Greg Kroah-Hartman | b244131 | 2017-11-01 15:07:57 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 2 | /* |
| 3 | * NUMA support for s390 |
| 4 | * |
| 5 | * A tree structure used for machine topology mangling |
| 6 | * |
| 7 | * Copyright IBM Corp. 2015 |
| 8 | */ |
| 9 | |
| 10 | #include <linux/kernel.h> |
Mike Rapoport | 57c8a66 | 2018-10-30 15:09:49 -0700 | [diff] [blame^] | 11 | #include <linux/memblock.h> |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 12 | #include <linux/cpumask.h> |
| 13 | #include <linux/list.h> |
| 14 | #include <linux/list_sort.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <asm/numa.h> |
| 17 | |
| 18 | #include "toptree.h" |
| 19 | |
| 20 | /** |
| 21 | * toptree_alloc - Allocate and initialize a new tree node. |
| 22 | * @level: The node's vertical level; level 0 contains the leaves. |
| 23 | * @id: ID number, explicitly not unique beyond scope of node's siblings |
| 24 | * |
| 25 | * Allocate a new tree node and initialize it. |
| 26 | * |
| 27 | * RETURNS: |
| 28 | * Pointer to the new tree node or NULL on error |
| 29 | */ |
Heiko Carstens | 8c910580 | 2016-12-03 09:50:21 +0100 | [diff] [blame] | 30 | struct toptree __ref *toptree_alloc(int level, int id) |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 31 | { |
Heiko Carstens | 8c910580 | 2016-12-03 09:50:21 +0100 | [diff] [blame] | 32 | struct toptree *res; |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 33 | |
Heiko Carstens | 8c910580 | 2016-12-03 09:50:21 +0100 | [diff] [blame] | 34 | if (slab_is_available()) |
| 35 | res = kzalloc(sizeof(*res), GFP_KERNEL); |
| 36 | else |
Mike Rapoport | eb31d55 | 2018-10-30 15:08:04 -0700 | [diff] [blame] | 37 | res = memblock_alloc(sizeof(*res), 8); |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 38 | if (!res) |
| 39 | return res; |
| 40 | |
| 41 | INIT_LIST_HEAD(&res->children); |
| 42 | INIT_LIST_HEAD(&res->sibling); |
| 43 | cpumask_clear(&res->mask); |
| 44 | res->level = level; |
| 45 | res->id = id; |
| 46 | return res; |
| 47 | } |
| 48 | |
| 49 | /** |
| 50 | * toptree_remove - Remove a tree node from a tree |
| 51 | * @cand: Pointer to the node to remove |
| 52 | * |
| 53 | * The node is detached from its parent node. The parent node's |
| 54 | * masks will be updated to reflect the loss of the child. |
| 55 | */ |
| 56 | static void toptree_remove(struct toptree *cand) |
| 57 | { |
| 58 | struct toptree *oldparent; |
| 59 | |
| 60 | list_del_init(&cand->sibling); |
| 61 | oldparent = cand->parent; |
| 62 | cand->parent = NULL; |
| 63 | toptree_update_mask(oldparent); |
| 64 | } |
| 65 | |
| 66 | /** |
| 67 | * toptree_free - discard a tree node |
| 68 | * @cand: Pointer to the tree node to discard |
| 69 | * |
| 70 | * Checks if @cand is attached to a parent node. Detaches it |
| 71 | * cleanly using toptree_remove. Possible children are freed |
| 72 | * recursively. In the end @cand itself is freed. |
| 73 | */ |
Heiko Carstens | 8c910580 | 2016-12-03 09:50:21 +0100 | [diff] [blame] | 74 | void __ref toptree_free(struct toptree *cand) |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 75 | { |
| 76 | struct toptree *child, *tmp; |
| 77 | |
| 78 | if (cand->parent) |
| 79 | toptree_remove(cand); |
| 80 | toptree_for_each_child_safe(child, tmp, cand) |
| 81 | toptree_free(child); |
Heiko Carstens | 8c910580 | 2016-12-03 09:50:21 +0100 | [diff] [blame] | 82 | if (slab_is_available()) |
| 83 | kfree(cand); |
| 84 | else |
| 85 | memblock_free_early((unsigned long)cand, sizeof(*cand)); |
Philipp Hachtmann | e8054b6 | 2014-03-06 18:39:39 +0100 | [diff] [blame] | 86 | } |
| 87 | |
| 88 | /** |
| 89 | * toptree_update_mask - Update node bitmasks |
| 90 | * @cand: Pointer to a tree node |
| 91 | * |
| 92 | * The node's cpumask will be updated by combining all children's |
| 93 | * masks. Then toptree_update_mask is called recursively for the |
| 94 | * parent if applicable. |
| 95 | * |
| 96 | * NOTE: |
| 97 | * This must not be called on leaves. If called on a leaf, its |
| 98 | * CPU mask is cleared and lost. |
| 99 | */ |
| 100 | void toptree_update_mask(struct toptree *cand) |
| 101 | { |
| 102 | struct toptree *child; |
| 103 | |
| 104 | cpumask_clear(&cand->mask); |
| 105 | list_for_each_entry(child, &cand->children, sibling) |
| 106 | cpumask_or(&cand->mask, &cand->mask, &child->mask); |
| 107 | if (cand->parent) |
| 108 | toptree_update_mask(cand->parent); |
| 109 | } |
| 110 | |
| 111 | /** |
| 112 | * toptree_insert - Insert a tree node into tree |
| 113 | * @cand: Pointer to the node to insert |
| 114 | * @target: Pointer to the node to which @cand will added as a child |
| 115 | * |
| 116 | * Insert a tree node into a tree. Masks will be updated automatically. |
| 117 | * |
| 118 | * RETURNS: |
| 119 | * 0 on success, -1 if NULL is passed as argument or the node levels |
| 120 | * don't fit. |
| 121 | */ |
| 122 | static int toptree_insert(struct toptree *cand, struct toptree *target) |
| 123 | { |
| 124 | if (!cand || !target) |
| 125 | return -1; |
| 126 | if (target->level != (cand->level + 1)) |
| 127 | return -1; |
| 128 | list_add_tail(&cand->sibling, &target->children); |
| 129 | cand->parent = target; |
| 130 | toptree_update_mask(target); |
| 131 | return 0; |
| 132 | } |
| 133 | |
| 134 | /** |
| 135 | * toptree_move_children - Move all child nodes of a node to a new place |
| 136 | * @cand: Pointer to the node whose children are to be moved |
| 137 | * @target: Pointer to the node to which @cand's children will be attached |
| 138 | * |
| 139 | * Take all child nodes of @cand and move them using toptree_move. |
| 140 | */ |
| 141 | static void toptree_move_children(struct toptree *cand, struct toptree *target) |
| 142 | { |
| 143 | struct toptree *child, *tmp; |
| 144 | |
| 145 | toptree_for_each_child_safe(child, tmp, cand) |
| 146 | toptree_move(child, target); |
| 147 | } |
| 148 | |
| 149 | /** |
| 150 | * toptree_unify - Merge children with same ID |
| 151 | * @cand: Pointer to node whose direct children should be made unique |
| 152 | * |
| 153 | * When mangling the tree it is possible that a node has two or more children |
| 154 | * which have the same ID. This routine merges these children into one and |
| 155 | * moves all children of the merged nodes into the unified node. |
| 156 | */ |
| 157 | void toptree_unify(struct toptree *cand) |
| 158 | { |
| 159 | struct toptree *child, *tmp, *cand_copy; |
| 160 | |
| 161 | /* Threads cannot be split, cores are not split */ |
| 162 | if (cand->level < 2) |
| 163 | return; |
| 164 | |
| 165 | cand_copy = toptree_alloc(cand->level, 0); |
| 166 | toptree_for_each_child_safe(child, tmp, cand) { |
| 167 | struct toptree *tmpchild; |
| 168 | |
| 169 | if (!cpumask_empty(&child->mask)) { |
| 170 | tmpchild = toptree_get_child(cand_copy, child->id); |
| 171 | toptree_move_children(child, tmpchild); |
| 172 | } |
| 173 | toptree_free(child); |
| 174 | } |
| 175 | toptree_move_children(cand_copy, cand); |
| 176 | toptree_free(cand_copy); |
| 177 | |
| 178 | toptree_for_each_child(child, cand) |
| 179 | toptree_unify(child); |
| 180 | } |
| 181 | |
| 182 | /** |
| 183 | * toptree_move - Move a node to another context |
| 184 | * @cand: Pointer to the node to move |
| 185 | * @target: Pointer to the node where @cand should go |
| 186 | * |
| 187 | * In the easiest case @cand is exactly on the level below @target |
| 188 | * and will be immediately moved to the target. |
| 189 | * |
| 190 | * If @target's level is not the direct parent level of @cand, |
| 191 | * nodes for the missing levels are created and put between |
| 192 | * @cand and @target. The "stacking" nodes' IDs are taken from |
| 193 | * @cand's parents. |
| 194 | * |
| 195 | * After this it is likely to have redundant nodes in the tree |
| 196 | * which are addressed by means of toptree_unify. |
| 197 | */ |
| 198 | void toptree_move(struct toptree *cand, struct toptree *target) |
| 199 | { |
| 200 | struct toptree *stack_target, *real_insert_point, *ptr, *tmp; |
| 201 | |
| 202 | if (cand->level + 1 == target->level) { |
| 203 | toptree_remove(cand); |
| 204 | toptree_insert(cand, target); |
| 205 | return; |
| 206 | } |
| 207 | |
| 208 | real_insert_point = NULL; |
| 209 | ptr = cand; |
| 210 | stack_target = NULL; |
| 211 | |
| 212 | do { |
| 213 | tmp = stack_target; |
| 214 | stack_target = toptree_alloc(ptr->level + 1, |
| 215 | ptr->parent->id); |
| 216 | toptree_insert(tmp, stack_target); |
| 217 | if (!real_insert_point) |
| 218 | real_insert_point = stack_target; |
| 219 | ptr = ptr->parent; |
| 220 | } while (stack_target->level < (target->level - 1)); |
| 221 | |
| 222 | toptree_remove(cand); |
| 223 | toptree_insert(cand, real_insert_point); |
| 224 | toptree_insert(stack_target, target); |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * toptree_get_child - Access a tree node's child by its ID |
| 229 | * @cand: Pointer to tree node whose child is to access |
| 230 | * @id: The desired child's ID |
| 231 | * |
| 232 | * @cand's children are searched for a child with matching ID. |
| 233 | * If no match can be found, a new child with the desired ID |
| 234 | * is created and returned. |
| 235 | */ |
| 236 | struct toptree *toptree_get_child(struct toptree *cand, int id) |
| 237 | { |
| 238 | struct toptree *child; |
| 239 | |
| 240 | toptree_for_each_child(child, cand) |
| 241 | if (child->id == id) |
| 242 | return child; |
| 243 | child = toptree_alloc(cand->level-1, id); |
| 244 | toptree_insert(child, cand); |
| 245 | return child; |
| 246 | } |
| 247 | |
| 248 | /** |
| 249 | * toptree_first - Find the first descendant on specified level |
| 250 | * @context: Pointer to tree node whose descendants are to be used |
| 251 | * @level: The level of interest |
| 252 | * |
| 253 | * RETURNS: |
| 254 | * @context's first descendant on the specified level, or NULL |
| 255 | * if there is no matching descendant |
| 256 | */ |
| 257 | struct toptree *toptree_first(struct toptree *context, int level) |
| 258 | { |
| 259 | struct toptree *child, *tmp; |
| 260 | |
| 261 | if (context->level == level) |
| 262 | return context; |
| 263 | |
| 264 | if (!list_empty(&context->children)) { |
| 265 | list_for_each_entry(child, &context->children, sibling) { |
| 266 | tmp = toptree_first(child, level); |
| 267 | if (tmp) |
| 268 | return tmp; |
| 269 | } |
| 270 | } |
| 271 | return NULL; |
| 272 | } |
| 273 | |
| 274 | /** |
| 275 | * toptree_next_sibling - Return next sibling |
| 276 | * @cur: Pointer to a tree node |
| 277 | * |
| 278 | * RETURNS: |
| 279 | * If @cur has a parent and is not the last in the parent's children list, |
| 280 | * the next sibling is returned. Or NULL when there are no siblings left. |
| 281 | */ |
| 282 | static struct toptree *toptree_next_sibling(struct toptree *cur) |
| 283 | { |
| 284 | if (cur->parent == NULL) |
| 285 | return NULL; |
| 286 | |
| 287 | if (cur == list_last_entry(&cur->parent->children, |
| 288 | struct toptree, sibling)) |
| 289 | return NULL; |
| 290 | return (struct toptree *) list_next_entry(cur, sibling); |
| 291 | } |
| 292 | |
| 293 | /** |
| 294 | * toptree_next - Tree traversal function |
| 295 | * @cur: Pointer to current element |
| 296 | * @context: Pointer to the root node of the tree or subtree to |
| 297 | * be traversed. |
| 298 | * @level: The level of interest. |
| 299 | * |
| 300 | * RETURNS: |
| 301 | * Pointer to the next node on level @level |
| 302 | * or NULL when there is no next node. |
| 303 | */ |
| 304 | struct toptree *toptree_next(struct toptree *cur, struct toptree *context, |
| 305 | int level) |
| 306 | { |
| 307 | struct toptree *cur_context, *tmp; |
| 308 | |
| 309 | if (!cur) |
| 310 | return NULL; |
| 311 | |
| 312 | if (context->level == level) |
| 313 | return NULL; |
| 314 | |
| 315 | tmp = toptree_next_sibling(cur); |
| 316 | if (tmp != NULL) |
| 317 | return tmp; |
| 318 | |
| 319 | cur_context = cur; |
| 320 | while (cur_context->level < context->level - 1) { |
| 321 | /* Step up */ |
| 322 | cur_context = cur_context->parent; |
| 323 | /* Step aside */ |
| 324 | tmp = toptree_next_sibling(cur_context); |
| 325 | if (tmp != NULL) { |
| 326 | /* Step down */ |
| 327 | tmp = toptree_first(tmp, level); |
| 328 | if (tmp != NULL) |
| 329 | return tmp; |
| 330 | } |
| 331 | } |
| 332 | return NULL; |
| 333 | } |
| 334 | |
| 335 | /** |
| 336 | * toptree_count - Count descendants on specified level |
| 337 | * @context: Pointer to node whose descendants are to be considered |
| 338 | * @level: Only descendants on the specified level will be counted |
| 339 | * |
| 340 | * RETURNS: |
| 341 | * Number of descendants on the specified level |
| 342 | */ |
| 343 | int toptree_count(struct toptree *context, int level) |
| 344 | { |
| 345 | struct toptree *cur; |
| 346 | int cnt = 0; |
| 347 | |
| 348 | toptree_for_each(cur, context, level) |
| 349 | cnt++; |
| 350 | return cnt; |
| 351 | } |