David Daney | 58f0777 | 2008-12-23 15:22:14 -0800 | [diff] [blame^] | 1 | /***********************license start*************** |
| 2 | * Author: Cavium Networks |
| 3 | * |
| 4 | * Contact: support@caviumnetworks.com |
| 5 | * This file is part of the OCTEON SDK |
| 6 | * |
| 7 | * Copyright (c) 2003-2008 Cavium Networks |
| 8 | * |
| 9 | * This file is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License, Version 2, as |
| 11 | * published by the Free Software Foundation. |
| 12 | * |
| 13 | * This file is distributed in the hope that it will be useful, but |
| 14 | * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty |
| 15 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or |
| 16 | * NONINFRINGEMENT. See the GNU General Public License for more |
| 17 | * details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this file; if not, write to the Free Software |
| 21 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 22 | * or visit http://www.gnu.org/licenses/. |
| 23 | * |
| 24 | * This file may also be available under a different license from Cavium. |
| 25 | * Contact Cavium Networks for more information |
| 26 | ***********************license end**************************************/ |
| 27 | |
| 28 | /* |
| 29 | * Simple allocate only memory allocator. Used to allocate memory at |
| 30 | * application start time. |
| 31 | */ |
| 32 | |
| 33 | #include <linux/kernel.h> |
| 34 | |
| 35 | #include <asm/octeon/cvmx.h> |
| 36 | #include <asm/octeon/cvmx-spinlock.h> |
| 37 | #include <asm/octeon/cvmx-bootmem.h> |
| 38 | |
| 39 | /*#define DEBUG */ |
| 40 | |
| 41 | |
| 42 | static struct cvmx_bootmem_desc *cvmx_bootmem_desc; |
| 43 | |
| 44 | /* See header file for descriptions of functions */ |
| 45 | |
| 46 | /* |
| 47 | * Wrapper functions are provided for reading/writing the size and |
| 48 | * next block values as these may not be directly addressible (in 32 |
| 49 | * bit applications, for instance.) Offsets of data elements in |
| 50 | * bootmem list, must match cvmx_bootmem_block_header_t. |
| 51 | */ |
| 52 | #define NEXT_OFFSET 0 |
| 53 | #define SIZE_OFFSET 8 |
| 54 | |
| 55 | static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size) |
| 56 | { |
| 57 | cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size); |
| 58 | } |
| 59 | |
| 60 | static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next) |
| 61 | { |
| 62 | cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next); |
| 63 | } |
| 64 | |
| 65 | static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr) |
| 66 | { |
| 67 | return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)); |
| 68 | } |
| 69 | |
| 70 | static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr) |
| 71 | { |
| 72 | return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)); |
| 73 | } |
| 74 | |
| 75 | void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, |
| 76 | uint64_t min_addr, uint64_t max_addr) |
| 77 | { |
| 78 | int64_t address; |
| 79 | address = |
| 80 | cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0); |
| 81 | |
| 82 | if (address > 0) |
| 83 | return cvmx_phys_to_ptr(address); |
| 84 | else |
| 85 | return NULL; |
| 86 | } |
| 87 | |
| 88 | void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, |
| 89 | uint64_t alignment) |
| 90 | { |
| 91 | return cvmx_bootmem_alloc_range(size, alignment, address, |
| 92 | address + size); |
| 93 | } |
| 94 | |
| 95 | void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment) |
| 96 | { |
| 97 | return cvmx_bootmem_alloc_range(size, alignment, 0, 0); |
| 98 | } |
| 99 | |
| 100 | int cvmx_bootmem_free_named(char *name) |
| 101 | { |
| 102 | return cvmx_bootmem_phy_named_block_free(name, 0); |
| 103 | } |
| 104 | |
| 105 | struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name) |
| 106 | { |
| 107 | return cvmx_bootmem_phy_named_block_find(name, 0); |
| 108 | } |
| 109 | |
| 110 | void cvmx_bootmem_lock(void) |
| 111 | { |
| 112 | cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock)); |
| 113 | } |
| 114 | |
| 115 | void cvmx_bootmem_unlock(void) |
| 116 | { |
| 117 | cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock)); |
| 118 | } |
| 119 | |
| 120 | int cvmx_bootmem_init(void *mem_desc_ptr) |
| 121 | { |
| 122 | /* Here we set the global pointer to the bootmem descriptor |
| 123 | * block. This pointer will be used directly, so we will set |
| 124 | * it up to be directly usable by the application. It is set |
| 125 | * up as follows for the various runtime/ABI combinations: |
| 126 | * |
| 127 | * Linux 64 bit: Set XKPHYS bit |
| 128 | * Linux 32 bit: use mmap to create mapping, use virtual address |
| 129 | * CVMX 64 bit: use physical address directly |
| 130 | * CVMX 32 bit: use physical address directly |
| 131 | * |
| 132 | * Note that the CVMX environment assumes the use of 1-1 TLB |
| 133 | * mappings so that the physical addresses can be used |
| 134 | * directly |
| 135 | */ |
| 136 | if (!cvmx_bootmem_desc) { |
| 137 | #if defined(CVMX_ABI_64) |
| 138 | /* Set XKPHYS bit */ |
| 139 | cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr)); |
| 140 | #else |
| 141 | cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr; |
| 142 | #endif |
| 143 | } |
| 144 | |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * The cvmx_bootmem_phy* functions below return 64 bit physical |
| 150 | * addresses, and expose more features that the cvmx_bootmem_functions |
| 151 | * above. These are required for full memory space access in 32 bit |
| 152 | * applications, as well as for using some advance features. Most |
| 153 | * applications should not need to use these. |
| 154 | */ |
| 155 | |
| 156 | int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, |
| 157 | uint64_t address_max, uint64_t alignment, |
| 158 | uint32_t flags) |
| 159 | { |
| 160 | |
| 161 | uint64_t head_addr; |
| 162 | uint64_t ent_addr; |
| 163 | /* points to previous list entry, NULL current entry is head of list */ |
| 164 | uint64_t prev_addr = 0; |
| 165 | uint64_t new_ent_addr = 0; |
| 166 | uint64_t desired_min_addr; |
| 167 | |
| 168 | #ifdef DEBUG |
| 169 | cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, " |
| 170 | "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n", |
| 171 | (unsigned long long)req_size, |
| 172 | (unsigned long long)address_min, |
| 173 | (unsigned long long)address_max, |
| 174 | (unsigned long long)alignment); |
| 175 | #endif |
| 176 | |
| 177 | if (cvmx_bootmem_desc->major_version > 3) { |
| 178 | cvmx_dprintf("ERROR: Incompatible bootmem descriptor " |
| 179 | "version: %d.%d at addr: %p\n", |
| 180 | (int)cvmx_bootmem_desc->major_version, |
| 181 | (int)cvmx_bootmem_desc->minor_version, |
| 182 | cvmx_bootmem_desc); |
| 183 | goto error_out; |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * Do a variety of checks to validate the arguments. The |
| 188 | * allocator code will later assume that these checks have |
| 189 | * been made. We validate that the requested constraints are |
| 190 | * not self-contradictory before we look through the list of |
| 191 | * available memory. |
| 192 | */ |
| 193 | |
| 194 | /* 0 is not a valid req_size for this allocator */ |
| 195 | if (!req_size) |
| 196 | goto error_out; |
| 197 | |
| 198 | /* Round req_size up to mult of minimum alignment bytes */ |
| 199 | req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & |
| 200 | ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); |
| 201 | |
| 202 | /* |
| 203 | * Convert !0 address_min and 0 address_max to special case of |
| 204 | * range that specifies an exact memory block to allocate. Do |
| 205 | * this before other checks and adjustments so that this |
| 206 | * tranformation will be validated. |
| 207 | */ |
| 208 | if (address_min && !address_max) |
| 209 | address_max = address_min + req_size; |
| 210 | else if (!address_min && !address_max) |
| 211 | address_max = ~0ull; /* If no limits given, use max limits */ |
| 212 | |
| 213 | |
| 214 | /* |
| 215 | * Enforce minimum alignment (this also keeps the minimum free block |
| 216 | * req_size the same as the alignment req_size. |
| 217 | */ |
| 218 | if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE) |
| 219 | alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE; |
| 220 | |
| 221 | /* |
| 222 | * Adjust address minimum based on requested alignment (round |
| 223 | * up to meet alignment). Do this here so we can reject |
| 224 | * impossible requests up front. (NOP for address_min == 0) |
| 225 | */ |
| 226 | if (alignment) |
| 227 | address_min = __ALIGN_MASK(address_min, (alignment - 1)); |
| 228 | |
| 229 | /* |
| 230 | * Reject inconsistent args. We have adjusted these, so this |
| 231 | * may fail due to our internal changes even if this check |
| 232 | * would pass for the values the user supplied. |
| 233 | */ |
| 234 | if (req_size > address_max - address_min) |
| 235 | goto error_out; |
| 236 | |
| 237 | /* Walk through the list entries - first fit found is returned */ |
| 238 | |
| 239 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 240 | cvmx_bootmem_lock(); |
| 241 | head_addr = cvmx_bootmem_desc->head_addr; |
| 242 | ent_addr = head_addr; |
| 243 | for (; ent_addr; |
| 244 | prev_addr = ent_addr, |
| 245 | ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) { |
| 246 | uint64_t usable_base, usable_max; |
| 247 | uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr); |
| 248 | |
| 249 | if (cvmx_bootmem_phy_get_next(ent_addr) |
| 250 | && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) { |
| 251 | cvmx_dprintf("Internal bootmem_alloc() error: ent: " |
| 252 | "0x%llx, next: 0x%llx\n", |
| 253 | (unsigned long long)ent_addr, |
| 254 | (unsigned long long) |
| 255 | cvmx_bootmem_phy_get_next(ent_addr)); |
| 256 | goto error_out; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Determine if this is an entry that can satisify the |
| 261 | * request Check to make sure entry is large enough to |
| 262 | * satisfy request. |
| 263 | */ |
| 264 | usable_base = |
| 265 | __ALIGN_MASK(max(address_min, ent_addr), alignment - 1); |
| 266 | usable_max = min(address_max, ent_addr + ent_size); |
| 267 | /* |
| 268 | * We should be able to allocate block at address |
| 269 | * usable_base. |
| 270 | */ |
| 271 | |
| 272 | desired_min_addr = usable_base; |
| 273 | /* |
| 274 | * Determine if request can be satisfied from the |
| 275 | * current entry. |
| 276 | */ |
| 277 | if (!((ent_addr + ent_size) > usable_base |
| 278 | && ent_addr < address_max |
| 279 | && req_size <= usable_max - usable_base)) |
| 280 | continue; |
| 281 | /* |
| 282 | * We have found an entry that has room to satisfy the |
| 283 | * request, so allocate it from this entry. If end |
| 284 | * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from |
| 285 | * the end of this block rather than the beginning. |
| 286 | */ |
| 287 | if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) { |
| 288 | desired_min_addr = usable_max - req_size; |
| 289 | /* |
| 290 | * Align desired address down to required |
| 291 | * alignment. |
| 292 | */ |
| 293 | desired_min_addr &= ~(alignment - 1); |
| 294 | } |
| 295 | |
| 296 | /* Match at start of entry */ |
| 297 | if (desired_min_addr == ent_addr) { |
| 298 | if (req_size < ent_size) { |
| 299 | /* |
| 300 | * big enough to create a new block |
| 301 | * from top portion of block. |
| 302 | */ |
| 303 | new_ent_addr = ent_addr + req_size; |
| 304 | cvmx_bootmem_phy_set_next(new_ent_addr, |
| 305 | cvmx_bootmem_phy_get_next(ent_addr)); |
| 306 | cvmx_bootmem_phy_set_size(new_ent_addr, |
| 307 | ent_size - |
| 308 | req_size); |
| 309 | |
| 310 | /* |
| 311 | * Adjust next pointer as following |
| 312 | * code uses this. |
| 313 | */ |
| 314 | cvmx_bootmem_phy_set_next(ent_addr, |
| 315 | new_ent_addr); |
| 316 | } |
| 317 | |
| 318 | /* |
| 319 | * adjust prev ptr or head to remove this |
| 320 | * entry from list. |
| 321 | */ |
| 322 | if (prev_addr) |
| 323 | cvmx_bootmem_phy_set_next(prev_addr, |
| 324 | cvmx_bootmem_phy_get_next(ent_addr)); |
| 325 | else |
| 326 | /* |
| 327 | * head of list being returned, so |
| 328 | * update head ptr. |
| 329 | */ |
| 330 | cvmx_bootmem_desc->head_addr = |
| 331 | cvmx_bootmem_phy_get_next(ent_addr); |
| 332 | |
| 333 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 334 | cvmx_bootmem_unlock(); |
| 335 | return desired_min_addr; |
| 336 | } |
| 337 | /* |
| 338 | * block returned doesn't start at beginning of entry, |
| 339 | * so we know that we will be splitting a block off |
| 340 | * the front of this one. Create a new block from the |
| 341 | * beginning, add to list, and go to top of loop |
| 342 | * again. |
| 343 | * |
| 344 | * create new block from high portion of |
| 345 | * block, so that top block starts at desired |
| 346 | * addr. |
| 347 | */ |
| 348 | new_ent_addr = desired_min_addr; |
| 349 | cvmx_bootmem_phy_set_next(new_ent_addr, |
| 350 | cvmx_bootmem_phy_get_next |
| 351 | (ent_addr)); |
| 352 | cvmx_bootmem_phy_set_size(new_ent_addr, |
| 353 | cvmx_bootmem_phy_get_size |
| 354 | (ent_addr) - |
| 355 | (desired_min_addr - |
| 356 | ent_addr)); |
| 357 | cvmx_bootmem_phy_set_size(ent_addr, |
| 358 | desired_min_addr - ent_addr); |
| 359 | cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); |
| 360 | /* Loop again to handle actual alloc from new block */ |
| 361 | } |
| 362 | error_out: |
| 363 | /* We didn't find anything, so return error */ |
| 364 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 365 | cvmx_bootmem_unlock(); |
| 366 | return -1; |
| 367 | } |
| 368 | |
| 369 | int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags) |
| 370 | { |
| 371 | uint64_t cur_addr; |
| 372 | uint64_t prev_addr = 0; /* zero is invalid */ |
| 373 | int retval = 0; |
| 374 | |
| 375 | #ifdef DEBUG |
| 376 | cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", |
| 377 | (unsigned long long)phy_addr, (unsigned long long)size); |
| 378 | #endif |
| 379 | if (cvmx_bootmem_desc->major_version > 3) { |
| 380 | cvmx_dprintf("ERROR: Incompatible bootmem descriptor " |
| 381 | "version: %d.%d at addr: %p\n", |
| 382 | (int)cvmx_bootmem_desc->major_version, |
| 383 | (int)cvmx_bootmem_desc->minor_version, |
| 384 | cvmx_bootmem_desc); |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | /* 0 is not a valid size for this allocator */ |
| 389 | if (!size) |
| 390 | return 0; |
| 391 | |
| 392 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 393 | cvmx_bootmem_lock(); |
| 394 | cur_addr = cvmx_bootmem_desc->head_addr; |
| 395 | if (cur_addr == 0 || phy_addr < cur_addr) { |
| 396 | /* add at front of list - special case with changing head ptr */ |
| 397 | if (cur_addr && phy_addr + size > cur_addr) |
| 398 | goto bootmem_free_done; /* error, overlapping section */ |
| 399 | else if (phy_addr + size == cur_addr) { |
| 400 | /* Add to front of existing first block */ |
| 401 | cvmx_bootmem_phy_set_next(phy_addr, |
| 402 | cvmx_bootmem_phy_get_next |
| 403 | (cur_addr)); |
| 404 | cvmx_bootmem_phy_set_size(phy_addr, |
| 405 | cvmx_bootmem_phy_get_size |
| 406 | (cur_addr) + size); |
| 407 | cvmx_bootmem_desc->head_addr = phy_addr; |
| 408 | |
| 409 | } else { |
| 410 | /* New block before first block. OK if cur_addr is 0 */ |
| 411 | cvmx_bootmem_phy_set_next(phy_addr, cur_addr); |
| 412 | cvmx_bootmem_phy_set_size(phy_addr, size); |
| 413 | cvmx_bootmem_desc->head_addr = phy_addr; |
| 414 | } |
| 415 | retval = 1; |
| 416 | goto bootmem_free_done; |
| 417 | } |
| 418 | |
| 419 | /* Find place in list to add block */ |
| 420 | while (cur_addr && phy_addr > cur_addr) { |
| 421 | prev_addr = cur_addr; |
| 422 | cur_addr = cvmx_bootmem_phy_get_next(cur_addr); |
| 423 | } |
| 424 | |
| 425 | if (!cur_addr) { |
| 426 | /* |
| 427 | * We have reached the end of the list, add on to end, |
| 428 | * checking to see if we need to combine with last |
| 429 | * block |
| 430 | */ |
| 431 | if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == |
| 432 | phy_addr) { |
| 433 | cvmx_bootmem_phy_set_size(prev_addr, |
| 434 | cvmx_bootmem_phy_get_size |
| 435 | (prev_addr) + size); |
| 436 | } else { |
| 437 | cvmx_bootmem_phy_set_next(prev_addr, phy_addr); |
| 438 | cvmx_bootmem_phy_set_size(phy_addr, size); |
| 439 | cvmx_bootmem_phy_set_next(phy_addr, 0); |
| 440 | } |
| 441 | retval = 1; |
| 442 | goto bootmem_free_done; |
| 443 | } else { |
| 444 | /* |
| 445 | * insert between prev and cur nodes, checking for |
| 446 | * merge with either/both. |
| 447 | */ |
| 448 | if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == |
| 449 | phy_addr) { |
| 450 | /* Merge with previous */ |
| 451 | cvmx_bootmem_phy_set_size(prev_addr, |
| 452 | cvmx_bootmem_phy_get_size |
| 453 | (prev_addr) + size); |
| 454 | if (phy_addr + size == cur_addr) { |
| 455 | /* Also merge with current */ |
| 456 | cvmx_bootmem_phy_set_size(prev_addr, |
| 457 | cvmx_bootmem_phy_get_size(cur_addr) + |
| 458 | cvmx_bootmem_phy_get_size(prev_addr)); |
| 459 | cvmx_bootmem_phy_set_next(prev_addr, |
| 460 | cvmx_bootmem_phy_get_next(cur_addr)); |
| 461 | } |
| 462 | retval = 1; |
| 463 | goto bootmem_free_done; |
| 464 | } else if (phy_addr + size == cur_addr) { |
| 465 | /* Merge with current */ |
| 466 | cvmx_bootmem_phy_set_size(phy_addr, |
| 467 | cvmx_bootmem_phy_get_size |
| 468 | (cur_addr) + size); |
| 469 | cvmx_bootmem_phy_set_next(phy_addr, |
| 470 | cvmx_bootmem_phy_get_next |
| 471 | (cur_addr)); |
| 472 | cvmx_bootmem_phy_set_next(prev_addr, phy_addr); |
| 473 | retval = 1; |
| 474 | goto bootmem_free_done; |
| 475 | } |
| 476 | |
| 477 | /* It is a standalone block, add in between prev and cur */ |
| 478 | cvmx_bootmem_phy_set_size(phy_addr, size); |
| 479 | cvmx_bootmem_phy_set_next(phy_addr, cur_addr); |
| 480 | cvmx_bootmem_phy_set_next(prev_addr, phy_addr); |
| 481 | |
| 482 | } |
| 483 | retval = 1; |
| 484 | |
| 485 | bootmem_free_done: |
| 486 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 487 | cvmx_bootmem_unlock(); |
| 488 | return retval; |
| 489 | |
| 490 | } |
| 491 | |
| 492 | struct cvmx_bootmem_named_block_desc * |
| 493 | cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags) |
| 494 | { |
| 495 | unsigned int i; |
| 496 | struct cvmx_bootmem_named_block_desc *named_block_array_ptr; |
| 497 | |
| 498 | #ifdef DEBUG |
| 499 | cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name); |
| 500 | #endif |
| 501 | /* |
| 502 | * Lock the structure to make sure that it is not being |
| 503 | * changed while we are examining it. |
| 504 | */ |
| 505 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 506 | cvmx_bootmem_lock(); |
| 507 | |
| 508 | /* Use XKPHYS for 64 bit linux */ |
| 509 | named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *) |
| 510 | cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr); |
| 511 | |
| 512 | #ifdef DEBUG |
| 513 | cvmx_dprintf |
| 514 | ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n", |
| 515 | named_block_array_ptr); |
| 516 | #endif |
| 517 | if (cvmx_bootmem_desc->major_version == 3) { |
| 518 | for (i = 0; |
| 519 | i < cvmx_bootmem_desc->named_block_num_blocks; i++) { |
| 520 | if ((name && named_block_array_ptr[i].size |
| 521 | && !strncmp(name, named_block_array_ptr[i].name, |
| 522 | cvmx_bootmem_desc->named_block_name_len |
| 523 | - 1)) |
| 524 | || (!name && !named_block_array_ptr[i].size)) { |
| 525 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 526 | cvmx_bootmem_unlock(); |
| 527 | |
| 528 | return &(named_block_array_ptr[i]); |
| 529 | } |
| 530 | } |
| 531 | } else { |
| 532 | cvmx_dprintf("ERROR: Incompatible bootmem descriptor " |
| 533 | "version: %d.%d at addr: %p\n", |
| 534 | (int)cvmx_bootmem_desc->major_version, |
| 535 | (int)cvmx_bootmem_desc->minor_version, |
| 536 | cvmx_bootmem_desc); |
| 537 | } |
| 538 | if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) |
| 539 | cvmx_bootmem_unlock(); |
| 540 | |
| 541 | return NULL; |
| 542 | } |
| 543 | |
| 544 | int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags) |
| 545 | { |
| 546 | struct cvmx_bootmem_named_block_desc *named_block_ptr; |
| 547 | |
| 548 | if (cvmx_bootmem_desc->major_version != 3) { |
| 549 | cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: " |
| 550 | "%d.%d at addr: %p\n", |
| 551 | (int)cvmx_bootmem_desc->major_version, |
| 552 | (int)cvmx_bootmem_desc->minor_version, |
| 553 | cvmx_bootmem_desc); |
| 554 | return 0; |
| 555 | } |
| 556 | #ifdef DEBUG |
| 557 | cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name); |
| 558 | #endif |
| 559 | |
| 560 | /* |
| 561 | * Take lock here, as name lookup/block free/name free need to |
| 562 | * be atomic. |
| 563 | */ |
| 564 | cvmx_bootmem_lock(); |
| 565 | |
| 566 | named_block_ptr = |
| 567 | cvmx_bootmem_phy_named_block_find(name, |
| 568 | CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| 569 | if (named_block_ptr) { |
| 570 | #ifdef DEBUG |
| 571 | cvmx_dprintf("cvmx_bootmem_phy_named_block_free: " |
| 572 | "%s, base: 0x%llx, size: 0x%llx\n", |
| 573 | name, |
| 574 | (unsigned long long)named_block_ptr->base_addr, |
| 575 | (unsigned long long)named_block_ptr->size); |
| 576 | #endif |
| 577 | __cvmx_bootmem_phy_free(named_block_ptr->base_addr, |
| 578 | named_block_ptr->size, |
| 579 | CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| 580 | named_block_ptr->size = 0; |
| 581 | /* Set size to zero to indicate block not used. */ |
| 582 | } |
| 583 | |
| 584 | cvmx_bootmem_unlock(); |
| 585 | return named_block_ptr != NULL; /* 0 on failure, 1 on success */ |
| 586 | } |