blob: 7e8a035d444a441a0e04e43820277754b8d5ac65 [file] [log] [blame]
Huang Shijie10a2bca2011-09-08 10:47:09 +08001/*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21#include <linux/clk.h>
22#include <linux/slab.h>
23#include <linux/interrupt.h>
Wolfram Sangdf16c862011-11-23 15:57:06 +010024#include <linux/module.h>
Huang Shijie10a2bca2011-09-08 10:47:09 +080025#include <linux/mtd/gpmi-nand.h>
26#include <linux/mtd/partitions.h>
Huang Shijie10a2bca2011-09-08 10:47:09 +080027#include "gpmi-nand.h"
28
29/* add our owner bbt descriptor */
30static uint8_t scan_ff_pattern[] = { 0xff };
31static struct nand_bbt_descr gpmi_bbt_descr = {
32 .options = 0,
33 .offs = 0,
34 .len = 1,
35 .pattern = scan_ff_pattern
36};
37
38/* We will use all the (page + OOB). */
39static struct nand_ecclayout gpmi_hw_ecclayout = {
40 .eccbytes = 0,
41 .eccpos = { 0, },
42 .oobfree = { {.offset = 0, .length = 0} }
43};
44
45static irqreturn_t bch_irq(int irq, void *cookie)
46{
47 struct gpmi_nand_data *this = cookie;
48
49 gpmi_clear_bch(this);
50 complete(&this->bch_done);
51 return IRQ_HANDLED;
52}
53
54/*
55 * Calculate the ECC strength by hand:
56 * E : The ECC strength.
57 * G : the length of Galois Field.
58 * N : The chunk count of per page.
59 * O : the oobsize of the NAND chip.
60 * M : the metasize of per page.
61 *
62 * The formula is :
63 * E * G * N
64 * ------------ <= (O - M)
65 * 8
66 *
67 * So, we get E by:
68 * (O - M) * 8
69 * E <= -------------
70 * G * N
71 */
72static inline int get_ecc_strength(struct gpmi_nand_data *this)
73{
74 struct bch_geometry *geo = &this->bch_geometry;
75 struct mtd_info *mtd = &this->mtd;
76 int ecc_strength;
77
78 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
79 / (geo->gf_len * geo->ecc_chunk_count);
80
81 /* We need the minor even number. */
82 return round_down(ecc_strength, 2);
83}
84
85int common_nfc_set_geometry(struct gpmi_nand_data *this)
86{
87 struct bch_geometry *geo = &this->bch_geometry;
88 struct mtd_info *mtd = &this->mtd;
89 unsigned int metadata_size;
90 unsigned int status_size;
91 unsigned int block_mark_bit_offset;
92
93 /*
94 * The size of the metadata can be changed, though we set it to 10
95 * bytes now. But it can't be too large, because we have to save
96 * enough space for BCH.
97 */
98 geo->metadata_size = 10;
99
100 /* The default for the length of Galois Field. */
101 geo->gf_len = 13;
102
103 /* The default for chunk size. There is no oobsize greater then 512. */
104 geo->ecc_chunk_size = 512;
105 while (geo->ecc_chunk_size < mtd->oobsize)
106 geo->ecc_chunk_size *= 2; /* keep C >= O */
107
108 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
109
110 /* We use the same ECC strength for all chunks. */
111 geo->ecc_strength = get_ecc_strength(this);
112 if (!geo->ecc_strength) {
113 pr_err("We get a wrong ECC strength.\n");
114 return -EINVAL;
115 }
116
117 geo->page_size = mtd->writesize + mtd->oobsize;
118 geo->payload_size = mtd->writesize;
119
120 /*
121 * The auxiliary buffer contains the metadata and the ECC status. The
122 * metadata is padded to the nearest 32-bit boundary. The ECC status
123 * contains one byte for every ECC chunk, and is also padded to the
124 * nearest 32-bit boundary.
125 */
126 metadata_size = ALIGN(geo->metadata_size, 4);
127 status_size = ALIGN(geo->ecc_chunk_count, 4);
128
129 geo->auxiliary_size = metadata_size + status_size;
130 geo->auxiliary_status_offset = metadata_size;
131
132 if (!this->swap_block_mark)
133 return 0;
134
135 /*
136 * We need to compute the byte and bit offsets of
137 * the physical block mark within the ECC-based view of the page.
138 *
139 * NAND chip with 2K page shows below:
140 * (Block Mark)
141 * | |
142 * | D |
143 * |<---->|
144 * V V
145 * +---+----------+-+----------+-+----------+-+----------+-+
146 * | M | data |E| data |E| data |E| data |E|
147 * +---+----------+-+----------+-+----------+-+----------+-+
148 *
149 * The position of block mark moves forward in the ECC-based view
150 * of page, and the delta is:
151 *
152 * E * G * (N - 1)
153 * D = (---------------- + M)
154 * 8
155 *
156 * With the formula to compute the ECC strength, and the condition
157 * : C >= O (C is the ecc chunk size)
158 *
159 * It's easy to deduce to the following result:
160 *
161 * E * G (O - M) C - M C - M
162 * ----------- <= ------- <= -------- < ---------
163 * 8 N N (N - 1)
164 *
165 * So, we get:
166 *
167 * E * G * (N - 1)
168 * D = (---------------- + M) < C
169 * 8
170 *
171 * The above inequality means the position of block mark
172 * within the ECC-based view of the page is still in the data chunk,
173 * and it's NOT in the ECC bits of the chunk.
174 *
175 * Use the following to compute the bit position of the
176 * physical block mark within the ECC-based view of the page:
177 * (page_size - D) * 8
178 *
179 * --Huang Shijie
180 */
181 block_mark_bit_offset = mtd->writesize * 8 -
182 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
183 + geo->metadata_size * 8);
184
185 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
186 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
187 return 0;
188}
189
190struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
191{
192 int chipnr = this->current_chip;
193
194 return this->dma_chans[chipnr];
195}
196
197/* Can we use the upper's buffer directly for DMA? */
198void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
199{
200 struct scatterlist *sgl = &this->data_sgl;
201 int ret;
202
203 this->direct_dma_map_ok = true;
204
205 /* first try to map the upper buffer directly */
206 sg_init_one(sgl, this->upper_buf, this->upper_len);
207 ret = dma_map_sg(this->dev, sgl, 1, dr);
208 if (ret == 0) {
209 /* We have to use our own DMA buffer. */
210 sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
211
212 if (dr == DMA_TO_DEVICE)
213 memcpy(this->data_buffer_dma, this->upper_buf,
214 this->upper_len);
215
216 ret = dma_map_sg(this->dev, sgl, 1, dr);
217 if (ret == 0)
218 pr_err("map failed.\n");
219
220 this->direct_dma_map_ok = false;
221 }
222}
223
224/* This will be called after the DMA operation is finished. */
225static void dma_irq_callback(void *param)
226{
227 struct gpmi_nand_data *this = param;
228 struct completion *dma_c = &this->dma_done;
229
230 complete(dma_c);
231
232 switch (this->dma_type) {
233 case DMA_FOR_COMMAND:
234 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
235 break;
236
237 case DMA_FOR_READ_DATA:
238 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
239 if (this->direct_dma_map_ok == false)
240 memcpy(this->upper_buf, this->data_buffer_dma,
241 this->upper_len);
242 break;
243
244 case DMA_FOR_WRITE_DATA:
245 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
246 break;
247
248 case DMA_FOR_READ_ECC_PAGE:
249 case DMA_FOR_WRITE_ECC_PAGE:
250 /* We have to wait the BCH interrupt to finish. */
251 break;
252
253 default:
254 pr_err("in wrong DMA operation.\n");
255 }
256}
257
258int start_dma_without_bch_irq(struct gpmi_nand_data *this,
259 struct dma_async_tx_descriptor *desc)
260{
261 struct completion *dma_c = &this->dma_done;
262 int err;
263
264 init_completion(dma_c);
265
266 desc->callback = dma_irq_callback;
267 desc->callback_param = this;
268 dmaengine_submit(desc);
Shawn Guod04525e2012-04-11 13:29:31 +0800269 dma_async_issue_pending(get_dma_chan(this));
Huang Shijie10a2bca2011-09-08 10:47:09 +0800270
271 /* Wait for the interrupt from the DMA block. */
272 err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
273 if (!err) {
274 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
275 gpmi_dump_info(this);
276 return -ETIMEDOUT;
277 }
278 return 0;
279}
280
281/*
282 * This function is used in BCH reading or BCH writing pages.
283 * It will wait for the BCH interrupt as long as ONE second.
284 * Actually, we must wait for two interrupts :
285 * [1] firstly the DMA interrupt and
286 * [2] secondly the BCH interrupt.
287 */
288int start_dma_with_bch_irq(struct gpmi_nand_data *this,
289 struct dma_async_tx_descriptor *desc)
290{
291 struct completion *bch_c = &this->bch_done;
292 int err;
293
294 /* Prepare to receive an interrupt from the BCH block. */
295 init_completion(bch_c);
296
297 /* start the DMA */
298 start_dma_without_bch_irq(this, desc);
299
300 /* Wait for the interrupt from the BCH block. */
301 err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
302 if (!err) {
303 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
304 gpmi_dump_info(this);
305 return -ETIMEDOUT;
306 }
307 return 0;
308}
309
310static int __devinit
311acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
312{
313 struct platform_device *pdev = this->pdev;
314 struct resources *res = &this->resources;
315 struct resource *r;
316 void *p;
317
318 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
319 if (!r) {
320 pr_err("Can't get resource for %s\n", res_name);
321 return -ENXIO;
322 }
323
324 p = ioremap(r->start, resource_size(r));
325 if (!p) {
326 pr_err("Can't remap %s\n", res_name);
327 return -ENOMEM;
328 }
329
330 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
331 res->gpmi_regs = p;
332 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
333 res->bch_regs = p;
334 else
335 pr_err("unknown resource name : %s\n", res_name);
336
337 return 0;
338}
339
340static void release_register_block(struct gpmi_nand_data *this)
341{
342 struct resources *res = &this->resources;
343 if (res->gpmi_regs)
344 iounmap(res->gpmi_regs);
345 if (res->bch_regs)
346 iounmap(res->bch_regs);
347 res->gpmi_regs = NULL;
348 res->bch_regs = NULL;
349}
350
351static int __devinit
352acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
353{
354 struct platform_device *pdev = this->pdev;
355 struct resources *res = &this->resources;
356 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
357 struct resource *r;
358 int err;
359
360 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
361 if (!r) {
362 pr_err("Can't get resource for %s\n", res_name);
363 return -ENXIO;
364 }
365
366 err = request_irq(r->start, irq_h, 0, res_name, this);
367 if (err) {
368 pr_err("Can't own %s\n", res_name);
369 return err;
370 }
371
372 res->bch_low_interrupt = r->start;
373 res->bch_high_interrupt = r->end;
374 return 0;
375}
376
377static void release_bch_irq(struct gpmi_nand_data *this)
378{
379 struct resources *res = &this->resources;
380 int i = res->bch_low_interrupt;
381
382 for (; i <= res->bch_high_interrupt; i++)
383 free_irq(i, this);
384}
385
386static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
387{
388 struct gpmi_nand_data *this = param;
389 struct resource *r = this->private;
390
391 if (!mxs_dma_is_apbh(chan))
392 return false;
393 /*
394 * only catch the GPMI dma channels :
395 * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
396 * (These four channels share the same IRQ!)
397 *
398 * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
399 * (These eight channels share the same IRQ!)
400 */
401 if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
402 chan->private = &this->dma_data;
403 return true;
404 }
405 return false;
406}
407
408static void release_dma_channels(struct gpmi_nand_data *this)
409{
410 unsigned int i;
411 for (i = 0; i < DMA_CHANS; i++)
412 if (this->dma_chans[i]) {
413 dma_release_channel(this->dma_chans[i]);
414 this->dma_chans[i] = NULL;
415 }
416}
417
418static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
419{
420 struct platform_device *pdev = this->pdev;
421 struct gpmi_nand_platform_data *pdata = this->pdata;
422 struct resources *res = &this->resources;
423 struct resource *r, *r_dma;
424 unsigned int i;
425
426 r = platform_get_resource_byname(pdev, IORESOURCE_DMA,
427 GPMI_NAND_DMA_CHANNELS_RES_NAME);
428 r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
429 GPMI_NAND_DMA_INTERRUPT_RES_NAME);
430 if (!r || !r_dma) {
431 pr_err("Can't get resource for DMA\n");
432 return -ENXIO;
433 }
434
435 /* used in gpmi_dma_filter() */
436 this->private = r;
437
438 for (i = r->start; i <= r->end; i++) {
439 struct dma_chan *dma_chan;
440 dma_cap_mask_t mask;
441
442 if (i - r->start >= pdata->max_chip_count)
443 break;
444
445 dma_cap_zero(mask);
446 dma_cap_set(DMA_SLAVE, mask);
447
448 /* get the DMA interrupt */
449 if (r_dma->start == r_dma->end) {
450 /* only register the first. */
451 if (i == r->start)
452 this->dma_data.chan_irq = r_dma->start;
453 else
454 this->dma_data.chan_irq = NO_IRQ;
455 } else
456 this->dma_data.chan_irq = r_dma->start + (i - r->start);
457
458 dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
459 if (!dma_chan)
460 goto acquire_err;
461
462 /* fill the first empty item */
463 this->dma_chans[i - r->start] = dma_chan;
464 }
465
466 res->dma_low_channel = r->start;
467 res->dma_high_channel = i;
468 return 0;
469
470acquire_err:
471 pr_err("Can't acquire DMA channel %u\n", i);
472 release_dma_channels(this);
473 return -EINVAL;
474}
475
476static int __devinit acquire_resources(struct gpmi_nand_data *this)
477{
478 struct resources *res = &this->resources;
479 int ret;
480
481 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
482 if (ret)
483 goto exit_regs;
484
485 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
486 if (ret)
487 goto exit_regs;
488
489 ret = acquire_bch_irq(this, bch_irq);
490 if (ret)
491 goto exit_regs;
492
493 ret = acquire_dma_channels(this);
494 if (ret)
495 goto exit_dma_channels;
496
497 res->clock = clk_get(&this->pdev->dev, NULL);
498 if (IS_ERR(res->clock)) {
499 pr_err("can not get the clock\n");
500 ret = -ENOENT;
501 goto exit_clock;
502 }
503 return 0;
504
505exit_clock:
506 release_dma_channels(this);
507exit_dma_channels:
508 release_bch_irq(this);
509exit_regs:
510 release_register_block(this);
511 return ret;
512}
513
514static void release_resources(struct gpmi_nand_data *this)
515{
516 struct resources *r = &this->resources;
517
518 clk_put(r->clock);
519 release_register_block(this);
520 release_bch_irq(this);
521 release_dma_channels(this);
522}
523
524static int __devinit init_hardware(struct gpmi_nand_data *this)
525{
526 int ret;
527
528 /*
529 * This structure contains the "safe" GPMI timing that should succeed
530 * with any NAND Flash device
531 * (although, with less-than-optimal performance).
532 */
533 struct nand_timing safe_timing = {
534 .data_setup_in_ns = 80,
535 .data_hold_in_ns = 60,
536 .address_setup_in_ns = 25,
537 .gpmi_sample_delay_in_ns = 6,
538 .tREA_in_ns = -1,
539 .tRLOH_in_ns = -1,
540 .tRHOH_in_ns = -1,
541 };
542
543 /* Initialize the hardwares. */
544 ret = gpmi_init(this);
545 if (ret)
546 return ret;
547
548 this->timing = safe_timing;
549 return 0;
550}
551
552static int read_page_prepare(struct gpmi_nand_data *this,
553 void *destination, unsigned length,
554 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
555 void **use_virt, dma_addr_t *use_phys)
556{
557 struct device *dev = this->dev;
558
559 if (virt_addr_valid(destination)) {
560 dma_addr_t dest_phys;
561
562 dest_phys = dma_map_single(dev, destination,
563 length, DMA_FROM_DEVICE);
564 if (dma_mapping_error(dev, dest_phys)) {
565 if (alt_size < length) {
566 pr_err("Alternate buffer is too small\n");
567 return -ENOMEM;
568 }
569 goto map_failed;
570 }
571 *use_virt = destination;
572 *use_phys = dest_phys;
573 this->direct_dma_map_ok = true;
574 return 0;
575 }
576
577map_failed:
578 *use_virt = alt_virt;
579 *use_phys = alt_phys;
580 this->direct_dma_map_ok = false;
581 return 0;
582}
583
584static inline void read_page_end(struct gpmi_nand_data *this,
585 void *destination, unsigned length,
586 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
587 void *used_virt, dma_addr_t used_phys)
588{
589 if (this->direct_dma_map_ok)
590 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
591}
592
593static inline void read_page_swap_end(struct gpmi_nand_data *this,
594 void *destination, unsigned length,
595 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
596 void *used_virt, dma_addr_t used_phys)
597{
598 if (!this->direct_dma_map_ok)
599 memcpy(destination, alt_virt, length);
600}
601
602static int send_page_prepare(struct gpmi_nand_data *this,
603 const void *source, unsigned length,
604 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
605 const void **use_virt, dma_addr_t *use_phys)
606{
607 struct device *dev = this->dev;
608
609 if (virt_addr_valid(source)) {
610 dma_addr_t source_phys;
611
612 source_phys = dma_map_single(dev, (void *)source, length,
613 DMA_TO_DEVICE);
614 if (dma_mapping_error(dev, source_phys)) {
615 if (alt_size < length) {
616 pr_err("Alternate buffer is too small\n");
617 return -ENOMEM;
618 }
619 goto map_failed;
620 }
621 *use_virt = source;
622 *use_phys = source_phys;
623 return 0;
624 }
625map_failed:
626 /*
627 * Copy the content of the source buffer into the alternate
628 * buffer and set up the return values accordingly.
629 */
630 memcpy(alt_virt, source, length);
631
632 *use_virt = alt_virt;
633 *use_phys = alt_phys;
634 return 0;
635}
636
637static void send_page_end(struct gpmi_nand_data *this,
638 const void *source, unsigned length,
639 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
640 const void *used_virt, dma_addr_t used_phys)
641{
642 struct device *dev = this->dev;
643 if (used_virt == source)
644 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
645}
646
647static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
648{
649 struct device *dev = this->dev;
650
651 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
652 dma_free_coherent(dev, this->page_buffer_size,
653 this->page_buffer_virt,
654 this->page_buffer_phys);
655 kfree(this->cmd_buffer);
656 kfree(this->data_buffer_dma);
657
658 this->cmd_buffer = NULL;
659 this->data_buffer_dma = NULL;
660 this->page_buffer_virt = NULL;
661 this->page_buffer_size = 0;
662}
663
664/* Allocate the DMA buffers */
665static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
666{
667 struct bch_geometry *geo = &this->bch_geometry;
668 struct device *dev = this->dev;
669
670 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
671 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
672 if (this->cmd_buffer == NULL)
673 goto error_alloc;
674
675 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
676 this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
677 if (this->data_buffer_dma == NULL)
678 goto error_alloc;
679
680 /*
681 * [3] Allocate the page buffer.
682 *
683 * Both the payload buffer and the auxiliary buffer must appear on
684 * 32-bit boundaries. We presume the size of the payload buffer is a
685 * power of two and is much larger than four, which guarantees the
686 * auxiliary buffer will appear on a 32-bit boundary.
687 */
688 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
689 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
690 &this->page_buffer_phys, GFP_DMA);
691 if (!this->page_buffer_virt)
692 goto error_alloc;
693
694
695 /* Slice up the page buffer. */
696 this->payload_virt = this->page_buffer_virt;
697 this->payload_phys = this->page_buffer_phys;
698 this->auxiliary_virt = this->payload_virt + geo->payload_size;
699 this->auxiliary_phys = this->payload_phys + geo->payload_size;
700 return 0;
701
702error_alloc:
703 gpmi_free_dma_buffer(this);
704 pr_err("allocate DMA buffer ret!!\n");
705 return -ENOMEM;
706}
707
708static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
709{
710 struct nand_chip *chip = mtd->priv;
711 struct gpmi_nand_data *this = chip->priv;
712 int ret;
713
714 /*
715 * Every operation begins with a command byte and a series of zero or
716 * more address bytes. These are distinguished by either the Address
717 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
718 * asserted. When MTD is ready to execute the command, it will deassert
719 * both latch enables.
720 *
721 * Rather than run a separate DMA operation for every single byte, we
722 * queue them up and run a single DMA operation for the entire series
723 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
724 */
725 if ((ctrl & (NAND_ALE | NAND_CLE))) {
726 if (data != NAND_CMD_NONE)
727 this->cmd_buffer[this->command_length++] = data;
728 return;
729 }
730
731 if (!this->command_length)
732 return;
733
734 ret = gpmi_send_command(this);
735 if (ret)
736 pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
737
738 this->command_length = 0;
739}
740
741static int gpmi_dev_ready(struct mtd_info *mtd)
742{
743 struct nand_chip *chip = mtd->priv;
744 struct gpmi_nand_data *this = chip->priv;
745
746 return gpmi_is_ready(this, this->current_chip);
747}
748
749static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
750{
751 struct nand_chip *chip = mtd->priv;
752 struct gpmi_nand_data *this = chip->priv;
753
754 if ((this->current_chip < 0) && (chipnr >= 0))
755 gpmi_begin(this);
756 else if ((this->current_chip >= 0) && (chipnr < 0))
757 gpmi_end(this);
758
759 this->current_chip = chipnr;
760}
761
762static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
763{
764 struct nand_chip *chip = mtd->priv;
765 struct gpmi_nand_data *this = chip->priv;
766
767 pr_debug("len is %d\n", len);
768 this->upper_buf = buf;
769 this->upper_len = len;
770
771 gpmi_read_data(this);
772}
773
774static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
775{
776 struct nand_chip *chip = mtd->priv;
777 struct gpmi_nand_data *this = chip->priv;
778
779 pr_debug("len is %d\n", len);
780 this->upper_buf = (uint8_t *)buf;
781 this->upper_len = len;
782
783 gpmi_send_data(this);
784}
785
786static uint8_t gpmi_read_byte(struct mtd_info *mtd)
787{
788 struct nand_chip *chip = mtd->priv;
789 struct gpmi_nand_data *this = chip->priv;
790 uint8_t *buf = this->data_buffer_dma;
791
792 gpmi_read_buf(mtd, buf, 1);
793 return buf[0];
794}
795
796/*
797 * Handles block mark swapping.
798 * It can be called in swapping the block mark, or swapping it back,
799 * because the the operations are the same.
800 */
801static void block_mark_swapping(struct gpmi_nand_data *this,
802 void *payload, void *auxiliary)
803{
804 struct bch_geometry *nfc_geo = &this->bch_geometry;
805 unsigned char *p;
806 unsigned char *a;
807 unsigned int bit;
808 unsigned char mask;
809 unsigned char from_data;
810 unsigned char from_oob;
811
812 if (!this->swap_block_mark)
813 return;
814
815 /*
816 * If control arrives here, we're swapping. Make some convenience
817 * variables.
818 */
819 bit = nfc_geo->block_mark_bit_offset;
820 p = payload + nfc_geo->block_mark_byte_offset;
821 a = auxiliary;
822
823 /*
824 * Get the byte from the data area that overlays the block mark. Since
825 * the ECC engine applies its own view to the bits in the page, the
826 * physical block mark won't (in general) appear on a byte boundary in
827 * the data.
828 */
829 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
830
831 /* Get the byte from the OOB. */
832 from_oob = a[0];
833
834 /* Swap them. */
835 a[0] = from_data;
836
837 mask = (0x1 << bit) - 1;
838 p[0] = (p[0] & mask) | (from_oob << bit);
839
840 mask = ~0 << bit;
841 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
842}
843
844static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
Brian Norris1fbb9382012-05-02 10:14:55 -0700845 uint8_t *buf, int oob_required, int page)
Huang Shijie10a2bca2011-09-08 10:47:09 +0800846{
847 struct gpmi_nand_data *this = chip->priv;
848 struct bch_geometry *nfc_geo = &this->bch_geometry;
849 void *payload_virt;
850 dma_addr_t payload_phys;
851 void *auxiliary_virt;
852 dma_addr_t auxiliary_phys;
853 unsigned int i;
854 unsigned char *status;
855 unsigned int failed;
856 unsigned int corrected;
857 int ret;
858
859 pr_debug("page number is : %d\n", page);
860 ret = read_page_prepare(this, buf, mtd->writesize,
861 this->payload_virt, this->payload_phys,
862 nfc_geo->payload_size,
863 &payload_virt, &payload_phys);
864 if (ret) {
865 pr_err("Inadequate DMA buffer\n");
866 ret = -ENOMEM;
867 return ret;
868 }
869 auxiliary_virt = this->auxiliary_virt;
870 auxiliary_phys = this->auxiliary_phys;
871
872 /* go! */
873 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
874 read_page_end(this, buf, mtd->writesize,
875 this->payload_virt, this->payload_phys,
876 nfc_geo->payload_size,
877 payload_virt, payload_phys);
878 if (ret) {
879 pr_err("Error in ECC-based read: %d\n", ret);
880 goto exit_nfc;
881 }
882
883 /* handle the block mark swapping */
884 block_mark_swapping(this, payload_virt, auxiliary_virt);
885
886 /* Loop over status bytes, accumulating ECC status. */
887 failed = 0;
888 corrected = 0;
889 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
890
891 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
892 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
893 continue;
894
895 if (*status == STATUS_UNCORRECTABLE) {
896 failed++;
897 continue;
898 }
899 corrected += *status;
900 }
901
902 /*
903 * Propagate ECC status to the owning MTD only when failed or
904 * corrected times nearly reaches our ECC correction threshold.
905 */
906 if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
907 mtd->ecc_stats.failed += failed;
908 mtd->ecc_stats.corrected += corrected;
909 }
910
Brian Norris7725cc82012-05-02 10:15:02 -0700911 if (oob_required) {
912 /*
913 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
914 * for details about our policy for delivering the OOB.
915 *
916 * We fill the caller's buffer with set bits, and then copy the
917 * block mark to th caller's buffer. Note that, if block mark
918 * swapping was necessary, it has already been done, so we can
919 * rely on the first byte of the auxiliary buffer to contain
920 * the block mark.
921 */
922 memset(chip->oob_poi, ~0, mtd->oobsize);
923 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
Huang Shijie10a2bca2011-09-08 10:47:09 +0800924
Brian Norris7725cc82012-05-02 10:15:02 -0700925 read_page_swap_end(this, buf, mtd->writesize,
926 this->payload_virt, this->payload_phys,
927 nfc_geo->payload_size,
928 payload_virt, payload_phys);
929 }
Huang Shijie10a2bca2011-09-08 10:47:09 +0800930exit_nfc:
931 return ret;
932}
933
Brian Norris1fbb9382012-05-02 10:14:55 -0700934static void gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
935 const uint8_t *buf, int oob_required)
Huang Shijie10a2bca2011-09-08 10:47:09 +0800936{
937 struct gpmi_nand_data *this = chip->priv;
938 struct bch_geometry *nfc_geo = &this->bch_geometry;
939 const void *payload_virt;
940 dma_addr_t payload_phys;
941 const void *auxiliary_virt;
942 dma_addr_t auxiliary_phys;
943 int ret;
944
945 pr_debug("ecc write page.\n");
946 if (this->swap_block_mark) {
947 /*
948 * If control arrives here, we're doing block mark swapping.
949 * Since we can't modify the caller's buffers, we must copy them
950 * into our own.
951 */
952 memcpy(this->payload_virt, buf, mtd->writesize);
953 payload_virt = this->payload_virt;
954 payload_phys = this->payload_phys;
955
956 memcpy(this->auxiliary_virt, chip->oob_poi,
957 nfc_geo->auxiliary_size);
958 auxiliary_virt = this->auxiliary_virt;
959 auxiliary_phys = this->auxiliary_phys;
960
961 /* Handle block mark swapping. */
962 block_mark_swapping(this,
963 (void *) payload_virt, (void *) auxiliary_virt);
964 } else {
965 /*
966 * If control arrives here, we're not doing block mark swapping,
967 * so we can to try and use the caller's buffers.
968 */
969 ret = send_page_prepare(this,
970 buf, mtd->writesize,
971 this->payload_virt, this->payload_phys,
972 nfc_geo->payload_size,
973 &payload_virt, &payload_phys);
974 if (ret) {
975 pr_err("Inadequate payload DMA buffer\n");
976 return;
977 }
978
979 ret = send_page_prepare(this,
980 chip->oob_poi, mtd->oobsize,
981 this->auxiliary_virt, this->auxiliary_phys,
982 nfc_geo->auxiliary_size,
983 &auxiliary_virt, &auxiliary_phys);
984 if (ret) {
985 pr_err("Inadequate auxiliary DMA buffer\n");
986 goto exit_auxiliary;
987 }
988 }
989
990 /* Ask the NFC. */
991 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
992 if (ret)
993 pr_err("Error in ECC-based write: %d\n", ret);
994
995 if (!this->swap_block_mark) {
996 send_page_end(this, chip->oob_poi, mtd->oobsize,
997 this->auxiliary_virt, this->auxiliary_phys,
998 nfc_geo->auxiliary_size,
999 auxiliary_virt, auxiliary_phys);
1000exit_auxiliary:
1001 send_page_end(this, buf, mtd->writesize,
1002 this->payload_virt, this->payload_phys,
1003 nfc_geo->payload_size,
1004 payload_virt, payload_phys);
1005 }
1006}
1007
1008/*
1009 * There are several places in this driver where we have to handle the OOB and
1010 * block marks. This is the function where things are the most complicated, so
1011 * this is where we try to explain it all. All the other places refer back to
1012 * here.
1013 *
1014 * These are the rules, in order of decreasing importance:
1015 *
1016 * 1) Nothing the caller does can be allowed to imperil the block mark.
1017 *
1018 * 2) In read operations, the first byte of the OOB we return must reflect the
1019 * true state of the block mark, no matter where that block mark appears in
1020 * the physical page.
1021 *
1022 * 3) ECC-based read operations return an OOB full of set bits (since we never
1023 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1024 * return).
1025 *
1026 * 4) "Raw" read operations return a direct view of the physical bytes in the
1027 * page, using the conventional definition of which bytes are data and which
1028 * are OOB. This gives the caller a way to see the actual, physical bytes
1029 * in the page, without the distortions applied by our ECC engine.
1030 *
1031 *
1032 * What we do for this specific read operation depends on two questions:
1033 *
1034 * 1) Are we doing a "raw" read, or an ECC-based read?
1035 *
1036 * 2) Are we using block mark swapping or transcription?
1037 *
1038 * There are four cases, illustrated by the following Karnaugh map:
1039 *
1040 * | Raw | ECC-based |
1041 * -------------+-------------------------+-------------------------+
1042 * | Read the conventional | |
1043 * | OOB at the end of the | |
1044 * Swapping | page and return it. It | |
1045 * | contains exactly what | |
1046 * | we want. | Read the block mark and |
1047 * -------------+-------------------------+ return it in a buffer |
1048 * | Read the conventional | full of set bits. |
1049 * | OOB at the end of the | |
1050 * | page and also the block | |
1051 * Transcribing | mark in the metadata. | |
1052 * | Copy the block mark | |
1053 * | into the first byte of | |
1054 * | the OOB. | |
1055 * -------------+-------------------------+-------------------------+
1056 *
1057 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1058 * giving an accurate view of the actual, physical bytes in the page (we're
1059 * overwriting the block mark). That's OK because it's more important to follow
1060 * rule #2.
1061 *
1062 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1063 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1064 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1065 * ECC-based or raw view of the page is implicit in which function it calls
1066 * (there is a similar pair of ECC-based/raw functions for writing).
1067 *
1068 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1069 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1070 * caller wants an ECC-based or raw view of the page is not propagated down to
1071 * this driver.
1072 */
1073static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1074 int page, int sndcmd)
1075{
1076 struct gpmi_nand_data *this = chip->priv;
1077
1078 pr_debug("page number is %d\n", page);
1079 /* clear the OOB buffer */
1080 memset(chip->oob_poi, ~0, mtd->oobsize);
1081
1082 /* Read out the conventional OOB. */
1083 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1084 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1085
1086 /*
1087 * Now, we want to make sure the block mark is correct. In the
1088 * Swapping/Raw case, we already have it. Otherwise, we need to
1089 * explicitly read it.
1090 */
1091 if (!this->swap_block_mark) {
1092 /* Read the block mark into the first byte of the OOB buffer. */
1093 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1094 chip->oob_poi[0] = chip->read_byte(mtd);
1095 }
1096
1097 /*
1098 * Return true, indicating that the next call to this function must send
1099 * a command.
1100 */
1101 return true;
1102}
1103
1104static int
1105gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1106{
1107 /*
1108 * The BCH will use all the (page + oob).
1109 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1110 * But it can not stop some ioctls such MEMWRITEOOB which uses
Brian Norris0612b9d2011-08-30 18:45:40 -07001111 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
Huang Shijie10a2bca2011-09-08 10:47:09 +08001112 * these ioctls too.
1113 */
1114 return -EPERM;
1115}
1116
1117static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1118{
1119 struct nand_chip *chip = mtd->priv;
1120 struct gpmi_nand_data *this = chip->priv;
1121 int block, ret = 0;
1122 uint8_t *block_mark;
1123 int column, page, status, chipnr;
1124
1125 /* Get block number */
1126 block = (int)(ofs >> chip->bbt_erase_shift);
1127 if (chip->bbt)
1128 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1129
1130 /* Do we have a flash based bad block table ? */
Wolfram Sang52899662012-01-31 13:10:43 +01001131 if (chip->bbt_options & NAND_BBT_USE_FLASH)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001132 ret = nand_update_bbt(mtd, ofs);
1133 else {
1134 chipnr = (int)(ofs >> chip->chip_shift);
1135 chip->select_chip(mtd, chipnr);
1136
1137 column = this->swap_block_mark ? mtd->writesize : 0;
1138
1139 /* Write the block mark. */
1140 block_mark = this->data_buffer_dma;
1141 block_mark[0] = 0; /* bad block marker */
1142
1143 /* Shift to get page */
1144 page = (int)(ofs >> chip->page_shift);
1145
1146 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1147 chip->write_buf(mtd, block_mark, 1);
1148 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1149
1150 status = chip->waitfunc(mtd, chip);
1151 if (status & NAND_STATUS_FAIL)
1152 ret = -EIO;
1153
1154 chip->select_chip(mtd, -1);
1155 }
1156 if (!ret)
1157 mtd->ecc_stats.badblocks++;
1158
1159 return ret;
1160}
1161
Wolfram Sanga78da282012-03-21 19:29:17 +01001162static int nand_boot_set_geometry(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001163{
1164 struct boot_rom_geometry *geometry = &this->rom_geometry;
1165
1166 /*
1167 * Set the boot block stride size.
1168 *
1169 * In principle, we should be reading this from the OTP bits, since
1170 * that's where the ROM is going to get it. In fact, we don't have any
1171 * way to read the OTP bits, so we go with the default and hope for the
1172 * best.
1173 */
1174 geometry->stride_size_in_pages = 64;
1175
1176 /*
1177 * Set the search area stride exponent.
1178 *
1179 * In principle, we should be reading this from the OTP bits, since
1180 * that's where the ROM is going to get it. In fact, we don't have any
1181 * way to read the OTP bits, so we go with the default and hope for the
1182 * best.
1183 */
1184 geometry->search_area_stride_exponent = 2;
1185 return 0;
1186}
1187
1188static const char *fingerprint = "STMP";
Wolfram Sanga78da282012-03-21 19:29:17 +01001189static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001190{
1191 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1192 struct device *dev = this->dev;
1193 struct mtd_info *mtd = &this->mtd;
1194 struct nand_chip *chip = &this->nand;
1195 unsigned int search_area_size_in_strides;
1196 unsigned int stride;
1197 unsigned int page;
1198 loff_t byte;
1199 uint8_t *buffer = chip->buffers->databuf;
1200 int saved_chip_number;
1201 int found_an_ncb_fingerprint = false;
1202
1203 /* Compute the number of strides in a search area. */
1204 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1205
1206 saved_chip_number = this->current_chip;
1207 chip->select_chip(mtd, 0);
1208
1209 /*
1210 * Loop through the first search area, looking for the NCB fingerprint.
1211 */
1212 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1213
1214 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1215 /* Compute the page and byte addresses. */
1216 page = stride * rom_geo->stride_size_in_pages;
1217 byte = page * mtd->writesize;
1218
1219 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1220
1221 /*
1222 * Read the NCB fingerprint. The fingerprint is four bytes long
1223 * and starts in the 12th byte of the page.
1224 */
1225 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1226 chip->read_buf(mtd, buffer, strlen(fingerprint));
1227
1228 /* Look for the fingerprint. */
1229 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1230 found_an_ncb_fingerprint = true;
1231 break;
1232 }
1233
1234 }
1235
1236 chip->select_chip(mtd, saved_chip_number);
1237
1238 if (found_an_ncb_fingerprint)
1239 dev_dbg(dev, "\tFound a fingerprint\n");
1240 else
1241 dev_dbg(dev, "\tNo fingerprint found\n");
1242 return found_an_ncb_fingerprint;
1243}
1244
1245/* Writes a transcription stamp. */
Wolfram Sanga78da282012-03-21 19:29:17 +01001246static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001247{
1248 struct device *dev = this->dev;
1249 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1250 struct mtd_info *mtd = &this->mtd;
1251 struct nand_chip *chip = &this->nand;
1252 unsigned int block_size_in_pages;
1253 unsigned int search_area_size_in_strides;
1254 unsigned int search_area_size_in_pages;
1255 unsigned int search_area_size_in_blocks;
1256 unsigned int block;
1257 unsigned int stride;
1258 unsigned int page;
1259 loff_t byte;
1260 uint8_t *buffer = chip->buffers->databuf;
1261 int saved_chip_number;
1262 int status;
1263
1264 /* Compute the search area geometry. */
1265 block_size_in_pages = mtd->erasesize / mtd->writesize;
1266 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1267 search_area_size_in_pages = search_area_size_in_strides *
1268 rom_geo->stride_size_in_pages;
1269 search_area_size_in_blocks =
1270 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1271 block_size_in_pages;
1272
1273 dev_dbg(dev, "Search Area Geometry :\n");
1274 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1275 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1276 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1277
1278 /* Select chip 0. */
1279 saved_chip_number = this->current_chip;
1280 chip->select_chip(mtd, 0);
1281
1282 /* Loop over blocks in the first search area, erasing them. */
1283 dev_dbg(dev, "Erasing the search area...\n");
1284
1285 for (block = 0; block < search_area_size_in_blocks; block++) {
1286 /* Compute the page address. */
1287 page = block * block_size_in_pages;
1288
1289 /* Erase this block. */
1290 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1291 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1292 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1293
1294 /* Wait for the erase to finish. */
1295 status = chip->waitfunc(mtd, chip);
1296 if (status & NAND_STATUS_FAIL)
1297 dev_err(dev, "[%s] Erase failed.\n", __func__);
1298 }
1299
1300 /* Write the NCB fingerprint into the page buffer. */
1301 memset(buffer, ~0, mtd->writesize);
1302 memset(chip->oob_poi, ~0, mtd->oobsize);
1303 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1304
1305 /* Loop through the first search area, writing NCB fingerprints. */
1306 dev_dbg(dev, "Writing NCB fingerprints...\n");
1307 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1308 /* Compute the page and byte addresses. */
1309 page = stride * rom_geo->stride_size_in_pages;
1310 byte = page * mtd->writesize;
1311
1312 /* Write the first page of the current stride. */
1313 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1314 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
Brian Norris1fbb9382012-05-02 10:14:55 -07001315 chip->ecc.write_page_raw(mtd, chip, buffer, 0);
Huang Shijie10a2bca2011-09-08 10:47:09 +08001316 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1317
1318 /* Wait for the write to finish. */
1319 status = chip->waitfunc(mtd, chip);
1320 if (status & NAND_STATUS_FAIL)
1321 dev_err(dev, "[%s] Write failed.\n", __func__);
1322 }
1323
1324 /* Deselect chip 0. */
1325 chip->select_chip(mtd, saved_chip_number);
1326 return 0;
1327}
1328
Wolfram Sanga78da282012-03-21 19:29:17 +01001329static int mx23_boot_init(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001330{
1331 struct device *dev = this->dev;
1332 struct nand_chip *chip = &this->nand;
1333 struct mtd_info *mtd = &this->mtd;
1334 unsigned int block_count;
1335 unsigned int block;
1336 int chipnr;
1337 int page;
1338 loff_t byte;
1339 uint8_t block_mark;
1340 int ret = 0;
1341
1342 /*
1343 * If control arrives here, we can't use block mark swapping, which
1344 * means we're forced to use transcription. First, scan for the
1345 * transcription stamp. If we find it, then we don't have to do
1346 * anything -- the block marks are already transcribed.
1347 */
1348 if (mx23_check_transcription_stamp(this))
1349 return 0;
1350
1351 /*
1352 * If control arrives here, we couldn't find a transcription stamp, so
1353 * so we presume the block marks are in the conventional location.
1354 */
1355 dev_dbg(dev, "Transcribing bad block marks...\n");
1356
1357 /* Compute the number of blocks in the entire medium. */
1358 block_count = chip->chipsize >> chip->phys_erase_shift;
1359
1360 /*
1361 * Loop over all the blocks in the medium, transcribing block marks as
1362 * we go.
1363 */
1364 for (block = 0; block < block_count; block++) {
1365 /*
1366 * Compute the chip, page and byte addresses for this block's
1367 * conventional mark.
1368 */
1369 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1370 page = block << (chip->phys_erase_shift - chip->page_shift);
1371 byte = block << chip->phys_erase_shift;
1372
1373 /* Send the command to read the conventional block mark. */
1374 chip->select_chip(mtd, chipnr);
1375 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1376 block_mark = chip->read_byte(mtd);
1377 chip->select_chip(mtd, -1);
1378
1379 /*
1380 * Check if the block is marked bad. If so, we need to mark it
1381 * again, but this time the result will be a mark in the
1382 * location where we transcribe block marks.
1383 */
1384 if (block_mark != 0xff) {
1385 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1386 ret = chip->block_markbad(mtd, byte);
1387 if (ret)
1388 dev_err(dev, "Failed to mark block bad with "
1389 "ret %d\n", ret);
1390 }
1391 }
1392
1393 /* Write the stamp that indicates we've transcribed the block marks. */
1394 mx23_write_transcription_stamp(this);
1395 return 0;
1396}
1397
Wolfram Sanga78da282012-03-21 19:29:17 +01001398static int nand_boot_init(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001399{
1400 nand_boot_set_geometry(this);
1401
1402 /* This is ROM arch-specific initilization before the BBT scanning. */
1403 if (GPMI_IS_MX23(this))
1404 return mx23_boot_init(this);
1405 return 0;
1406}
1407
Wolfram Sanga78da282012-03-21 19:29:17 +01001408static int gpmi_set_geometry(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001409{
1410 int ret;
1411
1412 /* Free the temporary DMA memory for reading ID. */
1413 gpmi_free_dma_buffer(this);
1414
1415 /* Set up the NFC geometry which is used by BCH. */
1416 ret = bch_set_geometry(this);
1417 if (ret) {
1418 pr_err("set geometry ret : %d\n", ret);
1419 return ret;
1420 }
1421
1422 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1423 return gpmi_alloc_dma_buffer(this);
1424}
1425
1426static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1427{
1428 int ret;
1429
1430 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1431 if (GPMI_IS_MX23(this))
1432 this->swap_block_mark = false;
1433 else
1434 this->swap_block_mark = true;
1435
1436 /* Set up the medium geometry */
1437 ret = gpmi_set_geometry(this);
1438 if (ret)
1439 return ret;
1440
1441 /* NAND boot init, depends on the gpmi_set_geometry(). */
1442 return nand_boot_init(this);
1443}
1444
1445static int gpmi_scan_bbt(struct mtd_info *mtd)
1446{
1447 struct nand_chip *chip = mtd->priv;
1448 struct gpmi_nand_data *this = chip->priv;
1449 int ret;
1450
1451 /* Prepare for the BBT scan. */
1452 ret = gpmi_pre_bbt_scan(this);
1453 if (ret)
1454 return ret;
1455
1456 /* use the default BBT implementation */
1457 return nand_default_bbt(mtd);
1458}
1459
1460void gpmi_nfc_exit(struct gpmi_nand_data *this)
1461{
1462 nand_release(&this->mtd);
1463 gpmi_free_dma_buffer(this);
1464}
1465
1466static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1467{
1468 struct gpmi_nand_platform_data *pdata = this->pdata;
1469 struct mtd_info *mtd = &this->mtd;
1470 struct nand_chip *chip = &this->nand;
1471 int ret;
1472
1473 /* init current chip */
1474 this->current_chip = -1;
1475
1476 /* init the MTD data structures */
1477 mtd->priv = chip;
1478 mtd->name = "gpmi-nand";
1479 mtd->owner = THIS_MODULE;
1480
1481 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1482 chip->priv = this;
1483 chip->select_chip = gpmi_select_chip;
1484 chip->cmd_ctrl = gpmi_cmd_ctrl;
1485 chip->dev_ready = gpmi_dev_ready;
1486 chip->read_byte = gpmi_read_byte;
1487 chip->read_buf = gpmi_read_buf;
1488 chip->write_buf = gpmi_write_buf;
1489 chip->ecc.read_page = gpmi_ecc_read_page;
1490 chip->ecc.write_page = gpmi_ecc_write_page;
1491 chip->ecc.read_oob = gpmi_ecc_read_oob;
1492 chip->ecc.write_oob = gpmi_ecc_write_oob;
1493 chip->scan_bbt = gpmi_scan_bbt;
1494 chip->badblock_pattern = &gpmi_bbt_descr;
1495 chip->block_markbad = gpmi_block_markbad;
1496 chip->options |= NAND_NO_SUBPAGE_WRITE;
1497 chip->ecc.mode = NAND_ECC_HW;
1498 chip->ecc.size = 1;
1499 chip->ecc.layout = &gpmi_hw_ecclayout;
1500
1501 /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1502 this->bch_geometry.payload_size = 1024;
1503 this->bch_geometry.auxiliary_size = 128;
1504 ret = gpmi_alloc_dma_buffer(this);
1505 if (ret)
1506 goto err_out;
1507
1508 ret = nand_scan(mtd, pdata->max_chip_count);
1509 if (ret) {
1510 pr_err("Chip scan failed\n");
1511 goto err_out;
1512 }
1513
1514 ret = mtd_device_parse_register(mtd, NULL, NULL,
1515 pdata->partitions, pdata->partition_count);
1516 if (ret)
1517 goto err_out;
1518 return 0;
1519
1520err_out:
1521 gpmi_nfc_exit(this);
1522 return ret;
1523}
1524
1525static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1526{
1527 struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
1528 struct gpmi_nand_data *this;
1529 int ret;
1530
1531 this = kzalloc(sizeof(*this), GFP_KERNEL);
1532 if (!this) {
1533 pr_err("Failed to allocate per-device memory\n");
1534 return -ENOMEM;
1535 }
1536
1537 platform_set_drvdata(pdev, this);
1538 this->pdev = pdev;
1539 this->dev = &pdev->dev;
1540 this->pdata = pdata;
1541
1542 if (pdata->platform_init) {
1543 ret = pdata->platform_init();
1544 if (ret)
1545 goto platform_init_error;
1546 }
1547
1548 ret = acquire_resources(this);
1549 if (ret)
1550 goto exit_acquire_resources;
1551
1552 ret = init_hardware(this);
1553 if (ret)
1554 goto exit_nfc_init;
1555
1556 ret = gpmi_nfc_init(this);
1557 if (ret)
1558 goto exit_nfc_init;
1559
1560 return 0;
1561
1562exit_nfc_init:
1563 release_resources(this);
1564platform_init_error:
1565exit_acquire_resources:
1566 platform_set_drvdata(pdev, NULL);
1567 kfree(this);
1568 return ret;
1569}
1570
1571static int __exit gpmi_nand_remove(struct platform_device *pdev)
1572{
1573 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1574
1575 gpmi_nfc_exit(this);
1576 release_resources(this);
1577 platform_set_drvdata(pdev, NULL);
1578 kfree(this);
1579 return 0;
1580}
1581
1582static const struct platform_device_id gpmi_ids[] = {
1583 {
1584 .name = "imx23-gpmi-nand",
1585 .driver_data = IS_MX23,
1586 }, {
1587 .name = "imx28-gpmi-nand",
1588 .driver_data = IS_MX28,
1589 }, {},
1590};
1591
1592static struct platform_driver gpmi_nand_driver = {
1593 .driver = {
1594 .name = "gpmi-nand",
1595 },
1596 .probe = gpmi_nand_probe,
1597 .remove = __exit_p(gpmi_nand_remove),
1598 .id_table = gpmi_ids,
1599};
1600
1601static int __init gpmi_nand_init(void)
1602{
1603 int err;
1604
1605 err = platform_driver_register(&gpmi_nand_driver);
1606 if (err == 0)
1607 printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
1608 else
1609 pr_err("i.MX GPMI NAND driver registration failed\n");
1610 return err;
1611}
1612
1613static void __exit gpmi_nand_exit(void)
1614{
1615 platform_driver_unregister(&gpmi_nand_driver);
1616}
1617
1618module_init(gpmi_nand_init);
1619module_exit(gpmi_nand_exit);
1620
1621MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1622MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1623MODULE_LICENSE("GPL");