Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * lib/kernel_lock.c |
| 3 | * |
| 4 | * This is the traditional BKL - big kernel lock. Largely |
Simon Arlott | 5895df9 | 2007-10-20 01:29:18 +0200 | [diff] [blame^] | 5 | * relegated to obsolescence, but used by various less |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6 | * important (or lazy) subsystems. |
| 7 | */ |
| 8 | #include <linux/smp_lock.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/kallsyms.h> |
| 11 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 12 | #ifdef CONFIG_PREEMPT_BKL |
| 13 | /* |
| 14 | * The 'big kernel semaphore' |
| 15 | * |
| 16 | * This mutex is taken and released recursively by lock_kernel() |
Andreas Mohr | d6e05ed | 2006-06-26 18:35:02 +0200 | [diff] [blame] | 17 | * and unlock_kernel(). It is transparently dropped and reacquired |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 18 | * over schedule(). It is used to protect legacy code that hasn't |
| 19 | * been migrated to a proper locking design yet. |
| 20 | * |
| 21 | * Note: code locked by this semaphore will only be serialized against |
| 22 | * other code using the same locking facility. The code guarantees that |
| 23 | * the task remains on the same CPU. |
| 24 | * |
| 25 | * Don't use in new code. |
| 26 | */ |
| 27 | static DECLARE_MUTEX(kernel_sem); |
| 28 | |
| 29 | /* |
| 30 | * Re-acquire the kernel semaphore. |
| 31 | * |
| 32 | * This function is called with preemption off. |
| 33 | * |
| 34 | * We are executing in schedule() so the code must be extremely careful |
| 35 | * about recursion, both due to the down() and due to the enabling of |
| 36 | * preemption. schedule() will re-check the preemption flag after |
| 37 | * reacquiring the semaphore. |
| 38 | */ |
| 39 | int __lockfunc __reacquire_kernel_lock(void) |
| 40 | { |
| 41 | struct task_struct *task = current; |
| 42 | int saved_lock_depth = task->lock_depth; |
| 43 | |
| 44 | BUG_ON(saved_lock_depth < 0); |
| 45 | |
| 46 | task->lock_depth = -1; |
| 47 | preempt_enable_no_resched(); |
| 48 | |
| 49 | down(&kernel_sem); |
| 50 | |
| 51 | preempt_disable(); |
| 52 | task->lock_depth = saved_lock_depth; |
| 53 | |
| 54 | return 0; |
| 55 | } |
| 56 | |
| 57 | void __lockfunc __release_kernel_lock(void) |
| 58 | { |
| 59 | up(&kernel_sem); |
| 60 | } |
| 61 | |
| 62 | /* |
| 63 | * Getting the big kernel semaphore. |
| 64 | */ |
| 65 | void __lockfunc lock_kernel(void) |
| 66 | { |
| 67 | struct task_struct *task = current; |
| 68 | int depth = task->lock_depth + 1; |
| 69 | |
| 70 | if (likely(!depth)) |
| 71 | /* |
| 72 | * No recursion worries - we set up lock_depth _after_ |
| 73 | */ |
| 74 | down(&kernel_sem); |
| 75 | |
| 76 | task->lock_depth = depth; |
| 77 | } |
| 78 | |
| 79 | void __lockfunc unlock_kernel(void) |
| 80 | { |
| 81 | struct task_struct *task = current; |
| 82 | |
| 83 | BUG_ON(task->lock_depth < 0); |
| 84 | |
| 85 | if (likely(--task->lock_depth < 0)) |
| 86 | up(&kernel_sem); |
| 87 | } |
| 88 | |
| 89 | #else |
| 90 | |
| 91 | /* |
| 92 | * The 'big kernel lock' |
| 93 | * |
| 94 | * This spinlock is taken and released recursively by lock_kernel() |
Andreas Mohr | d6e05ed | 2006-06-26 18:35:02 +0200 | [diff] [blame] | 95 | * and unlock_kernel(). It is transparently dropped and reacquired |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 96 | * over schedule(). It is used to protect legacy code that hasn't |
| 97 | * been migrated to a proper locking design yet. |
| 98 | * |
| 99 | * Don't use in new code. |
| 100 | */ |
| 101 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); |
| 102 | |
| 103 | |
| 104 | /* |
| 105 | * Acquire/release the underlying lock from the scheduler. |
| 106 | * |
| 107 | * This is called with preemption disabled, and should |
| 108 | * return an error value if it cannot get the lock and |
| 109 | * TIF_NEED_RESCHED gets set. |
| 110 | * |
| 111 | * If it successfully gets the lock, it should increment |
| 112 | * the preemption count like any spinlock does. |
| 113 | * |
| 114 | * (This works on UP too - _raw_spin_trylock will never |
| 115 | * return false in that case) |
| 116 | */ |
| 117 | int __lockfunc __reacquire_kernel_lock(void) |
| 118 | { |
| 119 | while (!_raw_spin_trylock(&kernel_flag)) { |
| 120 | if (test_thread_flag(TIF_NEED_RESCHED)) |
| 121 | return -EAGAIN; |
| 122 | cpu_relax(); |
| 123 | } |
| 124 | preempt_disable(); |
| 125 | return 0; |
| 126 | } |
| 127 | |
| 128 | void __lockfunc __release_kernel_lock(void) |
| 129 | { |
| 130 | _raw_spin_unlock(&kernel_flag); |
| 131 | preempt_enable_no_resched(); |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * These are the BKL spinlocks - we try to be polite about preemption. |
| 136 | * If SMP is not on (ie UP preemption), this all goes away because the |
| 137 | * _raw_spin_trylock() will always succeed. |
| 138 | */ |
| 139 | #ifdef CONFIG_PREEMPT |
| 140 | static inline void __lock_kernel(void) |
| 141 | { |
| 142 | preempt_disable(); |
| 143 | if (unlikely(!_raw_spin_trylock(&kernel_flag))) { |
| 144 | /* |
| 145 | * If preemption was disabled even before this |
| 146 | * was called, there's nothing we can be polite |
| 147 | * about - just spin. |
| 148 | */ |
| 149 | if (preempt_count() > 1) { |
| 150 | _raw_spin_lock(&kernel_flag); |
| 151 | return; |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Otherwise, let's wait for the kernel lock |
| 156 | * with preemption enabled.. |
| 157 | */ |
| 158 | do { |
| 159 | preempt_enable(); |
| 160 | while (spin_is_locked(&kernel_flag)) |
| 161 | cpu_relax(); |
| 162 | preempt_disable(); |
| 163 | } while (!_raw_spin_trylock(&kernel_flag)); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | #else |
| 168 | |
| 169 | /* |
| 170 | * Non-preemption case - just get the spinlock |
| 171 | */ |
| 172 | static inline void __lock_kernel(void) |
| 173 | { |
| 174 | _raw_spin_lock(&kernel_flag); |
| 175 | } |
| 176 | #endif |
| 177 | |
| 178 | static inline void __unlock_kernel(void) |
| 179 | { |
Ingo Molnar | 8a25d5d | 2006-07-03 00:24:54 -0700 | [diff] [blame] | 180 | /* |
| 181 | * the BKL is not covered by lockdep, so we open-code the |
| 182 | * unlocking sequence (and thus avoid the dep-chain ops): |
| 183 | */ |
| 184 | _raw_spin_unlock(&kernel_flag); |
| 185 | preempt_enable(); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 186 | } |
| 187 | |
| 188 | /* |
| 189 | * Getting the big kernel lock. |
| 190 | * |
| 191 | * This cannot happen asynchronously, so we only need to |
| 192 | * worry about other CPU's. |
| 193 | */ |
| 194 | void __lockfunc lock_kernel(void) |
| 195 | { |
| 196 | int depth = current->lock_depth+1; |
| 197 | if (likely(!depth)) |
| 198 | __lock_kernel(); |
| 199 | current->lock_depth = depth; |
| 200 | } |
| 201 | |
| 202 | void __lockfunc unlock_kernel(void) |
| 203 | { |
| 204 | BUG_ON(current->lock_depth < 0); |
| 205 | if (likely(--current->lock_depth < 0)) |
| 206 | __unlock_kernel(); |
| 207 | } |
| 208 | |
| 209 | #endif |
| 210 | |
| 211 | EXPORT_SYMBOL(lock_kernel); |
| 212 | EXPORT_SYMBOL(unlock_kernel); |
| 213 | |