blob: 72424eb7e5f8777549721f5a06325f3924175b66 [file] [log] [blame]
Mike Looijmans3044a862019-05-17 15:23:52 +02001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Silicon Labs Si5341/Si5340 Clock generator
4 * Copyright (C) 2019 Topic Embedded Products
5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
6 */
7
8#include <linux/clk.h>
9#include <linux/clk-provider.h>
10#include <linux/delay.h>
11#include <linux/gcd.h>
12#include <linux/math64.h>
13#include <linux/i2c.h>
14#include <linux/module.h>
15#include <linux/regmap.h>
16#include <linux/slab.h>
17#include <asm/unaligned.h>
18
19#define SI5341_MAX_NUM_OUTPUTS 10
20#define SI5340_MAX_NUM_OUTPUTS 4
21
22#define SI5341_NUM_SYNTH 5
23#define SI5340_NUM_SYNTH 4
24
25/* Range of the synthesizer fractional divider */
26#define SI5341_SYNTH_N_MIN 10
27#define SI5341_SYNTH_N_MAX 4095
28
29/* The chip can get its input clock from 3 input pins or an XTAL */
30
31/* There is one PLL running at 13500–14256 MHz */
32#define SI5341_PLL_VCO_MIN 13500000000ull
33#define SI5341_PLL_VCO_MAX 14256000000ull
34
35/* The 5 frequency synthesizers obtain their input from the PLL */
36struct clk_si5341_synth {
37 struct clk_hw hw;
38 struct clk_si5341 *data;
39 u8 index;
40};
41#define to_clk_si5341_synth(_hw) \
42 container_of(_hw, struct clk_si5341_synth, hw)
43
44/* The output stages can be connected to any synth (full mux) */
45struct clk_si5341_output {
46 struct clk_hw hw;
47 struct clk_si5341 *data;
48 u8 index;
49};
50#define to_clk_si5341_output(_hw) \
51 container_of(_hw, struct clk_si5341_output, hw)
52
53struct clk_si5341 {
54 struct clk_hw hw;
55 struct regmap *regmap;
56 struct i2c_client *i2c_client;
57 struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
58 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
59 struct clk *pxtal;
60 const char *pxtal_name;
61 const u16 *reg_output_offset;
62 const u16 *reg_rdiv_offset;
63 u64 freq_vco; /* 13500–14256 MHz */
64 u8 num_outputs;
65 u8 num_synth;
66};
67#define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
68
69struct clk_si5341_output_config {
70 u8 out_format_drv_bits;
71 u8 out_cm_ampl_bits;
72 bool synth_master;
73 bool always_on;
74};
75
76#define SI5341_PAGE 0x0001
77#define SI5341_PN_BASE 0x0002
78#define SI5341_DEVICE_REV 0x0005
79#define SI5341_STATUS 0x000C
80#define SI5341_SOFT_RST 0x001C
81
82/* Input dividers (48-bit) */
83#define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
84#define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
85
86/* PLL configuration */
87#define SI5341_PLL_M_NUM 0x0235
88#define SI5341_PLL_M_DEN 0x023B
89
90/* Output configuration */
91#define SI5341_OUT_CONFIG(output) \
92 ((output)->data->reg_output_offset[(output)->index])
93#define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
94#define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
95#define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
96#define SI5341_OUT_R_REG(output) \
97 ((output)->data->reg_rdiv_offset[(output)->index])
98
99/* Synthesize N divider */
100#define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
101#define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
102#define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
103
104/* Synthesizer output enable, phase bypass, power mode */
105#define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
106#define SI5341_SYNTH_N_PIBYP 0x0A04
107#define SI5341_SYNTH_N_PDNB 0x0A05
108#define SI5341_SYNTH_N_CLK_DIS 0x0B4A
109
110#define SI5341_REGISTER_MAX 0xBFF
111
112/* SI5341_OUT_CONFIG bits */
113#define SI5341_OUT_CFG_PDN BIT(0)
114#define SI5341_OUT_CFG_OE BIT(1)
115#define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
116
117/* Static configuration (to be moved to firmware) */
118struct si5341_reg_default {
119 u16 address;
120 u8 value;
121};
122
123/* Output configuration registers 0..9 are not quite logically organized */
124static const u16 si5341_reg_output_offset[] = {
125 0x0108,
126 0x010D,
127 0x0112,
128 0x0117,
129 0x011C,
130 0x0121,
131 0x0126,
132 0x012B,
133 0x0130,
134 0x013A,
135};
136
137static const u16 si5340_reg_output_offset[] = {
138 0x0112,
139 0x0117,
140 0x0126,
141 0x012B,
142};
143
144/* The location of the R divider registers */
145static const u16 si5341_reg_rdiv_offset[] = {
146 0x024A,
147 0x024D,
148 0x0250,
149 0x0253,
150 0x0256,
151 0x0259,
152 0x025C,
153 0x025F,
154 0x0262,
155 0x0268,
156};
157static const u16 si5340_reg_rdiv_offset[] = {
158 0x0250,
159 0x0253,
160 0x025C,
161 0x025F,
162};
163
164/*
165 * Programming sequence from ClockBuilder, settings to initialize the system
166 * using only the XTAL input, without pre-divider.
167 * This also contains settings that aren't mentioned anywhere in the datasheet.
168 * The "known" settings like synth and output configuration are done later.
169 */
170static const struct si5341_reg_default si5341_reg_defaults[] = {
171 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
172 { 0x0018, 0xFF }, /* INT mask */
173 { 0x0021, 0x0F }, /* Select XTAL as input */
174 { 0x0022, 0x00 }, /* Not in datasheet */
175 { 0x002B, 0x02 }, /* SPI config */
176 { 0x002C, 0x20 }, /* LOS enable for XTAL */
177 { 0x002D, 0x00 }, /* LOS timing */
178 { 0x002E, 0x00 },
179 { 0x002F, 0x00 },
180 { 0x0030, 0x00 },
181 { 0x0031, 0x00 },
182 { 0x0032, 0x00 },
183 { 0x0033, 0x00 },
184 { 0x0034, 0x00 },
185 { 0x0035, 0x00 },
186 { 0x0036, 0x00 },
187 { 0x0037, 0x00 },
188 { 0x0038, 0x00 }, /* LOS setting (thresholds) */
189 { 0x0039, 0x00 },
190 { 0x003A, 0x00 },
191 { 0x003B, 0x00 },
192 { 0x003C, 0x00 },
193 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
194 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
195 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
196 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
197 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
198 { 0x009E, 0x00 }, /* Not in datasheet */
199 { 0x0102, 0x01 }, /* Enable outputs */
200 { 0x013F, 0x00 }, /* Not in datasheet */
201 { 0x0140, 0x00 }, /* Not in datasheet */
202 { 0x0141, 0x40 }, /* OUT LOS */
203 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
204 { 0x0203, 0x00 },
205 { 0x0204, 0x00 },
206 { 0x0205, 0x00 },
207 { 0x0206, 0x00 }, /* PXAXB (2^x) */
208 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
209 { 0x0209, 0x00 },
210 { 0x020A, 0x00 },
211 { 0x020B, 0x00 },
212 { 0x020C, 0x00 },
213 { 0x020D, 0x00 },
214 { 0x020E, 0x00 },
215 { 0x020F, 0x00 },
216 { 0x0210, 0x00 },
217 { 0x0211, 0x00 },
218 { 0x0212, 0x00 },
219 { 0x0213, 0x00 },
220 { 0x0214, 0x00 },
221 { 0x0215, 0x00 },
222 { 0x0216, 0x00 },
223 { 0x0217, 0x00 },
224 { 0x0218, 0x00 },
225 { 0x0219, 0x00 },
226 { 0x021A, 0x00 },
227 { 0x021B, 0x00 },
228 { 0x021C, 0x00 },
229 { 0x021D, 0x00 },
230 { 0x021E, 0x00 },
231 { 0x021F, 0x00 },
232 { 0x0220, 0x00 },
233 { 0x0221, 0x00 },
234 { 0x0222, 0x00 },
235 { 0x0223, 0x00 },
236 { 0x0224, 0x00 },
237 { 0x0225, 0x00 },
238 { 0x0226, 0x00 },
239 { 0x0227, 0x00 },
240 { 0x0228, 0x00 },
241 { 0x0229, 0x00 },
242 { 0x022A, 0x00 },
243 { 0x022B, 0x00 },
244 { 0x022C, 0x00 },
245 { 0x022D, 0x00 },
246 { 0x022E, 0x00 },
247 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
248 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
249 { 0x026C, 0x00 },
250 { 0x026D, 0x00 },
251 { 0x026E, 0x00 },
252 { 0x026F, 0x00 },
253 { 0x0270, 0x00 },
254 { 0x0271, 0x00 },
255 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
256 { 0x0339, 0x1F }, /* N_FSTEP_MSK */
257 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
258 { 0x033C, 0x00 },
259 { 0x033D, 0x00 },
260 { 0x033E, 0x00 },
261 { 0x033F, 0x00 },
262 { 0x0340, 0x00 },
263 { 0x0341, 0x00 },
264 { 0x0342, 0x00 },
265 { 0x0343, 0x00 },
266 { 0x0344, 0x00 },
267 { 0x0345, 0x00 },
268 { 0x0346, 0x00 },
269 { 0x0347, 0x00 },
270 { 0x0348, 0x00 },
271 { 0x0349, 0x00 },
272 { 0x034A, 0x00 },
273 { 0x034B, 0x00 },
274 { 0x034C, 0x00 },
275 { 0x034D, 0x00 },
276 { 0x034E, 0x00 },
277 { 0x034F, 0x00 },
278 { 0x0350, 0x00 },
279 { 0x0351, 0x00 },
280 { 0x0352, 0x00 },
281 { 0x0353, 0x00 },
282 { 0x0354, 0x00 },
283 { 0x0355, 0x00 },
284 { 0x0356, 0x00 },
285 { 0x0357, 0x00 },
286 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
287 { 0x0359, 0x00 }, /* Nx_DELAY */
288 { 0x035A, 0x00 },
289 { 0x035B, 0x00 },
290 { 0x035C, 0x00 },
291 { 0x035D, 0x00 },
292 { 0x035E, 0x00 },
293 { 0x035F, 0x00 },
294 { 0x0360, 0x00 },
295 { 0x0361, 0x00 },
296 { 0x0362, 0x00 }, /* Nx_DELAY end */
297 { 0x0802, 0x00 }, /* Not in datasheet */
298 { 0x0803, 0x00 }, /* Not in datasheet */
299 { 0x0804, 0x00 }, /* Not in datasheet */
300 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
301 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
302 { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
303 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
304 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
305 { 0x0A02, 0x00 }, /* Not in datasheet */
306 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
307};
308
309/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
310static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
311 u64 *val1, u32 *val2)
312{
313 int err;
314 u8 r[10];
315
316 err = regmap_bulk_read(regmap, reg, r, 10);
317 if (err < 0)
318 return err;
319
320 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
321 (get_unaligned_le32(r));
322 *val2 = get_unaligned_le32(&r[6]);
323
324 return 0;
325}
326
327static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
328 u64 n_num, u32 n_den)
329{
330 u8 r[10];
331
332 /* Shift left as far as possible without overflowing */
333 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
334 n_num <<= 1;
335 n_den <<= 1;
336 }
337
338 /* 44 bits (6 bytes) numerator */
339 put_unaligned_le32(n_num, r);
340 r[4] = (n_num >> 32) & 0xff;
341 r[5] = (n_num >> 40) & 0x0f;
342 /* 32 bits denominator */
343 put_unaligned_le32(n_den, &r[6]);
344
345 /* Program the fraction */
346 return regmap_bulk_write(regmap, reg, r, sizeof(r));
347}
348
349/* VCO, we assume it runs at a constant frequency */
350static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
351 unsigned long parent_rate)
352{
353 struct clk_si5341 *data = to_clk_si5341(hw);
354 int err;
355 u64 res;
356 u64 m_num;
357 u32 m_den;
358 unsigned int shift;
359
360 /* Assume that PDIV is not being used, just read the PLL setting */
361 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
362 &m_num, &m_den);
363 if (err < 0)
364 return 0;
365
366 if (!m_num || !m_den)
367 return 0;
368
369 /*
370 * Though m_num is 64-bit, only the upper bits are actually used. While
371 * calculating m_num and m_den, they are shifted as far as possible to
372 * the left. To avoid 96-bit division here, we just shift them back so
373 * we can do with just 64 bits.
374 */
375 shift = 0;
376 res = m_num;
377 while (res & 0xffff00000000ULL) {
378 ++shift;
379 res >>= 1;
380 }
381 res *= parent_rate;
382 do_div(res, (m_den >> shift));
383
384 /* We cannot return the actual frequency in 32 bit, store it locally */
385 data->freq_vco = res;
386
387 /* Report kHz since the value is out of range */
388 do_div(res, 1000);
389
390 return (unsigned long)res;
391}
392
393static const struct clk_ops si5341_clk_ops = {
394 .recalc_rate = si5341_clk_recalc_rate,
395};
396
397/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
398
399/* The synthesizer is on if all power and enable bits are set */
400static int si5341_synth_clk_is_on(struct clk_hw *hw)
401{
402 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
403 int err;
404 u32 val;
405 u8 index = synth->index;
406
407 err = regmap_read(synth->data->regmap,
408 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
409 if (err < 0)
410 return 0;
411
412 if (!(val & BIT(index)))
413 return 0;
414
415 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
416 if (err < 0)
417 return 0;
418
419 if (!(val & BIT(index)))
420 return 0;
421
422 /* This bit must be 0 for the synthesizer to receive clock input */
423 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
424 if (err < 0)
425 return 0;
426
427 return !(val & BIT(index));
428}
429
430static void si5341_synth_clk_unprepare(struct clk_hw *hw)
431{
432 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
433 u8 index = synth->index; /* In range 0..5 */
434 u8 mask = BIT(index);
435
436 /* Disable output */
437 regmap_update_bits(synth->data->regmap,
438 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
439 /* Power down */
440 regmap_update_bits(synth->data->regmap,
441 SI5341_SYNTH_N_PDNB, mask, 0);
442 /* Disable clock input to synth (set to 1 to disable) */
443 regmap_update_bits(synth->data->regmap,
444 SI5341_SYNTH_N_CLK_DIS, mask, mask);
445}
446
447static int si5341_synth_clk_prepare(struct clk_hw *hw)
448{
449 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
450 int err;
451 u8 index = synth->index;
452 u8 mask = BIT(index);
453
454 /* Power up */
455 err = regmap_update_bits(synth->data->regmap,
456 SI5341_SYNTH_N_PDNB, mask, mask);
457 if (err < 0)
458 return err;
459
460 /* Enable clock input to synth (set bit to 0 to enable) */
461 err = regmap_update_bits(synth->data->regmap,
462 SI5341_SYNTH_N_CLK_DIS, mask, 0);
463 if (err < 0)
464 return err;
465
466 /* Enable output */
467 return regmap_update_bits(synth->data->regmap,
468 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
469}
470
471/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
472static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
473 unsigned long parent_rate)
474{
475 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
476 u64 f;
477 u64 n_num;
478 u32 n_den;
479 int err;
480
481 err = si5341_decode_44_32(synth->data->regmap,
482 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
483 if (err < 0)
484 return err;
485
486 /*
487 * n_num and n_den are shifted left as much as possible, so to prevent
488 * overflow in 64-bit math, we shift n_den 4 bits to the right
489 */
490 f = synth->data->freq_vco;
491 f *= n_den >> 4;
492
493 /* Now we need to to 64-bit division: f/n_num */
494 /* And compensate for the 4 bits we dropped */
495 f = div64_u64(f, (n_num >> 4));
496
497 return f;
498}
499
500static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
501 unsigned long *parent_rate)
502{
503 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
504 u64 f;
505
506 /* The synthesizer accuracy is such that anything in range will work */
507 f = synth->data->freq_vco;
508 do_div(f, SI5341_SYNTH_N_MAX);
509 if (rate < f)
510 return f;
511
512 f = synth->data->freq_vco;
513 do_div(f, SI5341_SYNTH_N_MIN);
514 if (rate > f)
515 return f;
516
517 return rate;
518}
519
520static int si5341_synth_program(struct clk_si5341_synth *synth,
521 u64 n_num, u32 n_den, bool is_integer)
522{
523 int err;
524 u8 index = synth->index;
525
526 err = si5341_encode_44_32(synth->data->regmap,
527 SI5341_SYNTH_N_NUM(index), n_num, n_den);
528
529 err = regmap_update_bits(synth->data->regmap,
530 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
531 if (err < 0)
532 return err;
533
534 return regmap_write(synth->data->regmap,
535 SI5341_SYNTH_N_UPD(index), 0x01);
536}
537
538
539static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
540 unsigned long parent_rate)
541{
542 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
543 u64 n_num;
544 u32 n_den;
545 u32 r;
546 u32 g;
547 bool is_integer;
548
549 n_num = synth->data->freq_vco;
550 n_den = rate;
551
552 /* see if there's an integer solution */
553 r = do_div(n_num, rate);
554 is_integer = (r == 0);
555 if (is_integer) {
556 /* Integer divider equal to n_num */
557 n_den = 1;
558 } else {
559 /* Calculate a fractional solution */
560 g = gcd(r, rate);
561 n_den = rate / g;
562 n_num *= n_den;
563 n_num += r / g;
564 }
565
566 dev_dbg(&synth->data->i2c_client->dev,
567 "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
568 synth->index, n_num, n_den,
569 is_integer ? "int" : "frac");
570
571 return si5341_synth_program(synth, n_num, n_den, is_integer);
572}
573
574static const struct clk_ops si5341_synth_clk_ops = {
575 .is_prepared = si5341_synth_clk_is_on,
576 .prepare = si5341_synth_clk_prepare,
577 .unprepare = si5341_synth_clk_unprepare,
578 .recalc_rate = si5341_synth_clk_recalc_rate,
579 .round_rate = si5341_synth_clk_round_rate,
580 .set_rate = si5341_synth_clk_set_rate,
581};
582
583static int si5341_output_clk_is_on(struct clk_hw *hw)
584{
585 struct clk_si5341_output *output = to_clk_si5341_output(hw);
586 int err;
587 u32 val;
588
589 err = regmap_read(output->data->regmap,
590 SI5341_OUT_CONFIG(output), &val);
591 if (err < 0)
592 return err;
593
594 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
595 return (val & 0x03) == SI5341_OUT_CFG_OE;
596}
597
598/* Disables and then powers down the output */
599static void si5341_output_clk_unprepare(struct clk_hw *hw)
600{
601 struct clk_si5341_output *output = to_clk_si5341_output(hw);
602
603 regmap_update_bits(output->data->regmap,
604 SI5341_OUT_CONFIG(output),
605 SI5341_OUT_CFG_OE, 0);
606 regmap_update_bits(output->data->regmap,
607 SI5341_OUT_CONFIG(output),
608 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
609}
610
611/* Powers up and then enables the output */
612static int si5341_output_clk_prepare(struct clk_hw *hw)
613{
614 struct clk_si5341_output *output = to_clk_si5341_output(hw);
615 int err;
616
617 err = regmap_update_bits(output->data->regmap,
618 SI5341_OUT_CONFIG(output),
619 SI5341_OUT_CFG_PDN, 0);
620 if (err < 0)
621 return err;
622
623 return regmap_update_bits(output->data->regmap,
624 SI5341_OUT_CONFIG(output),
625 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
626}
627
628static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
629 unsigned long parent_rate)
630{
631 struct clk_si5341_output *output = to_clk_si5341_output(hw);
632 int err;
633 u32 val;
634 u32 r_divider;
635 u8 r[3];
636
637 err = regmap_bulk_read(output->data->regmap,
638 SI5341_OUT_R_REG(output), r, 3);
639 if (err < 0)
640 return err;
641
642 /* Calculate value as 24-bit integer*/
643 r_divider = r[2] << 16 | r[1] << 8 | r[0];
644
645 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
646 if (!r_divider)
647 return 0;
648
649 /* Divider is 2*(Rx_REG+1) */
650 r_divider += 1;
651 r_divider <<= 1;
652
653 err = regmap_read(output->data->regmap,
654 SI5341_OUT_CONFIG(output), &val);
655 if (err < 0)
656 return err;
657
658 if (val & SI5341_OUT_CFG_RDIV_FORCE2)
659 r_divider = 2;
660
661 return parent_rate / r_divider;
662}
663
664static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
665 unsigned long *parent_rate)
666{
667 unsigned long r;
668
669 r = *parent_rate >> 1;
670
671 /* If rate is an even divisor, no changes to parent required */
672 if (r && !(r % rate))
673 return (long)rate;
674
675 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
676 if (rate > 200000000) {
677 /* minimum r-divider is 2 */
678 r = 2;
679 } else {
680 /* Take a parent frequency near 400 MHz */
681 r = (400000000u / rate) & ~1;
682 }
683 *parent_rate = r * rate;
684 } else {
685 /* We cannot change our parent's rate, report what we can do */
686 r /= rate;
687 rate = *parent_rate / (r << 1);
688 }
689
690 return rate;
691}
692
693static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
694 unsigned long parent_rate)
695{
696 struct clk_si5341_output *output = to_clk_si5341_output(hw);
697 /* Frequency divider is (r_div + 1) * 2 */
698 u32 r_div = (parent_rate / rate) >> 1;
699 int err;
700 u8 r[3];
701
702 if (r_div <= 1)
703 r_div = 0;
704 else if (r_div >= BIT(24))
705 r_div = BIT(24) - 1;
706 else
707 --r_div;
708
709 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
710 err = regmap_update_bits(output->data->regmap,
711 SI5341_OUT_CONFIG(output),
712 SI5341_OUT_CFG_RDIV_FORCE2,
713 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
714 if (err < 0)
715 return err;
716
717 /* Always write Rx_REG, because a zero value disables the divider */
718 r[0] = r_div ? (r_div & 0xff) : 1;
719 r[1] = (r_div >> 8) & 0xff;
720 r[2] = (r_div >> 16) & 0xff;
721 err = regmap_bulk_write(output->data->regmap,
722 SI5341_OUT_R_REG(output), r, 3);
723
724 return 0;
725}
726
727static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
728{
729 return regmap_update_bits(output->data->regmap,
730 SI5341_OUT_MUX_SEL(output), 0x07, index);
731}
732
733static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
734{
735 struct clk_si5341_output *output = to_clk_si5341_output(hw);
736
737 if (index >= output->data->num_synth)
738 return -EINVAL;
739
740 return si5341_output_reparent(output, index);
741}
742
743static u8 si5341_output_get_parent(struct clk_hw *hw)
744{
745 struct clk_si5341_output *output = to_clk_si5341_output(hw);
746 int err;
747 u32 val;
748
749 err = regmap_read(output->data->regmap,
750 SI5341_OUT_MUX_SEL(output), &val);
751
752 return val & 0x7;
753}
754
755static const struct clk_ops si5341_output_clk_ops = {
756 .is_prepared = si5341_output_clk_is_on,
757 .prepare = si5341_output_clk_prepare,
758 .unprepare = si5341_output_clk_unprepare,
759 .recalc_rate = si5341_output_clk_recalc_rate,
760 .round_rate = si5341_output_clk_round_rate,
761 .set_rate = si5341_output_clk_set_rate,
762 .set_parent = si5341_output_set_parent,
763 .get_parent = si5341_output_get_parent,
764};
765
766/*
767 * The chip can be bought in a pre-programmed version, or one can program the
768 * NVM in the chip to boot up in a preset mode. This routine tries to determine
769 * if that's the case, or if we need to reset and program everything from
770 * scratch. Returns negative error, or true/false.
771 */
772static int si5341_is_programmed_already(struct clk_si5341 *data)
773{
774 int err;
775 u8 r[4];
776
777 /* Read the PLL divider value, it must have a non-zero value */
778 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
779 r, ARRAY_SIZE(r));
780 if (err < 0)
781 return err;
782
783 return !!get_unaligned_le32(r);
784}
785
786static struct clk_hw *
787of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
788{
789 struct clk_si5341 *data = _data;
790 unsigned int idx = clkspec->args[1];
791 unsigned int group = clkspec->args[0];
792
793 switch (group) {
794 case 0:
795 if (idx >= data->num_outputs) {
796 dev_err(&data->i2c_client->dev,
797 "invalid output index %u\n", idx);
798 return ERR_PTR(-EINVAL);
799 }
800 return &data->clk[idx].hw;
801 case 1:
802 if (idx >= data->num_synth) {
803 dev_err(&data->i2c_client->dev,
804 "invalid synthesizer index %u\n", idx);
805 return ERR_PTR(-EINVAL);
806 }
807 return &data->synth[idx].hw;
808 case 2:
809 if (idx > 0) {
810 dev_err(&data->i2c_client->dev,
811 "invalid PLL index %u\n", idx);
812 return ERR_PTR(-EINVAL);
813 }
814 return &data->hw;
815 default:
816 dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
817 return ERR_PTR(-EINVAL);
818 }
819}
820
821static int si5341_probe_chip_id(struct clk_si5341 *data)
822{
823 int err;
824 u8 reg[4];
825 u16 model;
826
827 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
828 ARRAY_SIZE(reg));
829 if (err < 0) {
830 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
831 return err;
832 }
833
834 model = get_unaligned_le16(reg);
835
836 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
837 model, reg[2], reg[3]);
838
839 switch (model) {
840 case 0x5340:
841 data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
842 data->num_synth = SI5340_NUM_SYNTH;
843 data->reg_output_offset = si5340_reg_output_offset;
844 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
845 break;
846 case 0x5341:
847 data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
848 data->num_synth = SI5341_NUM_SYNTH;
849 data->reg_output_offset = si5341_reg_output_offset;
850 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
851 break;
852 default:
853 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
854 model);
855 return -EINVAL;
856 }
857
858 return 0;
859}
860
861/* Read active settings into the regmap cache for later reference */
862static int si5341_read_settings(struct clk_si5341 *data)
863{
864 int err;
865 u8 i;
866 u8 r[10];
867
868 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
869 if (err < 0)
870 return err;
871
872 err = regmap_bulk_read(data->regmap,
873 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
874 if (err < 0)
875 return err;
876
877 err = regmap_bulk_read(data->regmap,
878 SI5341_SYNTH_N_CLK_DIS, r, 1);
879 if (err < 0)
880 return err;
881
882 for (i = 0; i < data->num_synth; ++i) {
883 err = regmap_bulk_read(data->regmap,
884 SI5341_SYNTH_N_NUM(i), r, 10);
885 if (err < 0)
886 return err;
887 }
888
889 for (i = 0; i < data->num_outputs; ++i) {
890 err = regmap_bulk_read(data->regmap,
891 data->reg_output_offset[i], r, 4);
892 if (err < 0)
893 return err;
894
895 err = regmap_bulk_read(data->regmap,
896 data->reg_rdiv_offset[i], r, 3);
897 if (err < 0)
898 return err;
899 }
900
901 return 0;
902}
903
904static int si5341_write_multiple(struct clk_si5341 *data,
905 const struct si5341_reg_default *values, unsigned int num_values)
906{
907 unsigned int i;
908 int res;
909
910 for (i = 0; i < num_values; ++i) {
911 res = regmap_write(data->regmap,
912 values[i].address, values[i].value);
913 if (res < 0) {
914 dev_err(&data->i2c_client->dev,
915 "Failed to write %#x:%#x\n",
916 values[i].address, values[i].value);
917 return res;
918 }
919 }
920
921 return 0;
922}
923
924static const struct si5341_reg_default si5341_preamble[] = {
925 { 0x0B25, 0x00 },
926 { 0x0502, 0x01 },
927 { 0x0505, 0x03 },
928 { 0x0957, 0x1F },
929 { 0x0B4E, 0x1A },
930};
931
932static int si5341_send_preamble(struct clk_si5341 *data)
933{
934 int res;
935 u32 revision;
936
937 /* For revision 2 and up, the values are slightly different */
938 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
939 if (res < 0)
940 return res;
941
942 /* Write "preamble" as specified by datasheet */
943 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
944 if (res < 0)
945 return res;
946 res = si5341_write_multiple(data,
947 si5341_preamble, ARRAY_SIZE(si5341_preamble));
948 if (res < 0)
949 return res;
950
951 /* Datasheet specifies a 300ms wait after sending the preamble */
952 msleep(300);
953
954 return 0;
955}
956
957/* Perform a soft reset and write post-amble */
958static int si5341_finalize_defaults(struct clk_si5341 *data)
959{
960 int res;
961 u32 revision;
962
963 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
964 if (res < 0)
965 return res;
966
967 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
968
969 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
970 if (res < 0)
971 return res;
972
973 /* Datasheet does not explain these nameless registers */
974 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
975 if (res < 0)
976 return res;
977 res = regmap_write(data->regmap, 0x0B25, 0x02);
978 if (res < 0)
979 return res;
980
981 return 0;
982}
983
984
985static const struct regmap_range si5341_regmap_volatile_range[] = {
986 regmap_reg_range(0x000C, 0x0012), /* Status */
987 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
988 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
989 /* Update bits for synth config */
990 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
991 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
992 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
993 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
994 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
995};
996
997static const struct regmap_access_table si5341_regmap_volatile = {
998 .yes_ranges = si5341_regmap_volatile_range,
999 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1000};
1001
1002/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1003static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1004 {
1005 .range_min = 0,
1006 .range_max = SI5341_REGISTER_MAX,
1007 .selector_reg = SI5341_PAGE,
1008 .selector_mask = 0xff,
1009 .selector_shift = 0,
1010 .window_start = 0,
1011 .window_len = 256,
1012 },
1013};
1014
1015static const struct regmap_config si5341_regmap_config = {
1016 .reg_bits = 8,
1017 .val_bits = 8,
1018 .cache_type = REGCACHE_RBTREE,
1019 .ranges = si5341_regmap_ranges,
1020 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1021 .max_register = SI5341_REGISTER_MAX,
1022 .volatile_table = &si5341_regmap_volatile,
1023};
1024
1025static int si5341_dt_parse_dt(struct i2c_client *client,
1026 struct clk_si5341_output_config *config)
1027{
1028 struct device_node *child;
1029 struct device_node *np = client->dev.of_node;
1030 u32 num;
1031 u32 val;
1032
1033 memset(config, 0, sizeof(struct clk_si5341_output_config) *
1034 SI5341_MAX_NUM_OUTPUTS);
1035
1036 for_each_child_of_node(np, child) {
1037 if (of_property_read_u32(child, "reg", &num)) {
1038 dev_err(&client->dev, "missing reg property of %s\n",
1039 child->name);
1040 goto put_child;
1041 }
1042
1043 if (num >= SI5341_MAX_NUM_OUTPUTS) {
1044 dev_err(&client->dev, "invalid clkout %d\n", num);
1045 goto put_child;
1046 }
1047
1048 if (!of_property_read_u32(child, "silabs,format", &val)) {
1049 /* Set cm and ampl conservatively to 3v3 settings */
1050 switch (val) {
1051 case 1: /* normal differential */
1052 config[num].out_cm_ampl_bits = 0x33;
1053 break;
1054 case 2: /* low-power differential */
1055 config[num].out_cm_ampl_bits = 0x13;
1056 break;
1057 case 4: /* LVCMOS */
1058 config[num].out_cm_ampl_bits = 0x33;
1059 /* Set SI recommended impedance for LVCMOS */
1060 config[num].out_format_drv_bits |= 0xc0;
1061 break;
1062 default:
1063 dev_err(&client->dev,
1064 "invalid silabs,format %u for %u\n",
1065 val, num);
1066 goto put_child;
1067 }
1068 config[num].out_format_drv_bits &= ~0x07;
1069 config[num].out_format_drv_bits |= val & 0x07;
1070 /* Always enable the SYNC feature */
1071 config[num].out_format_drv_bits |= 0x08;
1072 }
1073
1074 if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1075 if (val > 0xf) {
1076 dev_err(&client->dev,
1077 "invalid silabs,common-mode %u\n",
1078 val);
1079 goto put_child;
1080 }
1081 config[num].out_cm_ampl_bits &= 0xf0;
1082 config[num].out_cm_ampl_bits |= val & 0x0f;
1083 }
1084
1085 if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1086 if (val > 0xf) {
1087 dev_err(&client->dev,
1088 "invalid silabs,amplitude %u\n",
1089 val);
1090 goto put_child;
1091 }
1092 config[num].out_cm_ampl_bits &= 0x0f;
1093 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1094 }
1095
1096 if (of_property_read_bool(child, "silabs,disable-high"))
1097 config[num].out_format_drv_bits |= 0x10;
1098
1099 config[num].synth_master =
1100 of_property_read_bool(child, "silabs,synth-master");
1101
1102 config[num].always_on =
1103 of_property_read_bool(child, "always-on");
1104 }
1105
1106 return 0;
1107
1108put_child:
1109 of_node_put(child);
1110 return -EINVAL;
1111}
1112
1113/*
1114 * If not pre-configured, calculate and set the PLL configuration manually.
1115 * For low-jitter performance, the PLL should be set such that the synthesizers
1116 * only need integer division.
1117 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1118 * the chip to generate any frequency on its outputs, but jitter performance
1119 * may be sub-optimal.
1120 */
1121static int si5341_initialize_pll(struct clk_si5341 *data)
1122{
1123 struct device_node *np = data->i2c_client->dev.of_node;
1124 u32 m_num = 0;
1125 u32 m_den = 0;
1126
1127 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1128 dev_err(&data->i2c_client->dev,
1129 "PLL configuration requires silabs,pll-m-num\n");
1130 }
1131 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1132 dev_err(&data->i2c_client->dev,
1133 "PLL configuration requires silabs,pll-m-den\n");
1134 }
1135
1136 if (!m_num || !m_den) {
1137 dev_err(&data->i2c_client->dev,
1138 "PLL configuration invalid, assume 14GHz\n");
1139 m_den = clk_get_rate(data->pxtal) / 10;
1140 m_num = 1400000000;
1141 }
1142
1143 return si5341_encode_44_32(data->regmap,
1144 SI5341_PLL_M_NUM, m_num, m_den);
1145}
1146
1147static int si5341_probe(struct i2c_client *client,
1148 const struct i2c_device_id *id)
1149{
1150 struct clk_si5341 *data;
1151 struct clk_init_data init;
1152 const char *root_clock_name;
1153 const char *synth_clock_names[SI5341_NUM_SYNTH];
1154 int err;
1155 unsigned int i;
1156 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1157 bool initialization_required;
1158
1159 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1160 if (!data)
1161 return -ENOMEM;
1162
1163 data->i2c_client = client;
1164
1165 data->pxtal = devm_clk_get(&client->dev, "xtal");
1166 if (IS_ERR(data->pxtal)) {
1167 if (PTR_ERR(data->pxtal) == -EPROBE_DEFER)
1168 return -EPROBE_DEFER;
1169
1170 dev_err(&client->dev, "Missing xtal clock input\n");
1171 }
1172
1173 err = si5341_dt_parse_dt(client, config);
1174 if (err)
1175 return err;
1176
1177 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1178 &init.name))
1179 init.name = client->dev.of_node->name;
1180 root_clock_name = init.name;
1181
1182 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1183 if (IS_ERR(data->regmap))
1184 return PTR_ERR(data->regmap);
1185
1186 i2c_set_clientdata(client, data);
1187
1188 err = si5341_probe_chip_id(data);
1189 if (err < 0)
1190 return err;
1191
1192 /* "Activate" the xtal (usually a fixed clock) */
1193 clk_prepare_enable(data->pxtal);
1194
1195 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1196 initialization_required = true;
1197 } else {
1198 err = si5341_is_programmed_already(data);
1199 if (err < 0)
1200 return err;
1201
1202 initialization_required = !err;
1203 }
1204
1205 if (initialization_required) {
1206 /* Populate the regmap cache in preparation for "cache only" */
1207 err = si5341_read_settings(data);
1208 if (err < 0)
1209 return err;
1210
1211 err = si5341_send_preamble(data);
1212 if (err < 0)
1213 return err;
1214
1215 /*
1216 * We intend to send all 'final' register values in a single
1217 * transaction. So cache all register writes until we're done
1218 * configuring.
1219 */
1220 regcache_cache_only(data->regmap, true);
1221
1222 /* Write the configuration pairs from the firmware blob */
1223 err = si5341_write_multiple(data, si5341_reg_defaults,
1224 ARRAY_SIZE(si5341_reg_defaults));
1225 if (err < 0)
1226 return err;
1227
1228 /* PLL configuration is required */
1229 err = si5341_initialize_pll(data);
1230 if (err < 0)
1231 return err;
1232 }
1233
1234 /* Register the PLL */
1235 data->pxtal_name = __clk_get_name(data->pxtal);
1236 init.parent_names = &data->pxtal_name;
1237 init.num_parents = 1; /* For now, only XTAL input supported */
1238 init.ops = &si5341_clk_ops;
1239 init.flags = 0;
1240 data->hw.init = &init;
1241
1242 err = devm_clk_hw_register(&client->dev, &data->hw);
1243 if (err) {
1244 dev_err(&client->dev, "clock registration failed\n");
1245 return err;
1246 }
1247
1248 init.num_parents = 1;
1249 init.parent_names = &root_clock_name;
1250 init.ops = &si5341_synth_clk_ops;
1251 for (i = 0; i < data->num_synth; ++i) {
1252 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1253 "%s.N%u", client->dev.of_node->name, i);
1254 init.name = synth_clock_names[i];
1255 data->synth[i].index = i;
1256 data->synth[i].data = data;
1257 data->synth[i].hw.init = &init;
1258 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1259 if (err) {
1260 dev_err(&client->dev,
1261 "synth N%u registration failed\n", i);
1262 }
1263 }
1264
1265 init.num_parents = data->num_synth;
1266 init.parent_names = synth_clock_names;
1267 init.ops = &si5341_output_clk_ops;
1268 for (i = 0; i < data->num_outputs; ++i) {
1269 init.name = kasprintf(GFP_KERNEL, "%s.%d",
1270 client->dev.of_node->name, i);
1271 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1272 data->clk[i].index = i;
1273 data->clk[i].data = data;
1274 data->clk[i].hw.init = &init;
1275 if (config[i].out_format_drv_bits & 0x07) {
1276 regmap_write(data->regmap,
1277 SI5341_OUT_FORMAT(&data->clk[i]),
1278 config[i].out_format_drv_bits);
1279 regmap_write(data->regmap,
1280 SI5341_OUT_CM(&data->clk[i]),
1281 config[i].out_cm_ampl_bits);
1282 }
1283 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1284 kfree(init.name); /* clock framework made a copy of the name */
1285 if (err) {
1286 dev_err(&client->dev,
1287 "output %u registration failed\n", i);
1288 return err;
1289 }
1290 if (config[i].always_on)
1291 clk_prepare(data->clk[i].hw.clk);
1292 }
1293
1294 err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get,
1295 data);
1296 if (err) {
1297 dev_err(&client->dev, "unable to add clk provider\n");
1298 return err;
1299 }
1300
1301 if (initialization_required) {
1302 /* Synchronize */
1303 regcache_cache_only(data->regmap, false);
1304 err = regcache_sync(data->regmap);
1305 if (err < 0)
1306 return err;
1307
1308 err = si5341_finalize_defaults(data);
1309 if (err < 0)
1310 return err;
1311 }
1312
1313 /* Free the names, clk framework makes copies */
1314 for (i = 0; i < data->num_synth; ++i)
1315 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1316
1317 return 0;
1318}
1319
1320static const struct i2c_device_id si5341_id[] = {
1321 { "si5340", 0 },
1322 { "si5341", 1 },
1323 { }
1324};
1325MODULE_DEVICE_TABLE(i2c, si5341_id);
1326
1327static const struct of_device_id clk_si5341_of_match[] = {
1328 { .compatible = "silabs,si5340" },
1329 { .compatible = "silabs,si5341" },
1330 { }
1331};
1332MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1333
1334static struct i2c_driver si5341_driver = {
1335 .driver = {
1336 .name = "si5341",
1337 .of_match_table = clk_si5341_of_match,
1338 },
1339 .probe = si5341_probe,
1340 .id_table = si5341_id,
1341};
1342module_i2c_driver(si5341_driver);
1343
1344MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1345MODULE_DESCRIPTION("Si5341 driver");
1346MODULE_LICENSE("GPL");