Rupjyoti Sarmah | 6293600 | 2010-07-06 16:36:03 +0530 | [diff] [blame] | 1 | /* |
| 2 | * drivers/ata/sata_dwc_460ex.c |
| 3 | * |
| 4 | * Synopsys DesignWare Cores (DWC) SATA host driver |
| 5 | * |
| 6 | * Author: Mark Miesfeld <mmiesfeld@amcc.com> |
| 7 | * |
| 8 | * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> |
| 9 | * Copyright 2008 DENX Software Engineering |
| 10 | * |
| 11 | * Based on versions provided by AMCC and Synopsys which are: |
| 12 | * Copyright 2006 Applied Micro Circuits Corporation |
| 13 | * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or modify it |
| 16 | * under the terms of the GNU General Public License as published by the |
| 17 | * Free Software Foundation; either version 2 of the License, or (at your |
| 18 | * option) any later version. |
| 19 | */ |
| 20 | |
| 21 | #ifdef CONFIG_SATA_DWC_DEBUG |
| 22 | #define DEBUG |
| 23 | #endif |
| 24 | |
| 25 | #ifdef CONFIG_SATA_DWC_VDEBUG |
| 26 | #define VERBOSE_DEBUG |
| 27 | #define DEBUG_NCQ |
| 28 | #endif |
| 29 | |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/device.h> |
| 34 | #include <linux/of_platform.h> |
| 35 | #include <linux/platform_device.h> |
| 36 | #include <linux/libata.h> |
| 37 | #include <linux/slab.h> |
| 38 | #include "libata.h" |
| 39 | |
| 40 | #include <scsi/scsi_host.h> |
| 41 | #include <scsi/scsi_cmnd.h> |
| 42 | |
| 43 | #define DRV_NAME "sata-dwc" |
| 44 | #define DRV_VERSION "1.0" |
| 45 | |
| 46 | /* SATA DMA driver Globals */ |
| 47 | #define DMA_NUM_CHANS 1 |
| 48 | #define DMA_NUM_CHAN_REGS 8 |
| 49 | |
| 50 | /* SATA DMA Register definitions */ |
| 51 | #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/ |
| 52 | |
| 53 | struct dmareg { |
| 54 | u32 low; /* Low bits 0-31 */ |
| 55 | u32 high; /* High bits 32-63 */ |
| 56 | }; |
| 57 | |
| 58 | /* DMA Per Channel registers */ |
| 59 | struct dma_chan_regs { |
| 60 | struct dmareg sar; /* Source Address */ |
| 61 | struct dmareg dar; /* Destination address */ |
| 62 | struct dmareg llp; /* Linked List Pointer */ |
| 63 | struct dmareg ctl; /* Control */ |
| 64 | struct dmareg sstat; /* Source Status not implemented in core */ |
| 65 | struct dmareg dstat; /* Destination Status not implemented in core*/ |
| 66 | struct dmareg sstatar; /* Source Status Address not impl in core */ |
| 67 | struct dmareg dstatar; /* Destination Status Address not implemente */ |
| 68 | struct dmareg cfg; /* Config */ |
| 69 | struct dmareg sgr; /* Source Gather */ |
| 70 | struct dmareg dsr; /* Destination Scatter */ |
| 71 | }; |
| 72 | |
| 73 | /* Generic Interrupt Registers */ |
| 74 | struct dma_interrupt_regs { |
| 75 | struct dmareg tfr; /* Transfer Interrupt */ |
| 76 | struct dmareg block; /* Block Interrupt */ |
| 77 | struct dmareg srctran; /* Source Transfer Interrupt */ |
| 78 | struct dmareg dsttran; /* Dest Transfer Interrupt */ |
| 79 | struct dmareg error; /* Error */ |
| 80 | }; |
| 81 | |
| 82 | struct ahb_dma_regs { |
| 83 | struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; |
| 84 | struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ |
| 85 | struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ |
| 86 | struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ |
| 87 | struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ |
| 88 | struct dmareg statusInt; /* Interrupt combined*/ |
| 89 | struct dmareg rq_srcreg; /* Src Trans Req */ |
| 90 | struct dmareg rq_dstreg; /* Dst Trans Req */ |
| 91 | struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/ |
| 92 | struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/ |
| 93 | struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/ |
| 94 | struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/ |
| 95 | struct dmareg dma_cfg; /* DMA Config */ |
| 96 | struct dmareg dma_chan_en; /* DMA Channel Enable*/ |
| 97 | struct dmareg dma_id; /* DMA ID */ |
| 98 | struct dmareg dma_test; /* DMA Test */ |
| 99 | struct dmareg res1; /* reserved */ |
| 100 | struct dmareg res2; /* reserved */ |
| 101 | /* |
| 102 | * DMA Comp Params |
| 103 | * Param 6 = dma_param[0], Param 5 = dma_param[1], |
| 104 | * Param 4 = dma_param[2] ... |
| 105 | */ |
| 106 | struct dmareg dma_params[6]; |
| 107 | }; |
| 108 | |
| 109 | /* Data structure for linked list item */ |
| 110 | struct lli { |
| 111 | u32 sar; /* Source Address */ |
| 112 | u32 dar; /* Destination address */ |
| 113 | u32 llp; /* Linked List Pointer */ |
| 114 | struct dmareg ctl; /* Control */ |
| 115 | struct dmareg dstat; /* Destination Status */ |
| 116 | }; |
| 117 | |
| 118 | enum { |
| 119 | SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)), |
| 120 | SATA_DWC_DMAC_LLI_NUM = 256, |
| 121 | SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \ |
| 122 | SATA_DWC_DMAC_LLI_NUM), |
| 123 | SATA_DWC_DMAC_TWIDTH_BYTES = 4, |
| 124 | SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \ |
| 125 | SATA_DWC_DMAC_TWIDTH_BYTES), |
| 126 | }; |
| 127 | |
| 128 | /* DMA Register Operation Bits */ |
| 129 | enum { |
| 130 | DMA_EN = 0x00000001, /* Enable AHB DMA */ |
| 131 | DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */ |
| 132 | DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */ |
| 133 | }; |
| 134 | |
| 135 | #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ |
| 136 | #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ |
| 137 | /* Enable channel */ |
| 138 | #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ |
| 139 | ((0x000000001 << (ch)) << 8)) |
| 140 | /* Disable channel */ |
| 141 | #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) |
| 142 | /* Transfer Type & Flow Controller */ |
| 143 | #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20) |
| 144 | #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */ |
| 145 | #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */ |
| 146 | /* Src Burst Transaction Length */ |
| 147 | #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14) |
| 148 | /* Dst Burst Transaction Length */ |
| 149 | #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11) |
| 150 | /* Source Transfer Width */ |
| 151 | #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4) |
| 152 | /* Destination Transfer Width */ |
| 153 | #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1) |
| 154 | |
| 155 | /* Assign HW handshaking interface (x) to destination / source peripheral */ |
| 156 | #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11) |
| 157 | #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7) |
| 158 | #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) |
| 159 | |
| 160 | /* |
| 161 | * This define is used to set block chaining disabled in the control low |
| 162 | * register. It is already in little endian format so it can be &'d dirctly. |
| 163 | * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) |
| 164 | */ |
| 165 | enum { |
| 166 | DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7, |
| 167 | DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */ |
| 168 | DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */ |
| 169 | DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */ |
| 170 | DMA_CTL_SINC_DEC = 0x00000200, |
| 171 | DMA_CTL_SINC_NOCHANGE = 0x00000400, |
| 172 | DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */ |
| 173 | DMA_CTL_DINC_DEC = 0x00000080, |
| 174 | DMA_CTL_DINC_NOCHANGE = 0x00000100, |
| 175 | DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */ |
| 176 | |
| 177 | /* Channel Configuration Register high bits */ |
| 178 | DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */ |
| 179 | DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */ |
| 180 | |
| 181 | /* Channel Configuration Register low bits */ |
| 182 | DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */ |
| 183 | DMA_CFG_RELD_SRC = 0x40000000, |
| 184 | DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */ |
| 185 | DMA_CFG_HS_SELDST = 0x00000400, |
| 186 | DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */ |
| 187 | |
| 188 | /* Channel Linked List Pointer Register */ |
| 189 | DMA_LLP_AHBMASTER1 = 0, /* List Master Select */ |
| 190 | DMA_LLP_AHBMASTER2 = 1, |
| 191 | |
| 192 | SATA_DWC_MAX_PORTS = 1, |
| 193 | |
| 194 | SATA_DWC_SCR_OFFSET = 0x24, |
| 195 | SATA_DWC_REG_OFFSET = 0x64, |
| 196 | }; |
| 197 | |
| 198 | /* DWC SATA Registers */ |
| 199 | struct sata_dwc_regs { |
| 200 | u32 fptagr; /* 1st party DMA tag */ |
| 201 | u32 fpbor; /* 1st party DMA buffer offset */ |
| 202 | u32 fptcr; /* 1st party DMA Xfr count */ |
| 203 | u32 dmacr; /* DMA Control */ |
| 204 | u32 dbtsr; /* DMA Burst Transac size */ |
| 205 | u32 intpr; /* Interrupt Pending */ |
| 206 | u32 intmr; /* Interrupt Mask */ |
| 207 | u32 errmr; /* Error Mask */ |
| 208 | u32 llcr; /* Link Layer Control */ |
| 209 | u32 phycr; /* PHY Control */ |
| 210 | u32 physr; /* PHY Status */ |
| 211 | u32 rxbistpd; /* Recvd BIST pattern def register */ |
| 212 | u32 rxbistpd1; /* Recvd BIST data dword1 */ |
| 213 | u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ |
| 214 | u32 txbistpd; /* Trans BIST pattern def register */ |
| 215 | u32 txbistpd1; /* Trans BIST data dword1 */ |
| 216 | u32 txbistpd2; /* Trans BIST data dword2 */ |
| 217 | u32 bistcr; /* BIST Control Register */ |
| 218 | u32 bistfctr; /* BIST FIS Count Register */ |
| 219 | u32 bistsr; /* BIST Status Register */ |
| 220 | u32 bistdecr; /* BIST Dword Error count register */ |
| 221 | u32 res[15]; /* Reserved locations */ |
| 222 | u32 testr; /* Test Register */ |
| 223 | u32 versionr; /* Version Register */ |
| 224 | u32 idr; /* ID Register */ |
| 225 | u32 unimpl[192]; /* Unimplemented */ |
| 226 | u32 dmadr[256]; /* FIFO Locations in DMA Mode */ |
| 227 | }; |
| 228 | |
| 229 | enum { |
| 230 | SCR_SCONTROL_DET_ENABLE = 0x00000001, |
| 231 | SCR_SSTATUS_DET_PRESENT = 0x00000001, |
| 232 | SCR_SERROR_DIAG_X = 0x04000000, |
| 233 | /* DWC SATA Register Operations */ |
| 234 | SATA_DWC_TXFIFO_DEPTH = 0x01FF, |
| 235 | SATA_DWC_RXFIFO_DEPTH = 0x01FF, |
| 236 | SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004, |
| 237 | SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), |
| 238 | SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), |
| 239 | SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN, |
| 240 | SATA_DWC_INTPR_DMAT = 0x00000001, |
| 241 | SATA_DWC_INTPR_NEWFP = 0x00000002, |
| 242 | SATA_DWC_INTPR_PMABRT = 0x00000004, |
| 243 | SATA_DWC_INTPR_ERR = 0x00000008, |
| 244 | SATA_DWC_INTPR_NEWBIST = 0x00000010, |
| 245 | SATA_DWC_INTPR_IPF = 0x10000000, |
| 246 | SATA_DWC_INTMR_DMATM = 0x00000001, |
| 247 | SATA_DWC_INTMR_NEWFPM = 0x00000002, |
| 248 | SATA_DWC_INTMR_PMABRTM = 0x00000004, |
| 249 | SATA_DWC_INTMR_ERRM = 0x00000008, |
| 250 | SATA_DWC_INTMR_NEWBISTM = 0x00000010, |
| 251 | SATA_DWC_LLCR_SCRAMEN = 0x00000001, |
| 252 | SATA_DWC_LLCR_DESCRAMEN = 0x00000002, |
| 253 | SATA_DWC_LLCR_RPDEN = 0x00000004, |
| 254 | /* This is all error bits, zero's are reserved fields. */ |
| 255 | SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03 |
| 256 | }; |
| 257 | |
| 258 | #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F) |
| 259 | #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\ |
| 260 | SATA_DWC_DMACR_TMOD_TXCHEN) |
| 261 | #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\ |
| 262 | SATA_DWC_DMACR_TMOD_TXCHEN) |
| 263 | #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH) |
| 264 | #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ |
| 265 | << 16) |
| 266 | struct sata_dwc_device { |
| 267 | struct device *dev; /* generic device struct */ |
| 268 | struct ata_probe_ent *pe; /* ptr to probe-ent */ |
| 269 | struct ata_host *host; |
| 270 | u8 *reg_base; |
| 271 | struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ |
| 272 | int irq_dma; |
| 273 | }; |
| 274 | |
| 275 | #define SATA_DWC_QCMD_MAX 32 |
| 276 | |
| 277 | struct sata_dwc_device_port { |
| 278 | struct sata_dwc_device *hsdev; |
| 279 | int cmd_issued[SATA_DWC_QCMD_MAX]; |
| 280 | struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */ |
| 281 | dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; |
| 282 | u32 dma_chan[SATA_DWC_QCMD_MAX]; |
| 283 | int dma_pending[SATA_DWC_QCMD_MAX]; |
| 284 | }; |
| 285 | |
| 286 | /* |
| 287 | * Commonly used DWC SATA driver Macros |
| 288 | */ |
| 289 | #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\ |
| 290 | (host)->private_data) |
| 291 | #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\ |
| 292 | (ap)->host->private_data) |
| 293 | #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\ |
| 294 | (ap)->private_data) |
| 295 | #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\ |
| 296 | (qc)->ap->host->private_data) |
| 297 | #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\ |
| 298 | (hsdevp)->hsdev) |
| 299 | |
| 300 | enum { |
| 301 | SATA_DWC_CMD_ISSUED_NOT = 0, |
| 302 | SATA_DWC_CMD_ISSUED_PEND = 1, |
| 303 | SATA_DWC_CMD_ISSUED_EXEC = 2, |
| 304 | SATA_DWC_CMD_ISSUED_NODATA = 3, |
| 305 | |
| 306 | SATA_DWC_DMA_PENDING_NONE = 0, |
| 307 | SATA_DWC_DMA_PENDING_TX = 1, |
| 308 | SATA_DWC_DMA_PENDING_RX = 2, |
| 309 | }; |
| 310 | |
| 311 | struct sata_dwc_host_priv { |
| 312 | void __iomem *scr_addr_sstatus; |
| 313 | u32 sata_dwc_sactive_issued ; |
| 314 | u32 sata_dwc_sactive_queued ; |
| 315 | u32 dma_interrupt_count; |
| 316 | struct ahb_dma_regs *sata_dma_regs; |
| 317 | struct device *dwc_dev; |
| 318 | }; |
| 319 | struct sata_dwc_host_priv host_pvt; |
| 320 | /* |
| 321 | * Prototypes |
| 322 | */ |
| 323 | static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); |
| 324 | static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, |
| 325 | u32 check_status); |
| 326 | static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); |
| 327 | static void sata_dwc_port_stop(struct ata_port *ap); |
| 328 | static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); |
| 329 | static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq); |
| 330 | static void dma_dwc_exit(struct sata_dwc_device *hsdev); |
| 331 | static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, |
| 332 | struct lli *lli, dma_addr_t dma_lli, |
| 333 | void __iomem *addr, int dir); |
| 334 | static void dma_dwc_xfer_start(int dma_ch); |
| 335 | |
| 336 | static void sata_dwc_tf_dump(struct ata_taskfile *tf) |
| 337 | { |
| 338 | dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:" |
| 339 | "0x%lx device: %x\n", tf->command, ata_get_cmd_descript\ |
| 340 | (tf->protocol), tf->flags, tf->device); |
| 341 | dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x " |
| 342 | "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, |
| 343 | tf->lbam, tf->lbah); |
| 344 | dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x " |
| 345 | "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", |
| 346 | tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, |
| 347 | tf->hob_lbah); |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * Function: get_burst_length_encode |
| 352 | * arguments: datalength: length in bytes of data |
| 353 | * returns value to be programmed in register corrresponding to data length |
| 354 | * This value is effectively the log(base 2) of the length |
| 355 | */ |
| 356 | static int get_burst_length_encode(int datalength) |
| 357 | { |
| 358 | int items = datalength >> 2; /* div by 4 to get lword count */ |
| 359 | |
| 360 | if (items >= 64) |
| 361 | return 5; |
| 362 | |
| 363 | if (items >= 32) |
| 364 | return 4; |
| 365 | |
| 366 | if (items >= 16) |
| 367 | return 3; |
| 368 | |
| 369 | if (items >= 8) |
| 370 | return 2; |
| 371 | |
| 372 | if (items >= 4) |
| 373 | return 1; |
| 374 | |
| 375 | return 0; |
| 376 | } |
| 377 | |
| 378 | static void clear_chan_interrupts(int c) |
| 379 | { |
| 380 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low), |
| 381 | DMA_CHANNEL(c)); |
| 382 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low), |
| 383 | DMA_CHANNEL(c)); |
| 384 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low), |
| 385 | DMA_CHANNEL(c)); |
| 386 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low), |
| 387 | DMA_CHANNEL(c)); |
| 388 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low), |
| 389 | DMA_CHANNEL(c)); |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * Function: dma_request_channel |
| 394 | * arguments: None |
| 395 | * returns channel number if available else -1 |
| 396 | * This function assigns the next available DMA channel from the list to the |
| 397 | * requester |
| 398 | */ |
| 399 | static int dma_request_channel(void) |
| 400 | { |
| 401 | int i; |
| 402 | |
| 403 | for (i = 0; i < DMA_NUM_CHANS; i++) { |
| 404 | if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &\ |
| 405 | DMA_CHANNEL(i))) |
| 406 | return i; |
| 407 | } |
| 408 | dev_err(host_pvt.dwc_dev, "%s NO channel chan_en: 0x%08x\n", __func__, |
| 409 | in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low))); |
| 410 | return -1; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * Function: dma_dwc_interrupt |
| 415 | * arguments: irq, dev_id, pt_regs |
| 416 | * returns channel number if available else -1 |
| 417 | * Interrupt Handler for DW AHB SATA DMA |
| 418 | */ |
| 419 | static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance) |
| 420 | { |
| 421 | int chan; |
| 422 | u32 tfr_reg, err_reg; |
| 423 | unsigned long flags; |
| 424 | struct sata_dwc_device *hsdev = |
| 425 | (struct sata_dwc_device *)hsdev_instance; |
| 426 | struct ata_host *host = (struct ata_host *)hsdev->host; |
| 427 | struct ata_port *ap; |
| 428 | struct sata_dwc_device_port *hsdevp; |
| 429 | u8 tag = 0; |
| 430 | unsigned int port = 0; |
| 431 | |
| 432 | spin_lock_irqsave(&host->lock, flags); |
| 433 | ap = host->ports[port]; |
| 434 | hsdevp = HSDEVP_FROM_AP(ap); |
| 435 | tag = ap->link.active_tag; |
| 436 | |
| 437 | tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\ |
| 438 | .low)); |
| 439 | err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\ |
| 440 | .low)); |
| 441 | |
| 442 | dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", |
| 443 | tfr_reg, err_reg, hsdevp->dma_pending[tag], port); |
| 444 | |
| 445 | for (chan = 0; chan < DMA_NUM_CHANS; chan++) { |
| 446 | /* Check for end-of-transfer interrupt. */ |
| 447 | if (tfr_reg & DMA_CHANNEL(chan)) { |
| 448 | /* |
| 449 | * Each DMA command produces 2 interrupts. Only |
| 450 | * complete the command after both interrupts have been |
| 451 | * seen. (See sata_dwc_isr()) |
| 452 | */ |
| 453 | host_pvt.dma_interrupt_count++; |
| 454 | sata_dwc_clear_dmacr(hsdevp, tag); |
| 455 | |
| 456 | if (hsdevp->dma_pending[tag] == |
| 457 | SATA_DWC_DMA_PENDING_NONE) { |
| 458 | dev_err(ap->dev, "DMA not pending eot=0x%08x " |
| 459 | "err=0x%08x tag=0x%02x pending=%d\n", |
| 460 | tfr_reg, err_reg, tag, |
| 461 | hsdevp->dma_pending[tag]); |
| 462 | } |
| 463 | |
| 464 | if ((host_pvt.dma_interrupt_count % 2) == 0) |
| 465 | sata_dwc_dma_xfer_complete(ap, 1); |
| 466 | |
| 467 | /* Clear the interrupt */ |
| 468 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ |
| 469 | .tfr.low), |
| 470 | DMA_CHANNEL(chan)); |
| 471 | } |
| 472 | |
| 473 | /* Check for error interrupt. */ |
| 474 | if (err_reg & DMA_CHANNEL(chan)) { |
| 475 | /* TODO Need error handler ! */ |
| 476 | dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", |
| 477 | err_reg); |
| 478 | |
| 479 | /* Clear the interrupt. */ |
| 480 | out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ |
| 481 | .error.low), |
| 482 | DMA_CHANNEL(chan)); |
| 483 | } |
| 484 | } |
| 485 | spin_unlock_irqrestore(&host->lock, flags); |
| 486 | return IRQ_HANDLED; |
| 487 | } |
| 488 | |
| 489 | /* |
| 490 | * Function: dma_request_interrupts |
| 491 | * arguments: hsdev |
| 492 | * returns status |
| 493 | * This function registers ISR for a particular DMA channel interrupt |
| 494 | */ |
| 495 | static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) |
| 496 | { |
| 497 | int retval = 0; |
| 498 | int chan; |
| 499 | |
| 500 | for (chan = 0; chan < DMA_NUM_CHANS; chan++) { |
| 501 | /* Unmask error interrupt */ |
| 502 | out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low, |
| 503 | DMA_ENABLE_CHAN(chan)); |
| 504 | |
| 505 | /* Unmask end-of-transfer interrupt */ |
| 506 | out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low, |
| 507 | DMA_ENABLE_CHAN(chan)); |
| 508 | } |
| 509 | |
| 510 | retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev); |
| 511 | if (retval) { |
| 512 | dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n", |
| 513 | __func__, irq); |
| 514 | return -ENODEV; |
| 515 | } |
| 516 | |
| 517 | /* Mark this interrupt as requested */ |
| 518 | hsdev->irq_dma = irq; |
| 519 | return 0; |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * Function: map_sg_to_lli |
| 524 | * The Synopsis driver has a comment proposing that better performance |
| 525 | * is possible by only enabling interrupts on the last item in the linked list. |
| 526 | * However, it seems that could be a problem if an error happened on one of the |
| 527 | * first items. The transfer would halt, but no error interrupt would occur. |
| 528 | * Currently this function sets interrupts enabled for each linked list item: |
| 529 | * DMA_CTL_INT_EN. |
| 530 | */ |
| 531 | static int map_sg_to_lli(struct scatterlist *sg, int num_elems, |
| 532 | struct lli *lli, dma_addr_t dma_lli, |
| 533 | void __iomem *dmadr_addr, int dir) |
| 534 | { |
| 535 | int i, idx = 0; |
| 536 | int fis_len = 0; |
| 537 | dma_addr_t next_llp; |
| 538 | int bl; |
| 539 | |
| 540 | dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x" |
| 541 | " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli, |
| 542 | (u32)dmadr_addr); |
| 543 | |
| 544 | bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); |
| 545 | |
| 546 | for (i = 0; i < num_elems; i++, sg++) { |
| 547 | u32 addr, offset; |
| 548 | u32 sg_len, len; |
| 549 | |
| 550 | addr = (u32) sg_dma_address(sg); |
| 551 | sg_len = sg_dma_len(sg); |
| 552 | |
| 553 | dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len" |
| 554 | "=%d\n", __func__, i, addr, sg_len); |
| 555 | |
| 556 | while (sg_len) { |
| 557 | if (idx >= SATA_DWC_DMAC_LLI_NUM) { |
| 558 | /* The LLI table is not large enough. */ |
| 559 | dev_err(host_pvt.dwc_dev, "LLI table overrun " |
| 560 | "(idx=%d)\n", idx); |
| 561 | break; |
| 562 | } |
| 563 | len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? |
| 564 | SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; |
| 565 | |
| 566 | offset = addr & 0xffff; |
| 567 | if ((offset + sg_len) > 0x10000) |
| 568 | len = 0x10000 - offset; |
| 569 | |
| 570 | /* |
| 571 | * Make sure a LLI block is not created that will span |
| 572 | * 8K max FIS boundary. If the block spans such a FIS |
| 573 | * boundary, there is a chance that a DMA burst will |
| 574 | * cross that boundary -- this results in an error in |
| 575 | * the host controller. |
| 576 | */ |
| 577 | if (fis_len + len > 8192) { |
| 578 | dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len=" |
| 579 | "%d(0x%x) len=%d(0x%x)\n", fis_len, |
| 580 | fis_len, len, len); |
| 581 | len = 8192 - fis_len; |
| 582 | fis_len = 0; |
| 583 | } else { |
| 584 | fis_len += len; |
| 585 | } |
| 586 | if (fis_len == 8192) |
| 587 | fis_len = 0; |
| 588 | |
| 589 | /* |
| 590 | * Set DMA addresses and lower half of control register |
| 591 | * based on direction. |
| 592 | */ |
| 593 | if (dir == DMA_FROM_DEVICE) { |
| 594 | lli[idx].dar = cpu_to_le32(addr); |
| 595 | lli[idx].sar = cpu_to_le32((u32)dmadr_addr); |
| 596 | |
| 597 | lli[idx].ctl.low = cpu_to_le32( |
| 598 | DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | |
| 599 | DMA_CTL_SMS(0) | |
| 600 | DMA_CTL_DMS(1) | |
| 601 | DMA_CTL_SRC_MSIZE(bl) | |
| 602 | DMA_CTL_DST_MSIZE(bl) | |
| 603 | DMA_CTL_SINC_NOCHANGE | |
| 604 | DMA_CTL_SRC_TRWID(2) | |
| 605 | DMA_CTL_DST_TRWID(2) | |
| 606 | DMA_CTL_INT_EN | |
| 607 | DMA_CTL_LLP_SRCEN | |
| 608 | DMA_CTL_LLP_DSTEN); |
| 609 | } else { /* DMA_TO_DEVICE */ |
| 610 | lli[idx].sar = cpu_to_le32(addr); |
| 611 | lli[idx].dar = cpu_to_le32((u32)dmadr_addr); |
| 612 | |
| 613 | lli[idx].ctl.low = cpu_to_le32( |
| 614 | DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | |
| 615 | DMA_CTL_SMS(1) | |
| 616 | DMA_CTL_DMS(0) | |
| 617 | DMA_CTL_SRC_MSIZE(bl) | |
| 618 | DMA_CTL_DST_MSIZE(bl) | |
| 619 | DMA_CTL_DINC_NOCHANGE | |
| 620 | DMA_CTL_SRC_TRWID(2) | |
| 621 | DMA_CTL_DST_TRWID(2) | |
| 622 | DMA_CTL_INT_EN | |
| 623 | DMA_CTL_LLP_SRCEN | |
| 624 | DMA_CTL_LLP_DSTEN); |
| 625 | } |
| 626 | |
| 627 | dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: " |
| 628 | "0x%08x val: 0x%08x\n", __func__, |
| 629 | len, DMA_CTL_BLK_TS(len / 4)); |
| 630 | |
| 631 | /* Program the LLI CTL high register */ |
| 632 | lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\ |
| 633 | (len / 4)); |
| 634 | |
| 635 | /* Program the next pointer. The next pointer must be |
| 636 | * the physical address, not the virtual address. |
| 637 | */ |
| 638 | next_llp = (dma_lli + ((idx + 1) * sizeof(struct \ |
| 639 | lli))); |
| 640 | |
| 641 | /* The last 2 bits encode the list master select. */ |
| 642 | next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); |
| 643 | |
| 644 | lli[idx].llp = cpu_to_le32(next_llp); |
| 645 | idx++; |
| 646 | sg_len -= len; |
| 647 | addr += len; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | /* |
| 652 | * The last next ptr has to be zero and the last control low register |
| 653 | * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source |
| 654 | * and destination enable) set back to 0 (disabled.) This is what tells |
| 655 | * the core that this is the last item in the linked list. |
| 656 | */ |
| 657 | if (idx) { |
| 658 | lli[idx-1].llp = 0x00000000; |
| 659 | lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; |
| 660 | |
| 661 | /* Flush cache to memory */ |
| 662 | dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), |
| 663 | DMA_BIDIRECTIONAL); |
| 664 | } |
| 665 | |
| 666 | return idx; |
| 667 | } |
| 668 | |
| 669 | /* |
| 670 | * Function: dma_dwc_xfer_start |
| 671 | * arguments: Channel number |
| 672 | * Return : None |
| 673 | * Enables the DMA channel |
| 674 | */ |
| 675 | static void dma_dwc_xfer_start(int dma_ch) |
| 676 | { |
| 677 | /* Enable the DMA channel */ |
| 678 | out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low), |
| 679 | in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) | |
| 680 | DMA_ENABLE_CHAN(dma_ch)); |
| 681 | } |
| 682 | |
| 683 | static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, |
| 684 | struct lli *lli, dma_addr_t dma_lli, |
| 685 | void __iomem *addr, int dir) |
| 686 | { |
| 687 | int dma_ch; |
| 688 | int num_lli; |
| 689 | /* Acquire DMA channel */ |
| 690 | dma_ch = dma_request_channel(); |
| 691 | if (dma_ch == -1) { |
| 692 | dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n", |
| 693 | __func__); |
| 694 | return -EAGAIN; |
| 695 | } |
| 696 | |
| 697 | /* Convert SG list to linked list of items (LLIs) for AHB DMA */ |
| 698 | num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir); |
| 699 | |
| 700 | dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:" |
| 701 | " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems, |
| 702 | lli, (u32)dma_lli, addr, num_lli); |
| 703 | |
| 704 | clear_chan_interrupts(dma_ch); |
| 705 | |
| 706 | /* Program the CFG register. */ |
| 707 | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high), |
| 708 | DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); |
| 709 | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 0); |
| 710 | |
| 711 | /* Program the address of the linked list */ |
| 712 | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low), |
| 713 | DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); |
| 714 | |
| 715 | /* Program the CTL register with src enable / dst enable */ |
| 716 | out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low), |
| 717 | DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); |
| 718 | return 0; |
| 719 | } |
| 720 | |
| 721 | /* |
| 722 | * Function: dma_dwc_exit |
| 723 | * arguments: None |
| 724 | * returns status |
| 725 | * This function exits the SATA DMA driver |
| 726 | */ |
| 727 | static void dma_dwc_exit(struct sata_dwc_device *hsdev) |
| 728 | { |
| 729 | dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__); |
| 730 | if (host_pvt.sata_dma_regs) |
| 731 | iounmap(host_pvt.sata_dma_regs); |
| 732 | |
| 733 | if (hsdev->irq_dma) |
| 734 | free_irq(hsdev->irq_dma, hsdev); |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * Function: dma_dwc_init |
| 739 | * arguments: hsdev |
| 740 | * returns status |
| 741 | * This function initializes the SATA DMA driver |
| 742 | */ |
| 743 | static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq) |
| 744 | { |
| 745 | int err; |
| 746 | |
| 747 | err = dma_request_interrupts(hsdev, irq); |
| 748 | if (err) { |
| 749 | dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns" |
| 750 | " %d\n", __func__, err); |
| 751 | goto error_out; |
| 752 | } |
| 753 | |
| 754 | /* Enabe DMA */ |
| 755 | out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN); |
| 756 | |
| 757 | dev_notice(host_pvt.dwc_dev, "DMA initialized\n"); |
| 758 | dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\ |
| 759 | sata_dma_regs); |
| 760 | |
| 761 | return 0; |
| 762 | |
| 763 | error_out: |
| 764 | dma_dwc_exit(hsdev); |
| 765 | |
| 766 | return err; |
| 767 | } |
| 768 | |
| 769 | static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) |
| 770 | { |
| 771 | if (scr > SCR_NOTIFICATION) { |
| 772 | dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", |
| 773 | __func__, scr); |
| 774 | return -EINVAL; |
| 775 | } |
| 776 | |
| 777 | *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); |
| 778 | dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", |
| 779 | __func__, link->ap->print_id, scr, *val); |
| 780 | |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) |
| 785 | { |
| 786 | dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", |
| 787 | __func__, link->ap->print_id, scr, val); |
| 788 | if (scr > SCR_NOTIFICATION) { |
| 789 | dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", |
| 790 | __func__, scr); |
| 791 | return -EINVAL; |
| 792 | } |
| 793 | out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); |
| 794 | |
| 795 | return 0; |
| 796 | } |
| 797 | |
| 798 | static u32 core_scr_read(unsigned int scr) |
| 799 | { |
| 800 | return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\ |
| 801 | (scr * 4)); |
| 802 | } |
| 803 | |
| 804 | static void core_scr_write(unsigned int scr, u32 val) |
| 805 | { |
| 806 | out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4), |
| 807 | val); |
| 808 | } |
| 809 | |
| 810 | static void clear_serror(void) |
| 811 | { |
| 812 | u32 val; |
| 813 | val = core_scr_read(SCR_ERROR); |
| 814 | core_scr_write(SCR_ERROR, val); |
| 815 | |
| 816 | } |
| 817 | |
| 818 | static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) |
| 819 | { |
| 820 | out_le32(&hsdev->sata_dwc_regs->intpr, |
| 821 | in_le32(&hsdev->sata_dwc_regs->intpr)); |
| 822 | } |
| 823 | |
| 824 | static u32 qcmd_tag_to_mask(u8 tag) |
| 825 | { |
| 826 | return 0x00000001 << (tag & 0x1f); |
| 827 | } |
| 828 | |
| 829 | /* See ahci.c */ |
| 830 | static void sata_dwc_error_intr(struct ata_port *ap, |
| 831 | struct sata_dwc_device *hsdev, uint intpr) |
| 832 | { |
| 833 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 834 | struct ata_eh_info *ehi = &ap->link.eh_info; |
| 835 | unsigned int err_mask = 0, action = 0; |
| 836 | struct ata_queued_cmd *qc; |
| 837 | u32 serror; |
| 838 | u8 status, tag; |
| 839 | u32 err_reg; |
| 840 | |
| 841 | ata_ehi_clear_desc(ehi); |
| 842 | |
| 843 | serror = core_scr_read(SCR_ERROR); |
| 844 | status = ap->ops->sff_check_status(ap); |
| 845 | |
| 846 | err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\ |
| 847 | low)); |
| 848 | tag = ap->link.active_tag; |
| 849 | |
| 850 | dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x " |
| 851 | "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n", |
| 852 | __func__, serror, intpr, status, host_pvt.dma_interrupt_count, |
| 853 | hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg); |
| 854 | |
| 855 | /* Clear error register and interrupt bit */ |
| 856 | clear_serror(); |
| 857 | clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); |
| 858 | |
| 859 | /* This is the only error happening now. TODO check for exact error */ |
| 860 | |
| 861 | err_mask |= AC_ERR_HOST_BUS; |
| 862 | action |= ATA_EH_RESET; |
| 863 | |
| 864 | /* Pass this on to EH */ |
| 865 | ehi->serror |= serror; |
| 866 | ehi->action |= action; |
| 867 | |
| 868 | qc = ata_qc_from_tag(ap, tag); |
| 869 | if (qc) |
| 870 | qc->err_mask |= err_mask; |
| 871 | else |
| 872 | ehi->err_mask |= err_mask; |
| 873 | |
| 874 | ata_port_abort(ap); |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * Function : sata_dwc_isr |
| 879 | * arguments : irq, void *dev_instance, struct pt_regs *regs |
| 880 | * Return value : irqreturn_t - status of IRQ |
| 881 | * This Interrupt handler called via port ops registered function. |
| 882 | * .irq_handler = sata_dwc_isr |
| 883 | */ |
| 884 | static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) |
| 885 | { |
| 886 | struct ata_host *host = (struct ata_host *)dev_instance; |
| 887 | struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); |
| 888 | struct ata_port *ap; |
| 889 | struct ata_queued_cmd *qc; |
| 890 | unsigned long flags; |
| 891 | u8 status, tag; |
| 892 | int handled, num_processed, port = 0; |
| 893 | uint intpr, sactive, sactive2, tag_mask; |
| 894 | struct sata_dwc_device_port *hsdevp; |
| 895 | host_pvt.sata_dwc_sactive_issued = 0; |
| 896 | |
| 897 | spin_lock_irqsave(&host->lock, flags); |
| 898 | |
| 899 | /* Read the interrupt register */ |
| 900 | intpr = in_le32(&hsdev->sata_dwc_regs->intpr); |
| 901 | |
| 902 | ap = host->ports[port]; |
| 903 | hsdevp = HSDEVP_FROM_AP(ap); |
| 904 | |
| 905 | dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, |
| 906 | ap->link.active_tag); |
| 907 | |
| 908 | /* Check for error interrupt */ |
| 909 | if (intpr & SATA_DWC_INTPR_ERR) { |
| 910 | sata_dwc_error_intr(ap, hsdev, intpr); |
| 911 | handled = 1; |
| 912 | goto DONE; |
| 913 | } |
| 914 | |
| 915 | /* Check for DMA SETUP FIS (FP DMA) interrupt */ |
| 916 | if (intpr & SATA_DWC_INTPR_NEWFP) { |
| 917 | clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); |
| 918 | |
| 919 | tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); |
| 920 | dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); |
| 921 | if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) |
| 922 | dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); |
| 923 | |
| 924 | host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); |
| 925 | |
| 926 | qc = ata_qc_from_tag(ap, tag); |
| 927 | /* |
| 928 | * Start FP DMA for NCQ command. At this point the tag is the |
| 929 | * active tag. It is the tag that matches the command about to |
| 930 | * be completed. |
| 931 | */ |
| 932 | qc->ap->link.active_tag = tag; |
| 933 | sata_dwc_bmdma_start_by_tag(qc, tag); |
| 934 | |
| 935 | handled = 1; |
| 936 | goto DONE; |
| 937 | } |
| 938 | sactive = core_scr_read(SCR_ACTIVE); |
| 939 | tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; |
| 940 | |
| 941 | /* If no sactive issued and tag_mask is zero then this is not NCQ */ |
| 942 | if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) { |
| 943 | if (ap->link.active_tag == ATA_TAG_POISON) |
| 944 | tag = 0; |
| 945 | else |
| 946 | tag = ap->link.active_tag; |
| 947 | qc = ata_qc_from_tag(ap, tag); |
| 948 | |
| 949 | /* DEV interrupt w/ no active qc? */ |
| 950 | if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { |
| 951 | dev_err(ap->dev, "%s interrupt with no active qc " |
| 952 | "qc=%p\n", __func__, qc); |
| 953 | ap->ops->sff_check_status(ap); |
| 954 | handled = 1; |
| 955 | goto DONE; |
| 956 | } |
| 957 | status = ap->ops->sff_check_status(ap); |
| 958 | |
| 959 | qc->ap->link.active_tag = tag; |
| 960 | hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; |
| 961 | |
| 962 | if (status & ATA_ERR) { |
| 963 | dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); |
| 964 | sata_dwc_qc_complete(ap, qc, 1); |
| 965 | handled = 1; |
| 966 | goto DONE; |
| 967 | } |
| 968 | |
| 969 | dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", |
| 970 | __func__, ata_get_cmd_descript(qc->tf.protocol)); |
| 971 | DRVSTILLBUSY: |
| 972 | if (ata_is_dma(qc->tf.protocol)) { |
| 973 | /* |
| 974 | * Each DMA transaction produces 2 interrupts. The DMAC |
| 975 | * transfer complete interrupt and the SATA controller |
| 976 | * operation done interrupt. The command should be |
| 977 | * completed only after both interrupts are seen. |
| 978 | */ |
| 979 | host_pvt.dma_interrupt_count++; |
| 980 | if (hsdevp->dma_pending[tag] == \ |
| 981 | SATA_DWC_DMA_PENDING_NONE) { |
| 982 | dev_err(ap->dev, "%s: DMA not pending " |
| 983 | "intpr=0x%08x status=0x%08x pending" |
| 984 | "=%d\n", __func__, intpr, status, |
| 985 | hsdevp->dma_pending[tag]); |
| 986 | } |
| 987 | |
| 988 | if ((host_pvt.dma_interrupt_count % 2) == 0) |
| 989 | sata_dwc_dma_xfer_complete(ap, 1); |
| 990 | } else if (ata_is_pio(qc->tf.protocol)) { |
| 991 | ata_sff_hsm_move(ap, qc, status, 0); |
| 992 | handled = 1; |
| 993 | goto DONE; |
| 994 | } else { |
| 995 | if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) |
| 996 | goto DRVSTILLBUSY; |
| 997 | } |
| 998 | |
| 999 | handled = 1; |
| 1000 | goto DONE; |
| 1001 | } |
| 1002 | |
| 1003 | /* |
| 1004 | * This is a NCQ command. At this point we need to figure out for which |
| 1005 | * tags we have gotten a completion interrupt. One interrupt may serve |
| 1006 | * as completion for more than one operation when commands are queued |
| 1007 | * (NCQ). We need to process each completed command. |
| 1008 | */ |
| 1009 | |
| 1010 | /* process completed commands */ |
| 1011 | sactive = core_scr_read(SCR_ACTIVE); |
| 1012 | tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; |
| 1013 | |
| 1014 | if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \ |
| 1015 | tag_mask > 1) { |
| 1016 | dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x" |
| 1017 | "tag_mask=0x%08x\n", __func__, sactive, |
| 1018 | host_pvt.sata_dwc_sactive_issued, tag_mask); |
| 1019 | } |
| 1020 | |
| 1021 | if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \ |
| 1022 | (host_pvt.sata_dwc_sactive_issued)) { |
| 1023 | dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x " |
| 1024 | "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask" |
| 1025 | "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued, |
| 1026 | tag_mask); |
| 1027 | } |
| 1028 | |
| 1029 | /* read just to clear ... not bad if currently still busy */ |
| 1030 | status = ap->ops->sff_check_status(ap); |
| 1031 | dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); |
| 1032 | |
| 1033 | tag = 0; |
| 1034 | num_processed = 0; |
| 1035 | while (tag_mask) { |
| 1036 | num_processed++; |
| 1037 | while (!(tag_mask & 0x00000001)) { |
| 1038 | tag++; |
| 1039 | tag_mask <<= 1; |
| 1040 | } |
| 1041 | |
| 1042 | tag_mask &= (~0x00000001); |
| 1043 | qc = ata_qc_from_tag(ap, tag); |
| 1044 | |
| 1045 | /* To be picked up by completion functions */ |
| 1046 | qc->ap->link.active_tag = tag; |
| 1047 | hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; |
| 1048 | |
| 1049 | /* Let libata/scsi layers handle error */ |
| 1050 | if (status & ATA_ERR) { |
| 1051 | dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, |
| 1052 | status); |
| 1053 | sata_dwc_qc_complete(ap, qc, 1); |
| 1054 | handled = 1; |
| 1055 | goto DONE; |
| 1056 | } |
| 1057 | |
| 1058 | /* Process completed command */ |
| 1059 | dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, |
| 1060 | ata_get_cmd_descript(qc->tf.protocol)); |
| 1061 | if (ata_is_dma(qc->tf.protocol)) { |
| 1062 | host_pvt.dma_interrupt_count++; |
| 1063 | if (hsdevp->dma_pending[tag] == \ |
| 1064 | SATA_DWC_DMA_PENDING_NONE) |
| 1065 | dev_warn(ap->dev, "%s: DMA not pending?\n", |
| 1066 | __func__); |
| 1067 | if ((host_pvt.dma_interrupt_count % 2) == 0) |
| 1068 | sata_dwc_dma_xfer_complete(ap, 1); |
| 1069 | } else { |
| 1070 | if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) |
| 1071 | goto STILLBUSY; |
| 1072 | } |
| 1073 | continue; |
| 1074 | |
| 1075 | STILLBUSY: |
| 1076 | ap->stats.idle_irq++; |
| 1077 | dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", |
| 1078 | ap->print_id); |
| 1079 | } /* while tag_mask */ |
| 1080 | |
| 1081 | /* |
| 1082 | * Check to see if any commands completed while we were processing our |
| 1083 | * initial set of completed commands (read status clears interrupts, |
| 1084 | * so we might miss a completed command interrupt if one came in while |
| 1085 | * we were processing --we read status as part of processing a completed |
| 1086 | * command). |
| 1087 | */ |
| 1088 | sactive2 = core_scr_read(SCR_ACTIVE); |
| 1089 | if (sactive2 != sactive) { |
| 1090 | dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2" |
| 1091 | "=0x%x\n", sactive, sactive2); |
| 1092 | } |
| 1093 | handled = 1; |
| 1094 | |
| 1095 | DONE: |
| 1096 | spin_unlock_irqrestore(&host->lock, flags); |
| 1097 | return IRQ_RETVAL(handled); |
| 1098 | } |
| 1099 | |
| 1100 | static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) |
| 1101 | { |
| 1102 | struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); |
| 1103 | |
| 1104 | if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { |
| 1105 | out_le32(&(hsdev->sata_dwc_regs->dmacr), |
| 1106 | SATA_DWC_DMACR_RX_CLEAR( |
| 1107 | in_le32(&(hsdev->sata_dwc_regs->dmacr)))); |
| 1108 | } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { |
| 1109 | out_le32(&(hsdev->sata_dwc_regs->dmacr), |
| 1110 | SATA_DWC_DMACR_TX_CLEAR( |
| 1111 | in_le32(&(hsdev->sata_dwc_regs->dmacr)))); |
| 1112 | } else { |
| 1113 | /* |
| 1114 | * This should not happen, it indicates the driver is out of |
| 1115 | * sync. If it does happen, clear dmacr anyway. |
| 1116 | */ |
| 1117 | dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and" |
| 1118 | "TX DMA not pending tag=0x%02x pending=%d" |
| 1119 | " dmacr: 0x%08x\n", __func__, tag, |
| 1120 | hsdevp->dma_pending[tag], |
| 1121 | in_le32(&(hsdev->sata_dwc_regs->dmacr))); |
| 1122 | out_le32(&(hsdev->sata_dwc_regs->dmacr), |
| 1123 | SATA_DWC_DMACR_TXRXCH_CLEAR); |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) |
| 1128 | { |
| 1129 | struct ata_queued_cmd *qc; |
| 1130 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 1131 | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); |
| 1132 | u8 tag = 0; |
| 1133 | |
| 1134 | tag = ap->link.active_tag; |
| 1135 | qc = ata_qc_from_tag(ap, tag); |
| 1136 | if (!qc) { |
| 1137 | dev_err(ap->dev, "failed to get qc"); |
| 1138 | return; |
| 1139 | } |
| 1140 | |
| 1141 | #ifdef DEBUG_NCQ |
| 1142 | if (tag > 0) { |
| 1143 | dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " |
| 1144 | "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, |
| 1145 | ata_get_cmd_descript(qc->dma_dir), |
| 1146 | ata_get_cmd_descript(qc->tf.protocol), |
| 1147 | in_le32(&(hsdev->sata_dwc_regs->dmacr))); |
| 1148 | } |
| 1149 | #endif |
| 1150 | |
| 1151 | if (ata_is_dma(qc->tf.protocol)) { |
| 1152 | if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { |
| 1153 | dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " |
| 1154 | "pending dmacr: 0x%08x\n", __func__, |
| 1155 | in_le32(&(hsdev->sata_dwc_regs->dmacr))); |
| 1156 | } |
| 1157 | |
| 1158 | hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; |
| 1159 | sata_dwc_qc_complete(ap, qc, check_status); |
| 1160 | ap->link.active_tag = ATA_TAG_POISON; |
| 1161 | } else { |
| 1162 | sata_dwc_qc_complete(ap, qc, check_status); |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, |
| 1167 | u32 check_status) |
| 1168 | { |
| 1169 | u8 status = 0; |
| 1170 | u32 mask = 0x0; |
| 1171 | u8 tag = qc->tag; |
| 1172 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 1173 | host_pvt.sata_dwc_sactive_queued = 0; |
| 1174 | dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); |
| 1175 | |
| 1176 | if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) |
| 1177 | dev_err(ap->dev, "TX DMA PENDING\n"); |
| 1178 | else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) |
| 1179 | dev_err(ap->dev, "RX DMA PENDING\n"); |
| 1180 | dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:" |
| 1181 | " protocol=%d\n", qc->tf.command, status, ap->print_id, |
| 1182 | qc->tf.protocol); |
| 1183 | |
| 1184 | /* clear active bit */ |
| 1185 | mask = (~(qcmd_tag_to_mask(tag))); |
| 1186 | host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \ |
| 1187 | & mask; |
| 1188 | host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \ |
| 1189 | & mask; |
| 1190 | ata_qc_complete(qc); |
| 1191 | return 0; |
| 1192 | } |
| 1193 | |
| 1194 | static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) |
| 1195 | { |
| 1196 | /* Enable selective interrupts by setting the interrupt maskregister*/ |
| 1197 | out_le32(&hsdev->sata_dwc_regs->intmr, |
| 1198 | SATA_DWC_INTMR_ERRM | |
| 1199 | SATA_DWC_INTMR_NEWFPM | |
| 1200 | SATA_DWC_INTMR_PMABRTM | |
| 1201 | SATA_DWC_INTMR_DMATM); |
| 1202 | /* |
| 1203 | * Unmask the error bits that should trigger an error interrupt by |
| 1204 | * setting the error mask register. |
| 1205 | */ |
| 1206 | out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); |
| 1207 | |
| 1208 | dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", |
| 1209 | __func__, in_le32(&hsdev->sata_dwc_regs->intmr), |
| 1210 | in_le32(&hsdev->sata_dwc_regs->errmr)); |
| 1211 | } |
| 1212 | |
| 1213 | static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) |
| 1214 | { |
| 1215 | port->cmd_addr = (void *)base + 0x00; |
| 1216 | port->data_addr = (void *)base + 0x00; |
| 1217 | |
| 1218 | port->error_addr = (void *)base + 0x04; |
| 1219 | port->feature_addr = (void *)base + 0x04; |
| 1220 | |
| 1221 | port->nsect_addr = (void *)base + 0x08; |
| 1222 | |
| 1223 | port->lbal_addr = (void *)base + 0x0c; |
| 1224 | port->lbam_addr = (void *)base + 0x10; |
| 1225 | port->lbah_addr = (void *)base + 0x14; |
| 1226 | |
| 1227 | port->device_addr = (void *)base + 0x18; |
| 1228 | port->command_addr = (void *)base + 0x1c; |
| 1229 | port->status_addr = (void *)base + 0x1c; |
| 1230 | |
| 1231 | port->altstatus_addr = (void *)base + 0x20; |
| 1232 | port->ctl_addr = (void *)base + 0x20; |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * Function : sata_dwc_port_start |
| 1237 | * arguments : struct ata_ioports *port |
| 1238 | * Return value : returns 0 if success, error code otherwise |
| 1239 | * This function allocates the scatter gather LLI table for AHB DMA |
| 1240 | */ |
| 1241 | static int sata_dwc_port_start(struct ata_port *ap) |
| 1242 | { |
| 1243 | int err = 0; |
| 1244 | struct sata_dwc_device *hsdev; |
| 1245 | struct sata_dwc_device_port *hsdevp = NULL; |
| 1246 | struct device *pdev; |
| 1247 | int i; |
| 1248 | |
| 1249 | hsdev = HSDEV_FROM_AP(ap); |
| 1250 | |
| 1251 | dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); |
| 1252 | |
| 1253 | hsdev->host = ap->host; |
| 1254 | pdev = ap->host->dev; |
| 1255 | if (!pdev) { |
| 1256 | dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); |
| 1257 | err = -ENODEV; |
| 1258 | goto CLEANUP; |
| 1259 | } |
| 1260 | |
| 1261 | /* Allocate Port Struct */ |
| 1262 | hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); |
| 1263 | if (!hsdevp) { |
| 1264 | dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); |
| 1265 | err = -ENOMEM; |
| 1266 | goto CLEANUP; |
| 1267 | } |
| 1268 | hsdevp->hsdev = hsdev; |
| 1269 | |
| 1270 | for (i = 0; i < SATA_DWC_QCMD_MAX; i++) |
| 1271 | hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; |
| 1272 | |
| 1273 | ap->bmdma_prd = 0; /* set these so libata doesn't use them */ |
| 1274 | ap->bmdma_prd_dma = 0; |
| 1275 | |
| 1276 | /* |
| 1277 | * DMA - Assign scatter gather LLI table. We can't use the libata |
| 1278 | * version since it's PRD is IDE PCI specific. |
| 1279 | */ |
| 1280 | for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { |
| 1281 | hsdevp->llit[i] = dma_alloc_coherent(pdev, |
| 1282 | SATA_DWC_DMAC_LLI_TBL_SZ, |
| 1283 | &(hsdevp->llit_dma[i]), |
| 1284 | GFP_ATOMIC); |
| 1285 | if (!hsdevp->llit[i]) { |
| 1286 | dev_err(ap->dev, "%s: dma_alloc_coherent failed\n", |
| 1287 | __func__); |
| 1288 | err = -ENOMEM; |
| 1289 | goto CLEANUP; |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | if (ap->port_no == 0) { |
| 1294 | dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", |
| 1295 | __func__); |
| 1296 | out_le32(&hsdev->sata_dwc_regs->dmacr, |
| 1297 | SATA_DWC_DMACR_TXRXCH_CLEAR); |
| 1298 | |
| 1299 | dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", |
| 1300 | __func__); |
| 1301 | out_le32(&hsdev->sata_dwc_regs->dbtsr, |
| 1302 | (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | |
| 1303 | SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); |
| 1304 | } |
| 1305 | |
| 1306 | /* Clear any error bits before libata starts issuing commands */ |
| 1307 | clear_serror(); |
| 1308 | ap->private_data = hsdevp; |
| 1309 | |
| 1310 | CLEANUP: |
| 1311 | if (err) { |
| 1312 | sata_dwc_port_stop(ap); |
| 1313 | dev_dbg(ap->dev, "%s: fail\n", __func__); |
| 1314 | } else { |
| 1315 | dev_dbg(ap->dev, "%s: done\n", __func__); |
| 1316 | } |
| 1317 | |
| 1318 | return err; |
| 1319 | } |
| 1320 | |
| 1321 | static void sata_dwc_port_stop(struct ata_port *ap) |
| 1322 | { |
| 1323 | int i; |
| 1324 | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); |
| 1325 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 1326 | |
| 1327 | dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); |
| 1328 | |
| 1329 | if (hsdevp && hsdev) { |
| 1330 | /* deallocate LLI table */ |
| 1331 | for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { |
| 1332 | dma_free_coherent(ap->host->dev, |
| 1333 | SATA_DWC_DMAC_LLI_TBL_SZ, |
| 1334 | hsdevp->llit[i], hsdevp->llit_dma[i]); |
| 1335 | } |
| 1336 | |
| 1337 | kfree(hsdevp); |
| 1338 | } |
| 1339 | ap->private_data = NULL; |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * Function : sata_dwc_exec_command_by_tag |
| 1344 | * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued |
| 1345 | * Return value : None |
| 1346 | * This function keeps track of individual command tag ids and calls |
| 1347 | * ata_exec_command in libata |
| 1348 | */ |
| 1349 | static void sata_dwc_exec_command_by_tag(struct ata_port *ap, |
| 1350 | struct ata_taskfile *tf, |
| 1351 | u8 tag, u32 cmd_issued) |
| 1352 | { |
| 1353 | unsigned long flags; |
| 1354 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 1355 | |
| 1356 | dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, |
| 1357 | ata_get_cmd_descript(tf), tag); |
| 1358 | |
| 1359 | spin_lock_irqsave(&ap->host->lock, flags); |
| 1360 | hsdevp->cmd_issued[tag] = cmd_issued; |
| 1361 | spin_unlock_irqrestore(&ap->host->lock, flags); |
| 1362 | /* |
| 1363 | * Clear SError before executing a new command. |
| 1364 | * sata_dwc_scr_write and read can not be used here. Clearing the PM |
| 1365 | * managed SError register for the disk needs to be done before the |
| 1366 | * task file is loaded. |
| 1367 | */ |
| 1368 | clear_serror(); |
| 1369 | ata_sff_exec_command(ap, tf); |
| 1370 | } |
| 1371 | |
| 1372 | static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) |
| 1373 | { |
| 1374 | sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, |
| 1375 | SATA_DWC_CMD_ISSUED_PEND); |
| 1376 | } |
| 1377 | |
| 1378 | static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) |
| 1379 | { |
| 1380 | u8 tag = qc->tag; |
| 1381 | |
| 1382 | if (ata_is_ncq(qc->tf.protocol)) { |
| 1383 | dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", |
| 1384 | __func__, qc->ap->link.sactive, tag); |
| 1385 | } else { |
| 1386 | tag = 0; |
| 1387 | } |
| 1388 | sata_dwc_bmdma_setup_by_tag(qc, tag); |
| 1389 | } |
| 1390 | |
| 1391 | static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) |
| 1392 | { |
| 1393 | int start_dma; |
| 1394 | u32 reg, dma_chan; |
| 1395 | struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); |
| 1396 | struct ata_port *ap = qc->ap; |
| 1397 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 1398 | int dir = qc->dma_dir; |
| 1399 | dma_chan = hsdevp->dma_chan[tag]; |
| 1400 | |
| 1401 | if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { |
| 1402 | start_dma = 1; |
| 1403 | if (dir == DMA_TO_DEVICE) |
| 1404 | hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; |
| 1405 | else |
| 1406 | hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; |
| 1407 | } else { |
| 1408 | dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " |
| 1409 | "(tag=%d) DMA NOT started\n", __func__, |
| 1410 | hsdevp->cmd_issued[tag], tag); |
| 1411 | start_dma = 0; |
| 1412 | } |
| 1413 | |
| 1414 | dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " |
| 1415 | "start_dma? %x\n", __func__, qc, tag, qc->tf.command, |
| 1416 | ata_get_cmd_descript(qc->dma_dir), start_dma); |
| 1417 | sata_dwc_tf_dump(&(qc->tf)); |
| 1418 | |
| 1419 | if (start_dma) { |
| 1420 | reg = core_scr_read(SCR_ERROR); |
| 1421 | if (reg & SATA_DWC_SERROR_ERR_BITS) { |
| 1422 | dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", |
| 1423 | __func__, reg); |
| 1424 | } |
| 1425 | |
| 1426 | if (dir == DMA_TO_DEVICE) |
| 1427 | out_le32(&hsdev->sata_dwc_regs->dmacr, |
| 1428 | SATA_DWC_DMACR_TXCHEN); |
| 1429 | else |
| 1430 | out_le32(&hsdev->sata_dwc_regs->dmacr, |
| 1431 | SATA_DWC_DMACR_RXCHEN); |
| 1432 | |
| 1433 | /* Enable AHB DMA transfer on the specified channel */ |
| 1434 | dma_dwc_xfer_start(dma_chan); |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) |
| 1439 | { |
| 1440 | u8 tag = qc->tag; |
| 1441 | |
| 1442 | if (ata_is_ncq(qc->tf.protocol)) { |
| 1443 | dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", |
| 1444 | __func__, qc->ap->link.sactive, tag); |
| 1445 | } else { |
| 1446 | tag = 0; |
| 1447 | } |
| 1448 | dev_dbg(qc->ap->dev, "%s\n", __func__); |
| 1449 | sata_dwc_bmdma_start_by_tag(qc, tag); |
| 1450 | } |
| 1451 | |
| 1452 | /* |
| 1453 | * Function : sata_dwc_qc_prep_by_tag |
| 1454 | * arguments : ata_queued_cmd *qc, u8 tag |
| 1455 | * Return value : None |
| 1456 | * qc_prep for a particular queued command based on tag |
| 1457 | */ |
| 1458 | static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) |
| 1459 | { |
| 1460 | struct scatterlist *sg = qc->sg; |
| 1461 | struct ata_port *ap = qc->ap; |
| 1462 | u32 dma_chan; |
| 1463 | struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); |
| 1464 | struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| 1465 | int err; |
| 1466 | |
| 1467 | dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", |
| 1468 | __func__, ap->port_no, ata_get_cmd_descript(qc->dma_dir), |
| 1469 | qc->n_elem); |
| 1470 | |
| 1471 | dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag], |
| 1472 | hsdevp->llit_dma[tag], |
| 1473 | (void *__iomem)(&hsdev->sata_dwc_regs->\ |
| 1474 | dmadr), qc->dma_dir); |
| 1475 | if (dma_chan < 0) { |
| 1476 | dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", |
| 1477 | __func__, err); |
| 1478 | return; |
| 1479 | } |
| 1480 | hsdevp->dma_chan[tag] = dma_chan; |
| 1481 | } |
| 1482 | |
| 1483 | static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) |
| 1484 | { |
| 1485 | u32 sactive; |
| 1486 | u8 tag = qc->tag; |
| 1487 | struct ata_port *ap = qc->ap; |
| 1488 | |
| 1489 | #ifdef DEBUG_NCQ |
| 1490 | if (qc->tag > 0 || ap->link.sactive > 1) |
| 1491 | dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d " |
| 1492 | "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", |
| 1493 | __func__, ap->print_id, qc->tf.command, |
| 1494 | ata_get_cmd_descript(&qc->tf), |
| 1495 | qc->tag, ata_get_cmd_descript(qc->tf.protocol), |
| 1496 | ap->link.active_tag, ap->link.sactive); |
| 1497 | #endif |
| 1498 | |
| 1499 | if (!ata_is_ncq(qc->tf.protocol)) |
| 1500 | tag = 0; |
| 1501 | sata_dwc_qc_prep_by_tag(qc, tag); |
| 1502 | |
| 1503 | if (ata_is_ncq(qc->tf.protocol)) { |
| 1504 | sactive = core_scr_read(SCR_ACTIVE); |
| 1505 | sactive |= (0x00000001 << tag); |
| 1506 | core_scr_write(SCR_ACTIVE, sactive); |
| 1507 | |
| 1508 | dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " |
| 1509 | "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, |
| 1510 | sactive); |
| 1511 | |
| 1512 | ap->ops->sff_tf_load(ap, &qc->tf); |
| 1513 | sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, |
| 1514 | SATA_DWC_CMD_ISSUED_PEND); |
| 1515 | } else { |
| 1516 | ata_sff_qc_issue(qc); |
| 1517 | } |
| 1518 | return 0; |
| 1519 | } |
| 1520 | |
| 1521 | /* |
| 1522 | * Function : sata_dwc_qc_prep |
| 1523 | * arguments : ata_queued_cmd *qc |
| 1524 | * Return value : None |
| 1525 | * qc_prep for a particular queued command |
| 1526 | */ |
| 1527 | |
| 1528 | static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) |
| 1529 | { |
| 1530 | if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) |
| 1531 | return; |
| 1532 | |
| 1533 | #ifdef DEBUG_NCQ |
| 1534 | if (qc->tag > 0) |
| 1535 | dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", |
| 1536 | __func__, tag, qc->ap->link.active_tag); |
| 1537 | |
| 1538 | return ; |
| 1539 | #endif |
| 1540 | } |
| 1541 | |
| 1542 | static void sata_dwc_error_handler(struct ata_port *ap) |
| 1543 | { |
| 1544 | ap->link.flags |= ATA_LFLAG_NO_HRST; |
| 1545 | ata_sff_error_handler(ap); |
| 1546 | } |
| 1547 | |
| 1548 | /* |
| 1549 | * scsi mid-layer and libata interface structures |
| 1550 | */ |
| 1551 | static struct scsi_host_template sata_dwc_sht = { |
| 1552 | ATA_NCQ_SHT(DRV_NAME), |
| 1553 | /* |
| 1554 | * test-only: Currently this driver doesn't handle NCQ |
| 1555 | * correctly. We enable NCQ but set the queue depth to a |
| 1556 | * max of 1. This will get fixed in in a future release. |
| 1557 | */ |
| 1558 | .sg_tablesize = LIBATA_MAX_PRD, |
| 1559 | .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */ |
| 1560 | .dma_boundary = ATA_DMA_BOUNDARY, |
| 1561 | }; |
| 1562 | |
| 1563 | static struct ata_port_operations sata_dwc_ops = { |
| 1564 | .inherits = &ata_sff_port_ops, |
| 1565 | |
| 1566 | .error_handler = sata_dwc_error_handler, |
| 1567 | |
| 1568 | .qc_prep = sata_dwc_qc_prep, |
| 1569 | .qc_issue = sata_dwc_qc_issue, |
| 1570 | |
| 1571 | .scr_read = sata_dwc_scr_read, |
| 1572 | .scr_write = sata_dwc_scr_write, |
| 1573 | |
| 1574 | .port_start = sata_dwc_port_start, |
| 1575 | .port_stop = sata_dwc_port_stop, |
| 1576 | |
| 1577 | .bmdma_setup = sata_dwc_bmdma_setup, |
| 1578 | .bmdma_start = sata_dwc_bmdma_start, |
| 1579 | }; |
| 1580 | |
| 1581 | static const struct ata_port_info sata_dwc_port_info[] = { |
| 1582 | { |
| 1583 | .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | |
| 1584 | ATA_FLAG_MMIO | ATA_FLAG_NCQ, |
| 1585 | .pio_mask = 0x1f, /* pio 0-4 */ |
| 1586 | .udma_mask = ATA_UDMA6, |
| 1587 | .port_ops = &sata_dwc_ops, |
| 1588 | }, |
| 1589 | }; |
| 1590 | |
Stephen Rothwell | 60652d0 | 2010-08-16 12:20:59 +1000 | [diff] [blame^] | 1591 | static int sata_dwc_probe(struct platform_device *ofdev, |
Rupjyoti Sarmah | 6293600 | 2010-07-06 16:36:03 +0530 | [diff] [blame] | 1592 | const struct of_device_id *match) |
| 1593 | { |
| 1594 | struct sata_dwc_device *hsdev; |
| 1595 | u32 idr, versionr; |
| 1596 | char *ver = (char *)&versionr; |
| 1597 | u8 *base = NULL; |
| 1598 | int err = 0; |
| 1599 | int irq, rc; |
| 1600 | struct ata_host *host; |
| 1601 | struct ata_port_info pi = sata_dwc_port_info[0]; |
| 1602 | const struct ata_port_info *ppi[] = { &pi, NULL }; |
| 1603 | |
| 1604 | /* Allocate DWC SATA device */ |
| 1605 | hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL); |
| 1606 | if (hsdev == NULL) { |
| 1607 | dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); |
| 1608 | err = -ENOMEM; |
| 1609 | goto error_out; |
| 1610 | } |
| 1611 | memset(hsdev, 0, sizeof(*hsdev)); |
| 1612 | |
| 1613 | /* Ioremap SATA registers */ |
| 1614 | base = of_iomap(ofdev->dev.of_node, 0); |
| 1615 | if (!base) { |
| 1616 | dev_err(&ofdev->dev, "ioremap failed for SATA register" |
| 1617 | " address\n"); |
| 1618 | err = -ENODEV; |
| 1619 | goto error_out; |
| 1620 | } |
| 1621 | hsdev->reg_base = base; |
| 1622 | dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); |
| 1623 | |
| 1624 | /* Synopsys DWC SATA specific Registers */ |
| 1625 | hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); |
| 1626 | |
| 1627 | /* Allocate and fill host */ |
| 1628 | host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); |
| 1629 | if (!host) { |
| 1630 | dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); |
| 1631 | err = -ENOMEM; |
| 1632 | goto error_out; |
| 1633 | } |
| 1634 | |
| 1635 | host->private_data = hsdev; |
| 1636 | |
| 1637 | /* Setup port */ |
| 1638 | host->ports[0]->ioaddr.cmd_addr = base; |
| 1639 | host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; |
| 1640 | host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET; |
| 1641 | sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); |
| 1642 | |
| 1643 | /* Read the ID and Version Registers */ |
| 1644 | idr = in_le32(&hsdev->sata_dwc_regs->idr); |
| 1645 | versionr = in_le32(&hsdev->sata_dwc_regs->versionr); |
| 1646 | dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", |
| 1647 | idr, ver[0], ver[1], ver[2]); |
| 1648 | |
| 1649 | /* Get SATA DMA interrupt number */ |
| 1650 | irq = irq_of_parse_and_map(ofdev->dev.of_node, 1); |
| 1651 | if (irq == NO_IRQ) { |
| 1652 | dev_err(&ofdev->dev, "no SATA DMA irq\n"); |
| 1653 | err = -ENODEV; |
| 1654 | goto error_out; |
| 1655 | } |
| 1656 | |
| 1657 | /* Get physical SATA DMA register base address */ |
| 1658 | host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1); |
| 1659 | if (!(host_pvt.sata_dma_regs)) { |
| 1660 | dev_err(&ofdev->dev, "ioremap failed for AHBDMA register" |
| 1661 | " address\n"); |
| 1662 | err = -ENODEV; |
| 1663 | goto error_out; |
| 1664 | } |
| 1665 | |
| 1666 | /* Save dev for later use in dev_xxx() routines */ |
| 1667 | host_pvt.dwc_dev = &ofdev->dev; |
| 1668 | |
| 1669 | /* Initialize AHB DMAC */ |
| 1670 | dma_dwc_init(hsdev, irq); |
| 1671 | |
| 1672 | /* Enable SATA Interrupts */ |
| 1673 | sata_dwc_enable_interrupts(hsdev); |
| 1674 | |
| 1675 | /* Get SATA interrupt number */ |
| 1676 | irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); |
| 1677 | if (irq == NO_IRQ) { |
| 1678 | dev_err(&ofdev->dev, "no SATA DMA irq\n"); |
| 1679 | err = -ENODEV; |
| 1680 | goto error_out; |
| 1681 | } |
| 1682 | |
| 1683 | /* |
| 1684 | * Now, register with libATA core, this will also initiate the |
| 1685 | * device discovery process, invoking our port_start() handler & |
| 1686 | * error_handler() to execute a dummy Softreset EH session |
| 1687 | */ |
| 1688 | rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); |
| 1689 | |
| 1690 | if (rc != 0) |
| 1691 | dev_err(&ofdev->dev, "failed to activate host"); |
| 1692 | |
| 1693 | dev_set_drvdata(&ofdev->dev, host); |
| 1694 | return 0; |
| 1695 | |
| 1696 | error_out: |
| 1697 | /* Free SATA DMA resources */ |
| 1698 | dma_dwc_exit(hsdev); |
| 1699 | |
| 1700 | if (base) |
| 1701 | iounmap(base); |
| 1702 | return err; |
| 1703 | } |
| 1704 | |
Stephen Rothwell | 60652d0 | 2010-08-16 12:20:59 +1000 | [diff] [blame^] | 1705 | static int sata_dwc_remove(struct platform_device *ofdev) |
Rupjyoti Sarmah | 6293600 | 2010-07-06 16:36:03 +0530 | [diff] [blame] | 1706 | { |
| 1707 | struct device *dev = &ofdev->dev; |
| 1708 | struct ata_host *host = dev_get_drvdata(dev); |
| 1709 | struct sata_dwc_device *hsdev = host->private_data; |
| 1710 | |
| 1711 | ata_host_detach(host); |
| 1712 | dev_set_drvdata(dev, NULL); |
| 1713 | |
| 1714 | /* Free SATA DMA resources */ |
| 1715 | dma_dwc_exit(hsdev); |
| 1716 | |
| 1717 | iounmap(hsdev->reg_base); |
| 1718 | kfree(hsdev); |
| 1719 | kfree(host); |
| 1720 | dev_dbg(&ofdev->dev, "done\n"); |
| 1721 | return 0; |
| 1722 | } |
| 1723 | |
| 1724 | static const struct of_device_id sata_dwc_match[] = { |
| 1725 | { .compatible = "amcc,sata-460ex", }, |
| 1726 | {} |
| 1727 | }; |
| 1728 | MODULE_DEVICE_TABLE(of, sata_dwc_match); |
| 1729 | |
| 1730 | static struct of_platform_driver sata_dwc_driver = { |
| 1731 | .driver = { |
| 1732 | .name = DRV_NAME, |
| 1733 | .owner = THIS_MODULE, |
| 1734 | .of_match_table = sata_dwc_match, |
| 1735 | }, |
| 1736 | .probe = sata_dwc_probe, |
| 1737 | .remove = sata_dwc_remove, |
| 1738 | }; |
| 1739 | |
| 1740 | static int __init sata_dwc_init(void) |
| 1741 | { |
| 1742 | return of_register_platform_driver(&sata_dwc_driver); |
| 1743 | } |
| 1744 | |
| 1745 | static void __exit sata_dwc_exit(void) |
| 1746 | { |
| 1747 | of_unregister_platform_driver(&sata_dwc_driver); |
| 1748 | } |
| 1749 | |
| 1750 | module_init(sata_dwc_init); |
| 1751 | module_exit(sata_dwc_exit); |
| 1752 | |
| 1753 | MODULE_LICENSE("GPL"); |
| 1754 | MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); |
| 1755 | MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver"); |
| 1756 | MODULE_VERSION(DRV_VERSION); |