | block_mark = this->data_buffer_dma; |
| 1141 | block_mark[0] = 0; /* bad block marker */ |
| 1142 | |
| 1143 | /* Shift to get page */ |
| 1144 | page = (int)(ofs >> chip->page_shift); |
| 1145 | |
| 1146 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); |
| 1147 | chip->write_buf(mtd, block_mark, 1); |
| 1148 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 1149 | |
| 1150 | status = chip->waitfunc(mtd, chip); |
| 1151 | if (status & NAND_STATUS_FAIL) |
| 1152 | ret = -EIO; |
| 1153 | |
| 1154 | chip->select_chip(mtd, -1); |
| 1155 | } |
| 1156 | if (!ret) |
| 1157 | mtd->ecc_stats.badblocks++; |
| 1158 | |
| 1159 | return ret; |
| 1160 | } |
| 1161 | |
Wolfram Sang | a78da28 | 2012-03-21 19:29:17 +0100 | [diff] [blame] | 1162 | static int nand_boot_set_geometry(struct gpmi_nand_data *this) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1163 | { |
| 1164 | struct boot_rom_geometry *geometry = &this->rom_geometry; |
| 1165 | |
| 1166 | /* |
| 1167 | * Set the boot block stride size. |
| 1168 | * |
| 1169 | * In principle, we should be reading this from the OTP bits, since |
| 1170 | * that's where the ROM is going to get it. In fact, we don't have any |
| 1171 | * way to read the OTP bits, so we go with the default and hope for the |
| 1172 | * best. |
| 1173 | */ |
| 1174 | geometry->stride_size_in_pages = 64; |
| 1175 | |
| 1176 | /* |
| 1177 | * Set the search area stride exponent. |
| 1178 | * |
| 1179 | * In principle, we should be reading this from the OTP bits, since |
| 1180 | * that's where the ROM is going to get it. In fact, we don't have any |
| 1181 | * way to read the OTP bits, so we go with the default and hope for the |
| 1182 | * best. |
| 1183 | */ |
| 1184 | geometry->search_area_stride_exponent = 2; |
| 1185 | return 0; |
| 1186 | } |
| 1187 | |
| 1188 | static const char *fingerprint = "STMP"; |
Wolfram Sang | a78da28 | 2012-03-21 19:29:17 +0100 | [diff] [blame] | 1189 | static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1190 | { |
| 1191 | struct boot_rom_geometry *rom_geo = &this->rom_geometry; |
| 1192 | struct device *dev = this->dev; |
| 1193 | struct mtd_info *mtd = &this->mtd; |
| 1194 | struct nand_chip *chip = &this->nand; |
| 1195 | unsigned int search_area_size_in_strides; |
| 1196 | unsigned int stride; |
| 1197 | unsigned int page; |
| 1198 | loff_t byte; |
| 1199 | uint8_t *buffer = chip->buffers->databuf; |
| 1200 | int saved_chip_number; |
| 1201 | int found_an_ncb_fingerprint = false; |
| 1202 | |
| 1203 | /* Compute the number of strides in a search area. */ |
| 1204 | search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; |
| 1205 | |
| 1206 | saved_chip_number = this->current_chip; |
| 1207 | chip->select_chip(mtd, 0); |
| 1208 | |
| 1209 | /* |
| 1210 | * Loop through the first search area, looking for the NCB fingerprint. |
| 1211 | */ |
| 1212 | dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); |
| 1213 | |
| 1214 | for (stride = 0; stride < search_area_size_in_strides; stride++) { |
| 1215 | /* Compute the page and byte addresses. */ |
| 1216 | page = stride * rom_geo->stride_size_in_pages; |
| 1217 | byte = page * mtd->writesize; |
| 1218 | |
| 1219 | dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); |
| 1220 | |
| 1221 | /* |
| 1222 | * Read the NCB fingerprint. The fingerprint is four bytes long |
| 1223 | * and starts in the 12th byte of the page. |
| 1224 | */ |
| 1225 | chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); |
| 1226 | chip->read_buf(mtd, buffer, strlen(fingerprint)); |
| 1227 | |
| 1228 | /* Look for the fingerprint. */ |
| 1229 | if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { |
| 1230 | found_an_ncb_fingerprint = true; |
| 1231 | break; |
| 1232 | } |
| 1233 | |
| 1234 | } |
| 1235 | |
| 1236 | chip->select_chip(mtd, saved_chip_number); |
| 1237 | |
| 1238 | if (found_an_ncb_fingerprint) |
| 1239 | dev_dbg(dev, "\tFound a fingerprint\n"); |
| 1240 | else |
| 1241 | dev_dbg(dev, "\tNo fingerprint found\n"); |
| 1242 | return found_an_ncb_fingerprint; |
| 1243 | } |
| 1244 | |
| 1245 | /* Writes a transcription stamp. */ |
Wolfram Sang | a78da28 | 2012-03-21 19:29:17 +0100 | [diff] [blame] | 1246 | static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1247 | { |
| 1248 | struct device *dev = this->dev; |
| 1249 | struct boot_rom_geometry *rom_geo = &this->rom_geometry; |
| 1250 | struct mtd_info *mtd = &this->mtd; |
| 1251 | struct nand_chip *chip = &this->nand; |
| 1252 | unsigned int block_size_in_pages; |
| 1253 | unsigned int search_area_size_in_strides; |
| 1254 | unsigned int search_area_size_in_pages; |
| 1255 | unsigned int search_area_size_in_blocks; |
| 1256 | unsigned int block; |
| 1257 | unsigned int stride; |
| 1258 | unsigned int page; |
| 1259 | loff_t byte; |
| 1260 | uint8_t *buffer = chip->buffers->databuf; |
| 1261 | int saved_chip_number; |
| 1262 | int status; |
| 1263 | |
| 1264 | /* Compute the search area geometry. */ |
| 1265 | block_size_in_pages = mtd->erasesize / mtd->writesize; |
| 1266 | search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; |
| 1267 | search_area_size_in_pages = search_area_size_in_strides * |
| 1268 | rom_geo->stride_size_in_pages; |
| 1269 | search_area_size_in_blocks = |
| 1270 | (search_area_size_in_pages + (block_size_in_pages - 1)) / |
| 1271 | block_size_in_pages; |
| 1272 | |
| 1273 | dev_dbg(dev, "Search Area Geometry :\n"); |
| 1274 | dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); |
| 1275 | dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); |
| 1276 | dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); |
| 1277 | |
| 1278 | /* Select chip 0. */ |
| 1279 | saved_chip_number = this->current_chip; |
| 1280 | chip->select_chip(mtd, 0); |
| 1281 | |
| 1282 | /* Loop over blocks in the first search area, erasing them. */ |
| 1283 | dev_dbg(dev, "Erasing the search area...\n"); |
| 1284 | |
| 1285 | for (block = 0; block < search_area_size_in_blocks; block++) { |
| 1286 | /* Compute the page address. */ |
| 1287 | page = block * block_size_in_pages; |
| 1288 | |
| 1289 | /* Erase this block. */ |
| 1290 | dev_dbg(dev, "\tErasing block 0x%x\n", block); |
| 1291 | chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); |
| 1292 | chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); |
| 1293 | |
| 1294 | /* Wait for the erase to finish. */ |
| 1295 | status = chip->waitfunc(mtd, chip); |
| 1296 | if (status & NAND_STATUS_FAIL) |
| 1297 | dev_err(dev, "[%s] Erase failed.\n", __func__); |
| 1298 | } |
| 1299 | |
| 1300 | /* Write the NCB fingerprint into the page buffer. */ |
| 1301 | memset(buffer, ~0, mtd->writesize); |
| 1302 | memset(chip->oob_poi, ~0, mtd->oobsize); |
| 1303 | memcpy(buffer + 12, fingerprint, strlen(fingerprint)); |
| 1304 | |
| 1305 | /* Loop through the first search area, writing NCB fingerprints. */ |
| 1306 | dev_dbg(dev, "Writing NCB fingerprints...\n"); |
| 1307 | for (stride = 0; stride < search_area_size_in_strides; stride++) { |
| 1308 | /* Compute the page and byte addresses. */ |
| 1309 | page = stride * rom_geo->stride_size_in_pages; |
| 1310 | byte = page * mtd->writesize; |
| 1311 | |
| 1312 | /* Write the first page of the current stride. */ |
| 1313 | dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); |
| 1314 | chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
Brian Norris | 1fbb938 | 2012-05-02 10:14:55 -0700 | [diff] [blame] | 1315 | chip->ecc.write_page_raw(mtd, chip, buffer, 0); |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1316 | chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| 1317 | |
| 1318 | /* Wait for the write to finish. */ |
| 1319 | status = chip->waitfunc(mtd, chip); |
| 1320 | if (status & NAND_STATUS_FAIL) |
| 1321 | dev_err(dev, "[%s] Write failed.\n", __func__); |
| 1322 | } |
| 1323 | |
| 1324 | /* Deselect chip 0. */ |
| 1325 | chip->select_chip(mtd, saved_chip_number); |
| 1326 | return 0; |
| 1327 | } |
| 1328 | |
Wolfram Sang | a78da28 | 2012-03-21 19:29:17 +0100 | [diff] [blame] | 1329 | static int mx23_boot_init(struct gpmi_nand_data *this) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1330 | { |
| 1331 | struct device *dev = this->dev; |
| 1332 | struct nand_chip *chip = &this->nand; |
| 1333 | struct mtd_info *mtd = &this->mtd; |
| 1334 | unsigned int block_count; |
| 1335 | unsigned int block; |
| 1336 | int chipnr; |
| 1337 | int page; |
| 1338 | loff_t byte; |
| 1339 | uint8_t block_mark; |
| 1340 | int ret = 0; |
| 1341 | |
| 1342 | /* |
| 1343 | * If control arrives here, we can't use block mark swapping, which |
| 1344 | * means we're forced to use transcription. First, scan for the |
| 1345 | * transcription stamp. If we find it, then we don't have to do |
| 1346 | * anything -- the block marks are already transcribed. |
| 1347 | */ |
| 1348 | if (mx23_check_transcription_stamp(this)) |
| 1349 | return 0; |
| 1350 | |
| 1351 | /* |
| 1352 | * If control arrives here, we couldn't find a transcription stamp, so |
| 1353 | * so we presume the block marks are in the conventional location. |
| 1354 | */ |
| 1355 | dev_dbg(dev, "Transcribing bad block marks...\n"); |
| 1356 | |
| 1357 | /* Compute the number of blocks in the entire medium. */ |
| 1358 | block_count = chip->chipsize >> chip->phys_erase_shift; |
| 1359 | |
| 1360 | /* |
| 1361 | * Loop over all the blocks in the medium, transcribing block marks as |
| 1362 | * we go. |
| 1363 | */ |
| 1364 | for (block = 0; block < block_count; block++) { |
| 1365 | /* |
| 1366 | * Compute the chip, page and byte addresses for this block's |
| 1367 | * conventional mark. |
| 1368 | */ |
| 1369 | chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); |
| 1370 | page = block << (chip->phys_erase_shift - chip->page_shift); |
| 1371 | byte = block << chip->phys_erase_shift; |
| 1372 | |
| 1373 | /* Send the command to read the conventional block mark. */ |
| 1374 | chip->select_chip(mtd, chipnr); |
| 1375 | chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); |
| 1376 | block_mark = chip->read_byte(mtd); |
| 1377 | chip->select_chip(mtd, -1); |
| 1378 | |
| 1379 | /* |
| 1380 | * Check if the block is marked bad. If so, we need to mark it |
| 1381 | * again, but this time the result will be a mark in the |
| 1382 | * location where we transcribe block marks. |
| 1383 | */ |
| 1384 | if (block_mark != 0xff) { |
| 1385 | dev_dbg(dev, "Transcribing mark in block %u\n", block); |
| 1386 | ret = chip->block_markbad(mtd, byte); |
| 1387 | if (ret) |
| 1388 | dev_err(dev, "Failed to mark block bad with " |
| 1389 | "ret %d\n", ret); |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | /* Write the stamp that indicates we've transcribed the block marks. */ |
| 1394 | mx23_write_transcription_stamp(this); |
| 1395 | return 0; |
| 1396 | } |
| 1397 | |
Wolfram Sang | a78da28 | 2012-03-21 19:29:17 +0100 | [diff] [blame] | 1398 | static int nand_boot_init(struct gpmi_nand_data *this) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1399 | { |
| 1400 | nand_boot_set_geometry(this); |
| 1401 | |
| 1402 | /* This is ROM arch-specific initilization before the BBT scanning. */ |
| 1403 | if (GPMI_IS_MX23(this)) |
| 1404 | return mx23_boot_init(this); |
| 1405 | return 0; |
| 1406 | } |
| 1407 | |
Wolfram Sang | a78da28 | 2012-03-21 19:29:17 +0100 | [diff] [blame] | 1408 | static int gpmi_set_geometry(struct gpmi_nand_data *this) |
Huang Shijie | 10a2bca | 2011-09-08 10:47:09 +0800 | [diff] [blame] | 1409 | { |
| 1410 | int ret; |
| 1411 | |
| 1412 | /* Free the temporary DMA memory for reading ID. */ |
| 1413 | gpmi_free_dma_buffer(this); |
| 1414 | |
| 1415 | /* Set up the NFC geometry which is used by BCH. */ |
| 1416 | ret = bch_set_geometry(this); |
| 1417 | if (ret) { |
| 1418 | pr_err("set geometry ret : %d\n", ret); |
| 1419 | return ret; |
| 1420 | } |
| 1421 | |
| 1422 | /* Alloc the new DMA buffers according to the pagesize and oobsize */ |
| 1423 | return gpmi_alloc_dma_buffer(this); |
| 1424 | } |
| 1425 | |
| 1426 | static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) |
| 1427 | { |
| 1428 | int ret; |
| 1429 | |
| 1430 | /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ |
| 1431 | if (GPMI_IS_MX23(this)) |
| 1432 | this->swap_block_mark = false; |
| 1433 | else |
| 1434 | this->swap_block_mark = true; |
| 1435 | |
| 1436 | /* Set up the medium geometry */ |
| 1437 | ret = gpmi_set_geometry(this); |
| 1438 | if (ret) |
| 1439 | return ret; |
| 1440 | |
| 1441 | /* NAND boot init, depends on the gpmi_set_geometry(). */ |
| 1442 | return nand_boot_init(this); |
| 1443 | } |
| 1444 | |
| 1445 | static int gpmi_scan_bbt(struct mtd_info *mtd) |
| 1446 | { |
| 1447 | struct nand_chip *chip = mtd->priv; |
| 1448 | struct gpmi_nand_data *this = chip->priv; |
| 1449 | int ret; |
| 1450 | |
| 1451 | /* Prepare for the BBT scan. */ |
| 1452 | ret = gpmi_pre_bbt_scan(this); |
| 1453 | if (ret) |
| 1454 | return ret; |
| 1455 | |
| 1456 | /* use the default BBT implementation */ |
| 1457 | return nand_default_bbt(mtd); |
| 1458 | } |
| 1459 | |
| 1460 | void gpmi_nfc_exit(struct gpmi_nand_data *this) |
| 1461 | { |
| 1462 | nand_release(&this->mtd); |
| 1463 | gpmi_free_dma_buffer(this); |
| 1464 | } |
| 1465 | |
| 1466 | static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) |
| 1467 | { |
| 1468 | struct gpmi_nand_platform_data *pdata = this->pdata; |
| 1469 | struct mtd_info *mtd = &this->mtd; |
| 1470 | struct nand_chip *chip = &this->nand; |
| 1471 | int ret; |
| 1472 | |
| 1473 | /* init current chip */ |
| 1474 | this->current_chip = -1; |
| 1475 | |
| 1476 | /* init the MTD data structures */ |
| 1477 | mtd->priv = chip; |
| 1478 | mtd->name = "gpmi-nand"; |
| 1479 | mtd->owner = THIS_MODULE; |
| 1480 | |
| 1481 | /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ |
| 1482 | chip->priv = this; |
| 1483 | chip->select_chip = gpmi_select_chip; |
| 1484 | chip->cmd_ctrl = gpmi_cmd_ctrl; |
| 1485 | chip->dev_ready = gpmi_dev_ready; |
| 1486 | chip->read_byte = gpmi_read_byte; |
| 1487 | chip->read_buf = gpmi_read_buf; |
| 1488 | chip->write_buf = gpmi_write_buf; |
| 1489 | chip->ecc.read_page = gpmi_ecc_read_page; |
| 1490 | chip->ecc.write_page = gpmi_ecc_write_page; |
| 1491 | chip->ecc.read_oob = gpmi_ecc_read_oob; |
| 1492 | chip->ecc.write_oob = gpmi_ecc_write_oob; |
| 1493 | chip->scan_bbt = gpmi_scan_bbt; |
| 1494 | chip->badblock_pattern = &gpmi_bbt_descr; |
| 1495 | chip->block_markbad = gpmi_block_markbad; |
| 1496 | chip->options |= NAND_NO_SUBPAGE_WRITE; |
| 1497 | chip->ecc.mode = NAND_ECC_HW; |
| 1498 | chip->ecc.size = 1; |
| 1499 | chip->ecc.layout = &gpmi_hw_ecclayout; |
| 1500 | |
| 1501 | /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ |
| 1502 | this->bch_geometry.payload_size = 1024; |
| 1503 | this->bch_geometry.auxiliary_size = 128; |
| 1504 | ret = gpmi_alloc_dma_buffer(this); |
| 1505 | if (ret) |
| 1506 | goto err_out; |
| 1507 | |
| 1508 | ret = nand_scan(mtd, pdata->max_chip_count); |
| 1509 | if (ret) { |
| 1510 | pr_err("Chip scan failed\n"); |
| 1511 | goto err_out; |
| 1512 | } |
| 1513 | |
| 1514 | ret = mtd_device_parse_register(mtd, NULL, NULL, |
| 1515 | pdata->partitions, pdata->partition_count); |
| 1516 | if (ret) |
| 1517 | goto err_out; |
| 1518 | return 0; |
| 1519 | |
| 1520 | err_out: |
| 1521 | gpmi_nfc_exit(this); |
| 1522 | return ret; |
| 1523 | } |
| 1524 | |
| 1525 | static int __devinit gpmi_nand_probe(struct platform_device *pdev) |
| 1526 | { |
| 1527 | struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data; |
| 1528 | struct gpmi_nand_data *this; |
| 1529 | int ret; |
| 1530 | |
| 1531 | this = kzalloc(sizeof(*this), GFP_KERNEL); |
| 1532 | if (!this) { |
| 1533 | pr_err("Failed to allocate per-device memory\n"); |
| 1534 | return -ENOMEM; |
| 1535 | } |
| 1536 | |
| 1537 | platform_set_drvdata(pdev, this); |
| 1538 | this->pdev = pdev; |
| 1539 | this->dev = &pdev->dev; |
| 1540 | this->pdata = pdata; |
| 1541 | |
| 1542 | if (pdata->platform_init) { |
| 1543 | ret = pdata->platform_init(); |
| 1544 | if (ret) |
| 1545 | goto platform_init_error; |
| 1546 | } |
| 1547 | |
| 1548 | ret = acquire_resources(this); |
| 1549 | if (ret) |
| 1550 | goto exit_acquire_resources; |
| 1551 | |
| 1552 | ret = init_hardware(this); |
| 1553 | if (ret) |
| 1554 | goto exit_nfc_init; |
| 1555 | |
| 1556 | ret = gpmi_nfc_init(this); |
| 1557 | if (ret) |
| 1558 | goto exit_nfc_init; |
| 1559 | |
| 1560 | return 0; |
| 1561 | |
| 1562 | exit_nfc_init: |
| 1563 | release_resources(this); |
| 1564 | platform_init_error: |
| 1565 | exit_acquire_resources: |
| 1566 | platform_set_drvdata(pdev, NULL); |
| 1567 | kfree(this); |
| 1568 | return ret; |
| 1569 | } |
| 1570 | |
| 1571 | static int __exit gpmi_nand_remove(struct platform_device *pdev) |
| 1572 | { |
| 1573 | struct gpmi_nand_data *this = platform_get_drvdata(pdev); |
| 1574 | |
| 1575 | gpmi_nfc_exit(this); |
| 1576 | release_resources(this); |
| 1577 | platform_set_drvdata(pdev, NULL); |
| 1578 | kfree(this); |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | static const struct platform_device_id gpmi_ids[] = { |
| 1583 | { |
| 1584 | .name = "imx23-gpmi-nand", |
| 1585 | .driver_data = IS_MX23, |
| 1586 | }, { |
| 1587 | .name = "imx28-gpmi-nand", |
| 1588 | .driver_data = IS_MX28, |
| 1589 | }, {}, |
| 1590 | }; |
| 1591 | |
| 1592 | static struct platform_driver gpmi_nand_driver = { |
| 1593 | .driver = { |
| 1594 | .name = "gpmi-nand", |
| 1595 | }, |
| 1596 | .probe = gpmi_nand_probe, |
| 1597 | .remove = __exit_p(gpmi_nand_remove), |
| 1598 | .id_table = gpmi_ids, |
| 1599 | }; |
| 1600 | |
| 1601 | static int __init gpmi_nand_init(void) |
| 1602 | { |
| 1603 | int err; |
| 1604 | |
| 1605 | err = platform_driver_register(&gpmi_nand_driver); |
| 1606 | if (err == 0) |
| 1607 | printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); |
| 1608 | else |
| 1609 | pr_err("i.MX GPMI NAND driver registration failed\n"); |
| 1610 | return err; |
| 1611 | } |
| 1612 | |
| 1613 | static void __exit gpmi_nand_exit(void) |
| 1614 | { |
| 1615 | platform_driver_unregister(&gpmi_nand_driver); |
| 1616 | } |
| 1617 | |
| 1618 | module_init(gpmi_nand_init); |
| 1619 | module_exit(gpmi_nand_exit); |
| 1620 | |
| 1621 | MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| 1622 | MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); |
| 1623 | MODULE_LICENSE("GPL"); |