Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/mm/memory.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 5 | */ |
| 6 | |
| 7 | /* |
| 8 | * demand-loading started 01.12.91 - seems it is high on the list of |
| 9 | * things wanted, and it should be easy to implement. - Linus |
| 10 | */ |
| 11 | |
| 12 | /* |
| 13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared |
| 14 | * pages started 02.12.91, seems to work. - Linus. |
| 15 | * |
| 16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it |
| 17 | * would have taken more than the 6M I have free, but it worked well as |
| 18 | * far as I could see. |
| 19 | * |
| 20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and |
| 25 | * thought has to go into this. Oh, well.. |
| 26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. |
| 27 | * Found it. Everything seems to work now. |
| 28 | * 20.12.91 - Ok, making the swap-device changeable like the root. |
| 29 | */ |
| 30 | |
| 31 | /* |
| 32 | * 05.04.94 - Multi-page memory management added for v1.1. |
| 33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) |
| 34 | * |
| 35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG |
| 36 | * (Gerhard.Wichert@pdb.siemens.de) |
| 37 | * |
| 38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) |
| 39 | */ |
| 40 | |
| 41 | #include <linux/kernel_stat.h> |
| 42 | #include <linux/mm.h> |
| 43 | #include <linux/hugetlb.h> |
| 44 | #include <linux/mman.h> |
| 45 | #include <linux/swap.h> |
| 46 | #include <linux/highmem.h> |
| 47 | #include <linux/pagemap.h> |
| 48 | #include <linux/rmap.h> |
| 49 | #include <linux/module.h> |
| 50 | #include <linux/init.h> |
| 51 | |
| 52 | #include <asm/pgalloc.h> |
| 53 | #include <asm/uaccess.h> |
| 54 | #include <asm/tlb.h> |
| 55 | #include <asm/tlbflush.h> |
| 56 | #include <asm/pgtable.h> |
| 57 | |
| 58 | #include <linux/swapops.h> |
| 59 | #include <linux/elf.h> |
| 60 | |
| 61 | #ifndef CONFIG_DISCONTIGMEM |
| 62 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
| 63 | unsigned long max_mapnr; |
| 64 | struct page *mem_map; |
| 65 | |
| 66 | EXPORT_SYMBOL(max_mapnr); |
| 67 | EXPORT_SYMBOL(mem_map); |
| 68 | #endif |
| 69 | |
| 70 | unsigned long num_physpages; |
| 71 | /* |
| 72 | * A number of key systems in x86 including ioremap() rely on the assumption |
| 73 | * that high_memory defines the upper bound on direct map memory, then end |
| 74 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and |
| 75 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL |
| 76 | * and ZONE_HIGHMEM. |
| 77 | */ |
| 78 | void * high_memory; |
| 79 | unsigned long vmalloc_earlyreserve; |
| 80 | |
| 81 | EXPORT_SYMBOL(num_physpages); |
| 82 | EXPORT_SYMBOL(high_memory); |
| 83 | EXPORT_SYMBOL(vmalloc_earlyreserve); |
| 84 | |
| 85 | /* |
| 86 | * If a p?d_bad entry is found while walking page tables, report |
| 87 | * the error, before resetting entry to p?d_none. Usually (but |
| 88 | * very seldom) called out from the p?d_none_or_clear_bad macros. |
| 89 | */ |
| 90 | |
| 91 | void pgd_clear_bad(pgd_t *pgd) |
| 92 | { |
| 93 | pgd_ERROR(*pgd); |
| 94 | pgd_clear(pgd); |
| 95 | } |
| 96 | |
| 97 | void pud_clear_bad(pud_t *pud) |
| 98 | { |
| 99 | pud_ERROR(*pud); |
| 100 | pud_clear(pud); |
| 101 | } |
| 102 | |
| 103 | void pmd_clear_bad(pmd_t *pmd) |
| 104 | { |
| 105 | pmd_ERROR(*pmd); |
| 106 | pmd_clear(pmd); |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | * Note: this doesn't free the actual pages themselves. That |
| 111 | * has been handled earlier when unmapping all the memory regions. |
| 112 | */ |
| 113 | static inline void clear_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
| 114 | unsigned long addr, unsigned long end) |
| 115 | { |
| 116 | if (!((addr | end) & ~PMD_MASK)) { |
| 117 | /* Only free fully aligned ranges */ |
| 118 | struct page *page = pmd_page(*pmd); |
| 119 | pmd_clear(pmd); |
| 120 | dec_page_state(nr_page_table_pages); |
| 121 | tlb->mm->nr_ptes--; |
| 122 | pte_free_tlb(tlb, page); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | static inline void clear_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
| 127 | unsigned long addr, unsigned long end) |
| 128 | { |
| 129 | pmd_t *pmd; |
| 130 | unsigned long next; |
| 131 | pmd_t *empty_pmd = NULL; |
| 132 | |
| 133 | pmd = pmd_offset(pud, addr); |
| 134 | |
| 135 | /* Only free fully aligned ranges */ |
| 136 | if (!((addr | end) & ~PUD_MASK)) |
| 137 | empty_pmd = pmd; |
| 138 | do { |
| 139 | next = pmd_addr_end(addr, end); |
| 140 | if (pmd_none_or_clear_bad(pmd)) |
| 141 | continue; |
| 142 | clear_pte_range(tlb, pmd, addr, next); |
| 143 | } while (pmd++, addr = next, addr != end); |
| 144 | |
| 145 | if (empty_pmd) { |
| 146 | pud_clear(pud); |
| 147 | pmd_free_tlb(tlb, empty_pmd); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | static inline void clear_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
| 152 | unsigned long addr, unsigned long end) |
| 153 | { |
| 154 | pud_t *pud; |
| 155 | unsigned long next; |
| 156 | pud_t *empty_pud = NULL; |
| 157 | |
| 158 | pud = pud_offset(pgd, addr); |
| 159 | |
| 160 | /* Only free fully aligned ranges */ |
| 161 | if (!((addr | end) & ~PGDIR_MASK)) |
| 162 | empty_pud = pud; |
| 163 | do { |
| 164 | next = pud_addr_end(addr, end); |
| 165 | if (pud_none_or_clear_bad(pud)) |
| 166 | continue; |
| 167 | clear_pmd_range(tlb, pud, addr, next); |
| 168 | } while (pud++, addr = next, addr != end); |
| 169 | |
| 170 | if (empty_pud) { |
| 171 | pgd_clear(pgd); |
| 172 | pud_free_tlb(tlb, empty_pud); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * This function clears user-level page tables of a process. |
| 178 | * Unlike other pagetable walks, some memory layouts might give end 0. |
| 179 | * Must be called with pagetable lock held. |
| 180 | */ |
| 181 | void clear_page_range(struct mmu_gather *tlb, |
| 182 | unsigned long addr, unsigned long end) |
| 183 | { |
| 184 | pgd_t *pgd; |
| 185 | unsigned long next; |
| 186 | |
| 187 | pgd = pgd_offset(tlb->mm, addr); |
| 188 | do { |
| 189 | next = pgd_addr_end(addr, end); |
| 190 | if (pgd_none_or_clear_bad(pgd)) |
| 191 | continue; |
| 192 | clear_pud_range(tlb, pgd, addr, next); |
| 193 | } while (pgd++, addr = next, addr != end); |
| 194 | } |
| 195 | |
| 196 | pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
| 197 | { |
| 198 | if (!pmd_present(*pmd)) { |
| 199 | struct page *new; |
| 200 | |
| 201 | spin_unlock(&mm->page_table_lock); |
| 202 | new = pte_alloc_one(mm, address); |
| 203 | spin_lock(&mm->page_table_lock); |
| 204 | if (!new) |
| 205 | return NULL; |
| 206 | /* |
| 207 | * Because we dropped the lock, we should re-check the |
| 208 | * entry, as somebody else could have populated it.. |
| 209 | */ |
| 210 | if (pmd_present(*pmd)) { |
| 211 | pte_free(new); |
| 212 | goto out; |
| 213 | } |
| 214 | mm->nr_ptes++; |
| 215 | inc_page_state(nr_page_table_pages); |
| 216 | pmd_populate(mm, pmd, new); |
| 217 | } |
| 218 | out: |
| 219 | return pte_offset_map(pmd, address); |
| 220 | } |
| 221 | |
| 222 | pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
| 223 | { |
| 224 | if (!pmd_present(*pmd)) { |
| 225 | pte_t *new; |
| 226 | |
| 227 | spin_unlock(&mm->page_table_lock); |
| 228 | new = pte_alloc_one_kernel(mm, address); |
| 229 | spin_lock(&mm->page_table_lock); |
| 230 | if (!new) |
| 231 | return NULL; |
| 232 | |
| 233 | /* |
| 234 | * Because we dropped the lock, we should re-check the |
| 235 | * entry, as somebody else could have populated it.. |
| 236 | */ |
| 237 | if (pmd_present(*pmd)) { |
| 238 | pte_free_kernel(new); |
| 239 | goto out; |
| 240 | } |
| 241 | pmd_populate_kernel(mm, pmd, new); |
| 242 | } |
| 243 | out: |
| 244 | return pte_offset_kernel(pmd, address); |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * copy one vm_area from one task to the other. Assumes the page tables |
| 249 | * already present in the new task to be cleared in the whole range |
| 250 | * covered by this vma. |
| 251 | * |
| 252 | * dst->page_table_lock is held on entry and exit, |
| 253 | * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). |
| 254 | */ |
| 255 | |
| 256 | static inline void |
| 257 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 258 | pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, |
| 259 | unsigned long addr) |
| 260 | { |
| 261 | pte_t pte = *src_pte; |
| 262 | struct page *page; |
| 263 | unsigned long pfn; |
| 264 | |
| 265 | /* pte contains position in swap or file, so copy. */ |
| 266 | if (unlikely(!pte_present(pte))) { |
| 267 | if (!pte_file(pte)) { |
| 268 | swap_duplicate(pte_to_swp_entry(pte)); |
| 269 | /* make sure dst_mm is on swapoff's mmlist. */ |
| 270 | if (unlikely(list_empty(&dst_mm->mmlist))) { |
| 271 | spin_lock(&mmlist_lock); |
| 272 | list_add(&dst_mm->mmlist, &src_mm->mmlist); |
| 273 | spin_unlock(&mmlist_lock); |
| 274 | } |
| 275 | } |
| 276 | set_pte_at(dst_mm, addr, dst_pte, pte); |
| 277 | return; |
| 278 | } |
| 279 | |
| 280 | pfn = pte_pfn(pte); |
| 281 | /* the pte points outside of valid memory, the |
| 282 | * mapping is assumed to be good, meaningful |
| 283 | * and not mapped via rmap - duplicate the |
| 284 | * mapping as is. |
| 285 | */ |
| 286 | page = NULL; |
| 287 | if (pfn_valid(pfn)) |
| 288 | page = pfn_to_page(pfn); |
| 289 | |
| 290 | if (!page || PageReserved(page)) { |
| 291 | set_pte_at(dst_mm, addr, dst_pte, pte); |
| 292 | return; |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * If it's a COW mapping, write protect it both |
| 297 | * in the parent and the child |
| 298 | */ |
| 299 | if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { |
| 300 | ptep_set_wrprotect(src_mm, addr, src_pte); |
| 301 | pte = *src_pte; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * If it's a shared mapping, mark it clean in |
| 306 | * the child |
| 307 | */ |
| 308 | if (vm_flags & VM_SHARED) |
| 309 | pte = pte_mkclean(pte); |
| 310 | pte = pte_mkold(pte); |
| 311 | get_page(page); |
| 312 | inc_mm_counter(dst_mm, rss); |
| 313 | if (PageAnon(page)) |
| 314 | inc_mm_counter(dst_mm, anon_rss); |
| 315 | set_pte_at(dst_mm, addr, dst_pte, pte); |
| 316 | page_dup_rmap(page); |
| 317 | } |
| 318 | |
| 319 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 320 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
| 321 | unsigned long addr, unsigned long end) |
| 322 | { |
| 323 | pte_t *src_pte, *dst_pte; |
| 324 | unsigned long vm_flags = vma->vm_flags; |
| 325 | int progress; |
| 326 | |
| 327 | again: |
| 328 | dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); |
| 329 | if (!dst_pte) |
| 330 | return -ENOMEM; |
| 331 | src_pte = pte_offset_map_nested(src_pmd, addr); |
| 332 | |
| 333 | progress = 0; |
| 334 | spin_lock(&src_mm->page_table_lock); |
| 335 | do { |
| 336 | /* |
| 337 | * We are holding two locks at this point - either of them |
| 338 | * could generate latencies in another task on another CPU. |
| 339 | */ |
| 340 | if (progress >= 32 && (need_resched() || |
| 341 | need_lockbreak(&src_mm->page_table_lock) || |
| 342 | need_lockbreak(&dst_mm->page_table_lock))) |
| 343 | break; |
| 344 | if (pte_none(*src_pte)) { |
| 345 | progress++; |
| 346 | continue; |
| 347 | } |
| 348 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); |
| 349 | progress += 8; |
| 350 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); |
| 351 | spin_unlock(&src_mm->page_table_lock); |
| 352 | |
| 353 | pte_unmap_nested(src_pte - 1); |
| 354 | pte_unmap(dst_pte - 1); |
| 355 | cond_resched_lock(&dst_mm->page_table_lock); |
| 356 | if (addr != end) |
| 357 | goto again; |
| 358 | return 0; |
| 359 | } |
| 360 | |
| 361 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 362 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, |
| 363 | unsigned long addr, unsigned long end) |
| 364 | { |
| 365 | pmd_t *src_pmd, *dst_pmd; |
| 366 | unsigned long next; |
| 367 | |
| 368 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); |
| 369 | if (!dst_pmd) |
| 370 | return -ENOMEM; |
| 371 | src_pmd = pmd_offset(src_pud, addr); |
| 372 | do { |
| 373 | next = pmd_addr_end(addr, end); |
| 374 | if (pmd_none_or_clear_bad(src_pmd)) |
| 375 | continue; |
| 376 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, |
| 377 | vma, addr, next)) |
| 378 | return -ENOMEM; |
| 379 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); |
| 380 | return 0; |
| 381 | } |
| 382 | |
| 383 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 384 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, |
| 385 | unsigned long addr, unsigned long end) |
| 386 | { |
| 387 | pud_t *src_pud, *dst_pud; |
| 388 | unsigned long next; |
| 389 | |
| 390 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); |
| 391 | if (!dst_pud) |
| 392 | return -ENOMEM; |
| 393 | src_pud = pud_offset(src_pgd, addr); |
| 394 | do { |
| 395 | next = pud_addr_end(addr, end); |
| 396 | if (pud_none_or_clear_bad(src_pud)) |
| 397 | continue; |
| 398 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, |
| 399 | vma, addr, next)) |
| 400 | return -ENOMEM; |
| 401 | } while (dst_pud++, src_pud++, addr = next, addr != end); |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
| 406 | struct vm_area_struct *vma) |
| 407 | { |
| 408 | pgd_t *src_pgd, *dst_pgd; |
| 409 | unsigned long next; |
| 410 | unsigned long addr = vma->vm_start; |
| 411 | unsigned long end = vma->vm_end; |
| 412 | |
| 413 | if (is_vm_hugetlb_page(vma)) |
| 414 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); |
| 415 | |
| 416 | dst_pgd = pgd_offset(dst_mm, addr); |
| 417 | src_pgd = pgd_offset(src_mm, addr); |
| 418 | do { |
| 419 | next = pgd_addr_end(addr, end); |
| 420 | if (pgd_none_or_clear_bad(src_pgd)) |
| 421 | continue; |
| 422 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
| 423 | vma, addr, next)) |
| 424 | return -ENOMEM; |
| 425 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
| 430 | unsigned long addr, unsigned long end, |
| 431 | struct zap_details *details) |
| 432 | { |
| 433 | pte_t *pte; |
| 434 | |
| 435 | pte = pte_offset_map(pmd, addr); |
| 436 | do { |
| 437 | pte_t ptent = *pte; |
| 438 | if (pte_none(ptent)) |
| 439 | continue; |
| 440 | if (pte_present(ptent)) { |
| 441 | struct page *page = NULL; |
| 442 | unsigned long pfn = pte_pfn(ptent); |
| 443 | if (pfn_valid(pfn)) { |
| 444 | page = pfn_to_page(pfn); |
| 445 | if (PageReserved(page)) |
| 446 | page = NULL; |
| 447 | } |
| 448 | if (unlikely(details) && page) { |
| 449 | /* |
| 450 | * unmap_shared_mapping_pages() wants to |
| 451 | * invalidate cache without truncating: |
| 452 | * unmap shared but keep private pages. |
| 453 | */ |
| 454 | if (details->check_mapping && |
| 455 | details->check_mapping != page->mapping) |
| 456 | continue; |
| 457 | /* |
| 458 | * Each page->index must be checked when |
| 459 | * invalidating or truncating nonlinear. |
| 460 | */ |
| 461 | if (details->nonlinear_vma && |
| 462 | (page->index < details->first_index || |
| 463 | page->index > details->last_index)) |
| 464 | continue; |
| 465 | } |
| 466 | ptent = ptep_get_and_clear(tlb->mm, addr, pte); |
| 467 | tlb_remove_tlb_entry(tlb, pte, addr); |
| 468 | if (unlikely(!page)) |
| 469 | continue; |
| 470 | if (unlikely(details) && details->nonlinear_vma |
| 471 | && linear_page_index(details->nonlinear_vma, |
| 472 | addr) != page->index) |
| 473 | set_pte_at(tlb->mm, addr, pte, |
| 474 | pgoff_to_pte(page->index)); |
| 475 | if (pte_dirty(ptent)) |
| 476 | set_page_dirty(page); |
| 477 | if (PageAnon(page)) |
| 478 | dec_mm_counter(tlb->mm, anon_rss); |
| 479 | else if (pte_young(ptent)) |
| 480 | mark_page_accessed(page); |
| 481 | tlb->freed++; |
| 482 | page_remove_rmap(page); |
| 483 | tlb_remove_page(tlb, page); |
| 484 | continue; |
| 485 | } |
| 486 | /* |
| 487 | * If details->check_mapping, we leave swap entries; |
| 488 | * if details->nonlinear_vma, we leave file entries. |
| 489 | */ |
| 490 | if (unlikely(details)) |
| 491 | continue; |
| 492 | if (!pte_file(ptent)) |
| 493 | free_swap_and_cache(pte_to_swp_entry(ptent)); |
| 494 | pte_clear(tlb->mm, addr, pte); |
| 495 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 496 | pte_unmap(pte - 1); |
| 497 | } |
| 498 | |
| 499 | static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
| 500 | unsigned long addr, unsigned long end, |
| 501 | struct zap_details *details) |
| 502 | { |
| 503 | pmd_t *pmd; |
| 504 | unsigned long next; |
| 505 | |
| 506 | pmd = pmd_offset(pud, addr); |
| 507 | do { |
| 508 | next = pmd_addr_end(addr, end); |
| 509 | if (pmd_none_or_clear_bad(pmd)) |
| 510 | continue; |
| 511 | zap_pte_range(tlb, pmd, addr, next, details); |
| 512 | } while (pmd++, addr = next, addr != end); |
| 513 | } |
| 514 | |
| 515 | static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
| 516 | unsigned long addr, unsigned long end, |
| 517 | struct zap_details *details) |
| 518 | { |
| 519 | pud_t *pud; |
| 520 | unsigned long next; |
| 521 | |
| 522 | pud = pud_offset(pgd, addr); |
| 523 | do { |
| 524 | next = pud_addr_end(addr, end); |
| 525 | if (pud_none_or_clear_bad(pud)) |
| 526 | continue; |
| 527 | zap_pmd_range(tlb, pud, addr, next, details); |
| 528 | } while (pud++, addr = next, addr != end); |
| 529 | } |
| 530 | |
| 531 | static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
| 532 | unsigned long addr, unsigned long end, |
| 533 | struct zap_details *details) |
| 534 | { |
| 535 | pgd_t *pgd; |
| 536 | unsigned long next; |
| 537 | |
| 538 | if (details && !details->check_mapping && !details->nonlinear_vma) |
| 539 | details = NULL; |
| 540 | |
| 541 | BUG_ON(addr >= end); |
| 542 | tlb_start_vma(tlb, vma); |
| 543 | pgd = pgd_offset(vma->vm_mm, addr); |
| 544 | do { |
| 545 | next = pgd_addr_end(addr, end); |
| 546 | if (pgd_none_or_clear_bad(pgd)) |
| 547 | continue; |
| 548 | zap_pud_range(tlb, pgd, addr, next, details); |
| 549 | } while (pgd++, addr = next, addr != end); |
| 550 | tlb_end_vma(tlb, vma); |
| 551 | } |
| 552 | |
| 553 | #ifdef CONFIG_PREEMPT |
| 554 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) |
| 555 | #else |
| 556 | /* No preempt: go for improved straight-line efficiency */ |
| 557 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) |
| 558 | #endif |
| 559 | |
| 560 | /** |
| 561 | * unmap_vmas - unmap a range of memory covered by a list of vma's |
| 562 | * @tlbp: address of the caller's struct mmu_gather |
| 563 | * @mm: the controlling mm_struct |
| 564 | * @vma: the starting vma |
| 565 | * @start_addr: virtual address at which to start unmapping |
| 566 | * @end_addr: virtual address at which to end unmapping |
| 567 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here |
| 568 | * @details: details of nonlinear truncation or shared cache invalidation |
| 569 | * |
| 570 | * Returns the number of vma's which were covered by the unmapping. |
| 571 | * |
| 572 | * Unmap all pages in the vma list. Called under page_table_lock. |
| 573 | * |
| 574 | * We aim to not hold page_table_lock for too long (for scheduling latency |
| 575 | * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to |
| 576 | * return the ending mmu_gather to the caller. |
| 577 | * |
| 578 | * Only addresses between `start' and `end' will be unmapped. |
| 579 | * |
| 580 | * The VMA list must be sorted in ascending virtual address order. |
| 581 | * |
| 582 | * unmap_vmas() assumes that the caller will flush the whole unmapped address |
| 583 | * range after unmap_vmas() returns. So the only responsibility here is to |
| 584 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() |
| 585 | * drops the lock and schedules. |
| 586 | */ |
| 587 | int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, |
| 588 | struct vm_area_struct *vma, unsigned long start_addr, |
| 589 | unsigned long end_addr, unsigned long *nr_accounted, |
| 590 | struct zap_details *details) |
| 591 | { |
| 592 | unsigned long zap_bytes = ZAP_BLOCK_SIZE; |
| 593 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
| 594 | int tlb_start_valid = 0; |
| 595 | int ret = 0; |
| 596 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
| 597 | int fullmm = tlb_is_full_mm(*tlbp); |
| 598 | |
| 599 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
| 600 | unsigned long start; |
| 601 | unsigned long end; |
| 602 | |
| 603 | start = max(vma->vm_start, start_addr); |
| 604 | if (start >= vma->vm_end) |
| 605 | continue; |
| 606 | end = min(vma->vm_end, end_addr); |
| 607 | if (end <= vma->vm_start) |
| 608 | continue; |
| 609 | |
| 610 | if (vma->vm_flags & VM_ACCOUNT) |
| 611 | *nr_accounted += (end - start) >> PAGE_SHIFT; |
| 612 | |
| 613 | ret++; |
| 614 | while (start != end) { |
| 615 | unsigned long block; |
| 616 | |
| 617 | if (!tlb_start_valid) { |
| 618 | tlb_start = start; |
| 619 | tlb_start_valid = 1; |
| 620 | } |
| 621 | |
| 622 | if (is_vm_hugetlb_page(vma)) { |
| 623 | block = end - start; |
| 624 | unmap_hugepage_range(vma, start, end); |
| 625 | } else { |
| 626 | block = min(zap_bytes, end - start); |
| 627 | unmap_page_range(*tlbp, vma, start, |
| 628 | start + block, details); |
| 629 | } |
| 630 | |
| 631 | start += block; |
| 632 | zap_bytes -= block; |
| 633 | if ((long)zap_bytes > 0) |
| 634 | continue; |
| 635 | |
| 636 | tlb_finish_mmu(*tlbp, tlb_start, start); |
| 637 | |
| 638 | if (need_resched() || |
| 639 | need_lockbreak(&mm->page_table_lock) || |
| 640 | (i_mmap_lock && need_lockbreak(i_mmap_lock))) { |
| 641 | if (i_mmap_lock) { |
| 642 | /* must reset count of rss freed */ |
| 643 | *tlbp = tlb_gather_mmu(mm, fullmm); |
| 644 | details->break_addr = start; |
| 645 | goto out; |
| 646 | } |
| 647 | spin_unlock(&mm->page_table_lock); |
| 648 | cond_resched(); |
| 649 | spin_lock(&mm->page_table_lock); |
| 650 | } |
| 651 | |
| 652 | *tlbp = tlb_gather_mmu(mm, fullmm); |
| 653 | tlb_start_valid = 0; |
| 654 | zap_bytes = ZAP_BLOCK_SIZE; |
| 655 | } |
| 656 | } |
| 657 | out: |
| 658 | return ret; |
| 659 | } |
| 660 | |
| 661 | /** |
| 662 | * zap_page_range - remove user pages in a given range |
| 663 | * @vma: vm_area_struct holding the applicable pages |
| 664 | * @address: starting address of pages to zap |
| 665 | * @size: number of bytes to zap |
| 666 | * @details: details of nonlinear truncation or shared cache invalidation |
| 667 | */ |
| 668 | void zap_page_range(struct vm_area_struct *vma, unsigned long address, |
| 669 | unsigned long size, struct zap_details *details) |
| 670 | { |
| 671 | struct mm_struct *mm = vma->vm_mm; |
| 672 | struct mmu_gather *tlb; |
| 673 | unsigned long end = address + size; |
| 674 | unsigned long nr_accounted = 0; |
| 675 | |
| 676 | if (is_vm_hugetlb_page(vma)) { |
| 677 | zap_hugepage_range(vma, address, size); |
| 678 | return; |
| 679 | } |
| 680 | |
| 681 | lru_add_drain(); |
| 682 | spin_lock(&mm->page_table_lock); |
| 683 | tlb = tlb_gather_mmu(mm, 0); |
| 684 | unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); |
| 685 | tlb_finish_mmu(tlb, address, end); |
| 686 | spin_unlock(&mm->page_table_lock); |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * Do a quick page-table lookup for a single page. |
| 691 | * mm->page_table_lock must be held. |
| 692 | */ |
| 693 | static struct page * |
| 694 | __follow_page(struct mm_struct *mm, unsigned long address, int read, int write) |
| 695 | { |
| 696 | pgd_t *pgd; |
| 697 | pud_t *pud; |
| 698 | pmd_t *pmd; |
| 699 | pte_t *ptep, pte; |
| 700 | unsigned long pfn; |
| 701 | struct page *page; |
| 702 | |
| 703 | page = follow_huge_addr(mm, address, write); |
| 704 | if (! IS_ERR(page)) |
| 705 | return page; |
| 706 | |
| 707 | pgd = pgd_offset(mm, address); |
| 708 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
| 709 | goto out; |
| 710 | |
| 711 | pud = pud_offset(pgd, address); |
| 712 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
| 713 | goto out; |
| 714 | |
| 715 | pmd = pmd_offset(pud, address); |
| 716 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
| 717 | goto out; |
| 718 | if (pmd_huge(*pmd)) |
| 719 | return follow_huge_pmd(mm, address, pmd, write); |
| 720 | |
| 721 | ptep = pte_offset_map(pmd, address); |
| 722 | if (!ptep) |
| 723 | goto out; |
| 724 | |
| 725 | pte = *ptep; |
| 726 | pte_unmap(ptep); |
| 727 | if (pte_present(pte)) { |
| 728 | if (write && !pte_write(pte)) |
| 729 | goto out; |
| 730 | if (read && !pte_read(pte)) |
| 731 | goto out; |
| 732 | pfn = pte_pfn(pte); |
| 733 | if (pfn_valid(pfn)) { |
| 734 | page = pfn_to_page(pfn); |
| 735 | if (write && !pte_dirty(pte) && !PageDirty(page)) |
| 736 | set_page_dirty(page); |
| 737 | mark_page_accessed(page); |
| 738 | return page; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | out: |
| 743 | return NULL; |
| 744 | } |
| 745 | |
| 746 | struct page * |
| 747 | follow_page(struct mm_struct *mm, unsigned long address, int write) |
| 748 | { |
| 749 | return __follow_page(mm, address, /*read*/0, write); |
| 750 | } |
| 751 | |
| 752 | int |
| 753 | check_user_page_readable(struct mm_struct *mm, unsigned long address) |
| 754 | { |
| 755 | return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL; |
| 756 | } |
| 757 | |
| 758 | EXPORT_SYMBOL(check_user_page_readable); |
| 759 | |
| 760 | /* |
| 761 | * Given a physical address, is there a useful struct page pointing to |
| 762 | * it? This may become more complex in the future if we start dealing |
| 763 | * with IO-aperture pages for direct-IO. |
| 764 | */ |
| 765 | |
| 766 | static inline struct page *get_page_map(struct page *page) |
| 767 | { |
| 768 | if (!pfn_valid(page_to_pfn(page))) |
| 769 | return NULL; |
| 770 | return page; |
| 771 | } |
| 772 | |
| 773 | |
| 774 | static inline int |
| 775 | untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, |
| 776 | unsigned long address) |
| 777 | { |
| 778 | pgd_t *pgd; |
| 779 | pud_t *pud; |
| 780 | pmd_t *pmd; |
| 781 | |
| 782 | /* Check if the vma is for an anonymous mapping. */ |
| 783 | if (vma->vm_ops && vma->vm_ops->nopage) |
| 784 | return 0; |
| 785 | |
| 786 | /* Check if page directory entry exists. */ |
| 787 | pgd = pgd_offset(mm, address); |
| 788 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
| 789 | return 1; |
| 790 | |
| 791 | pud = pud_offset(pgd, address); |
| 792 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
| 793 | return 1; |
| 794 | |
| 795 | /* Check if page middle directory entry exists. */ |
| 796 | pmd = pmd_offset(pud, address); |
| 797 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
| 798 | return 1; |
| 799 | |
| 800 | /* There is a pte slot for 'address' in 'mm'. */ |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | |
| 805 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
| 806 | unsigned long start, int len, int write, int force, |
| 807 | struct page **pages, struct vm_area_struct **vmas) |
| 808 | { |
| 809 | int i; |
| 810 | unsigned int flags; |
| 811 | |
| 812 | /* |
| 813 | * Require read or write permissions. |
| 814 | * If 'force' is set, we only require the "MAY" flags. |
| 815 | */ |
| 816 | flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
| 817 | flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
| 818 | i = 0; |
| 819 | |
| 820 | do { |
| 821 | struct vm_area_struct * vma; |
| 822 | |
| 823 | vma = find_extend_vma(mm, start); |
| 824 | if (!vma && in_gate_area(tsk, start)) { |
| 825 | unsigned long pg = start & PAGE_MASK; |
| 826 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); |
| 827 | pgd_t *pgd; |
| 828 | pud_t *pud; |
| 829 | pmd_t *pmd; |
| 830 | pte_t *pte; |
| 831 | if (write) /* user gate pages are read-only */ |
| 832 | return i ? : -EFAULT; |
| 833 | if (pg > TASK_SIZE) |
| 834 | pgd = pgd_offset_k(pg); |
| 835 | else |
| 836 | pgd = pgd_offset_gate(mm, pg); |
| 837 | BUG_ON(pgd_none(*pgd)); |
| 838 | pud = pud_offset(pgd, pg); |
| 839 | BUG_ON(pud_none(*pud)); |
| 840 | pmd = pmd_offset(pud, pg); |
| 841 | BUG_ON(pmd_none(*pmd)); |
| 842 | pte = pte_offset_map(pmd, pg); |
| 843 | BUG_ON(pte_none(*pte)); |
| 844 | if (pages) { |
| 845 | pages[i] = pte_page(*pte); |
| 846 | get_page(pages[i]); |
| 847 | } |
| 848 | pte_unmap(pte); |
| 849 | if (vmas) |
| 850 | vmas[i] = gate_vma; |
| 851 | i++; |
| 852 | start += PAGE_SIZE; |
| 853 | len--; |
| 854 | continue; |
| 855 | } |
| 856 | |
| 857 | if (!vma || (vma->vm_flags & VM_IO) |
| 858 | || !(flags & vma->vm_flags)) |
| 859 | return i ? : -EFAULT; |
| 860 | |
| 861 | if (is_vm_hugetlb_page(vma)) { |
| 862 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
| 863 | &start, &len, i); |
| 864 | continue; |
| 865 | } |
| 866 | spin_lock(&mm->page_table_lock); |
| 867 | do { |
| 868 | struct page *map; |
| 869 | int lookup_write = write; |
| 870 | |
| 871 | cond_resched_lock(&mm->page_table_lock); |
| 872 | while (!(map = follow_page(mm, start, lookup_write))) { |
| 873 | /* |
| 874 | * Shortcut for anonymous pages. We don't want |
| 875 | * to force the creation of pages tables for |
| 876 | * insanly big anonymously mapped areas that |
| 877 | * nobody touched so far. This is important |
| 878 | * for doing a core dump for these mappings. |
| 879 | */ |
| 880 | if (!lookup_write && |
| 881 | untouched_anonymous_page(mm,vma,start)) { |
| 882 | map = ZERO_PAGE(start); |
| 883 | break; |
| 884 | } |
| 885 | spin_unlock(&mm->page_table_lock); |
| 886 | switch (handle_mm_fault(mm,vma,start,write)) { |
| 887 | case VM_FAULT_MINOR: |
| 888 | tsk->min_flt++; |
| 889 | break; |
| 890 | case VM_FAULT_MAJOR: |
| 891 | tsk->maj_flt++; |
| 892 | break; |
| 893 | case VM_FAULT_SIGBUS: |
| 894 | return i ? i : -EFAULT; |
| 895 | case VM_FAULT_OOM: |
| 896 | return i ? i : -ENOMEM; |
| 897 | default: |
| 898 | BUG(); |
| 899 | } |
| 900 | /* |
| 901 | * Now that we have performed a write fault |
| 902 | * and surely no longer have a shared page we |
| 903 | * shouldn't write, we shouldn't ignore an |
| 904 | * unwritable page in the page table if |
| 905 | * we are forcing write access. |
| 906 | */ |
| 907 | lookup_write = write && !force; |
| 908 | spin_lock(&mm->page_table_lock); |
| 909 | } |
| 910 | if (pages) { |
| 911 | pages[i] = get_page_map(map); |
| 912 | if (!pages[i]) { |
| 913 | spin_unlock(&mm->page_table_lock); |
| 914 | while (i--) |
| 915 | page_cache_release(pages[i]); |
| 916 | i = -EFAULT; |
| 917 | goto out; |
| 918 | } |
| 919 | flush_dcache_page(pages[i]); |
| 920 | if (!PageReserved(pages[i])) |
| 921 | page_cache_get(pages[i]); |
| 922 | } |
| 923 | if (vmas) |
| 924 | vmas[i] = vma; |
| 925 | i++; |
| 926 | start += PAGE_SIZE; |
| 927 | len--; |
| 928 | } while(len && start < vma->vm_end); |
| 929 | spin_unlock(&mm->page_table_lock); |
| 930 | } while(len); |
| 931 | out: |
| 932 | return i; |
| 933 | } |
| 934 | |
| 935 | EXPORT_SYMBOL(get_user_pages); |
| 936 | |
| 937 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, |
| 938 | unsigned long addr, unsigned long end, pgprot_t prot) |
| 939 | { |
| 940 | pte_t *pte; |
| 941 | |
| 942 | pte = pte_alloc_map(mm, pmd, addr); |
| 943 | if (!pte) |
| 944 | return -ENOMEM; |
| 945 | do { |
| 946 | pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); |
| 947 | BUG_ON(!pte_none(*pte)); |
| 948 | set_pte_at(mm, addr, pte, zero_pte); |
| 949 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 950 | pte_unmap(pte - 1); |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, |
| 955 | unsigned long addr, unsigned long end, pgprot_t prot) |
| 956 | { |
| 957 | pmd_t *pmd; |
| 958 | unsigned long next; |
| 959 | |
| 960 | pmd = pmd_alloc(mm, pud, addr); |
| 961 | if (!pmd) |
| 962 | return -ENOMEM; |
| 963 | do { |
| 964 | next = pmd_addr_end(addr, end); |
| 965 | if (zeromap_pte_range(mm, pmd, addr, next, prot)) |
| 966 | return -ENOMEM; |
| 967 | } while (pmd++, addr = next, addr != end); |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, |
| 972 | unsigned long addr, unsigned long end, pgprot_t prot) |
| 973 | { |
| 974 | pud_t *pud; |
| 975 | unsigned long next; |
| 976 | |
| 977 | pud = pud_alloc(mm, pgd, addr); |
| 978 | if (!pud) |
| 979 | return -ENOMEM; |
| 980 | do { |
| 981 | next = pud_addr_end(addr, end); |
| 982 | if (zeromap_pmd_range(mm, pud, addr, next, prot)) |
| 983 | return -ENOMEM; |
| 984 | } while (pud++, addr = next, addr != end); |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | int zeromap_page_range(struct vm_area_struct *vma, |
| 989 | unsigned long addr, unsigned long size, pgprot_t prot) |
| 990 | { |
| 991 | pgd_t *pgd; |
| 992 | unsigned long next; |
| 993 | unsigned long end = addr + size; |
| 994 | struct mm_struct *mm = vma->vm_mm; |
| 995 | int err; |
| 996 | |
| 997 | BUG_ON(addr >= end); |
| 998 | pgd = pgd_offset(mm, addr); |
| 999 | flush_cache_range(vma, addr, end); |
| 1000 | spin_lock(&mm->page_table_lock); |
| 1001 | do { |
| 1002 | next = pgd_addr_end(addr, end); |
| 1003 | err = zeromap_pud_range(mm, pgd, addr, next, prot); |
| 1004 | if (err) |
| 1005 | break; |
| 1006 | } while (pgd++, addr = next, addr != end); |
| 1007 | spin_unlock(&mm->page_table_lock); |
| 1008 | return err; |
| 1009 | } |
| 1010 | |
| 1011 | /* |
| 1012 | * maps a range of physical memory into the requested pages. the old |
| 1013 | * mappings are removed. any references to nonexistent pages results |
| 1014 | * in null mappings (currently treated as "copy-on-access") |
| 1015 | */ |
| 1016 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, |
| 1017 | unsigned long addr, unsigned long end, |
| 1018 | unsigned long pfn, pgprot_t prot) |
| 1019 | { |
| 1020 | pte_t *pte; |
| 1021 | |
| 1022 | pte = pte_alloc_map(mm, pmd, addr); |
| 1023 | if (!pte) |
| 1024 | return -ENOMEM; |
| 1025 | do { |
| 1026 | BUG_ON(!pte_none(*pte)); |
| 1027 | if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) |
| 1028 | set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); |
| 1029 | pfn++; |
| 1030 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 1031 | pte_unmap(pte - 1); |
| 1032 | return 0; |
| 1033 | } |
| 1034 | |
| 1035 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, |
| 1036 | unsigned long addr, unsigned long end, |
| 1037 | unsigned long pfn, pgprot_t prot) |
| 1038 | { |
| 1039 | pmd_t *pmd; |
| 1040 | unsigned long next; |
| 1041 | |
| 1042 | pfn -= addr >> PAGE_SHIFT; |
| 1043 | pmd = pmd_alloc(mm, pud, addr); |
| 1044 | if (!pmd) |
| 1045 | return -ENOMEM; |
| 1046 | do { |
| 1047 | next = pmd_addr_end(addr, end); |
| 1048 | if (remap_pte_range(mm, pmd, addr, next, |
| 1049 | pfn + (addr >> PAGE_SHIFT), prot)) |
| 1050 | return -ENOMEM; |
| 1051 | } while (pmd++, addr = next, addr != end); |
| 1052 | return 0; |
| 1053 | } |
| 1054 | |
| 1055 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, |
| 1056 | unsigned long addr, unsigned long end, |
| 1057 | unsigned long pfn, pgprot_t prot) |
| 1058 | { |
| 1059 | pud_t *pud; |
| 1060 | unsigned long next; |
| 1061 | |
| 1062 | pfn -= addr >> PAGE_SHIFT; |
| 1063 | pud = pud_alloc(mm, pgd, addr); |
| 1064 | if (!pud) |
| 1065 | return -ENOMEM; |
| 1066 | do { |
| 1067 | next = pud_addr_end(addr, end); |
| 1068 | if (remap_pmd_range(mm, pud, addr, next, |
| 1069 | pfn + (addr >> PAGE_SHIFT), prot)) |
| 1070 | return -ENOMEM; |
| 1071 | } while (pud++, addr = next, addr != end); |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
| 1075 | /* Note: this is only safe if the mm semaphore is held when called. */ |
| 1076 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
| 1077 | unsigned long pfn, unsigned long size, pgprot_t prot) |
| 1078 | { |
| 1079 | pgd_t *pgd; |
| 1080 | unsigned long next; |
| 1081 | unsigned long end = addr + size; |
| 1082 | struct mm_struct *mm = vma->vm_mm; |
| 1083 | int err; |
| 1084 | |
| 1085 | /* |
| 1086 | * Physically remapped pages are special. Tell the |
| 1087 | * rest of the world about it: |
| 1088 | * VM_IO tells people not to look at these pages |
| 1089 | * (accesses can have side effects). |
| 1090 | * VM_RESERVED tells swapout not to try to touch |
| 1091 | * this region. |
| 1092 | */ |
| 1093 | vma->vm_flags |= VM_IO | VM_RESERVED; |
| 1094 | |
| 1095 | BUG_ON(addr >= end); |
| 1096 | pfn -= addr >> PAGE_SHIFT; |
| 1097 | pgd = pgd_offset(mm, addr); |
| 1098 | flush_cache_range(vma, addr, end); |
| 1099 | spin_lock(&mm->page_table_lock); |
| 1100 | do { |
| 1101 | next = pgd_addr_end(addr, end); |
| 1102 | err = remap_pud_range(mm, pgd, addr, next, |
| 1103 | pfn + (addr >> PAGE_SHIFT), prot); |
| 1104 | if (err) |
| 1105 | break; |
| 1106 | } while (pgd++, addr = next, addr != end); |
| 1107 | spin_unlock(&mm->page_table_lock); |
| 1108 | return err; |
| 1109 | } |
| 1110 | EXPORT_SYMBOL(remap_pfn_range); |
| 1111 | |
| 1112 | /* |
| 1113 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
| 1114 | * servicing faults for write access. In the normal case, do always want |
| 1115 | * pte_mkwrite. But get_user_pages can cause write faults for mappings |
| 1116 | * that do not have writing enabled, when used by access_process_vm. |
| 1117 | */ |
| 1118 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| 1119 | { |
| 1120 | if (likely(vma->vm_flags & VM_WRITE)) |
| 1121 | pte = pte_mkwrite(pte); |
| 1122 | return pte; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock |
| 1127 | */ |
| 1128 | static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, |
| 1129 | pte_t *page_table) |
| 1130 | { |
| 1131 | pte_t entry; |
| 1132 | |
| 1133 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), |
| 1134 | vma); |
| 1135 | ptep_establish(vma, address, page_table, entry); |
| 1136 | update_mmu_cache(vma, address, entry); |
| 1137 | lazy_mmu_prot_update(entry); |
| 1138 | } |
| 1139 | |
| 1140 | /* |
| 1141 | * This routine handles present pages, when users try to write |
| 1142 | * to a shared page. It is done by copying the page to a new address |
| 1143 | * and decrementing the shared-page counter for the old page. |
| 1144 | * |
| 1145 | * Goto-purists beware: the only reason for goto's here is that it results |
| 1146 | * in better assembly code.. The "default" path will see no jumps at all. |
| 1147 | * |
| 1148 | * Note that this routine assumes that the protection checks have been |
| 1149 | * done by the caller (the low-level page fault routine in most cases). |
| 1150 | * Thus we can safely just mark it writable once we've done any necessary |
| 1151 | * COW. |
| 1152 | * |
| 1153 | * We also mark the page dirty at this point even though the page will |
| 1154 | * change only once the write actually happens. This avoids a few races, |
| 1155 | * and potentially makes it more efficient. |
| 1156 | * |
| 1157 | * We hold the mm semaphore and the page_table_lock on entry and exit |
| 1158 | * with the page_table_lock released. |
| 1159 | */ |
| 1160 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, |
| 1161 | unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) |
| 1162 | { |
| 1163 | struct page *old_page, *new_page; |
| 1164 | unsigned long pfn = pte_pfn(pte); |
| 1165 | pte_t entry; |
| 1166 | |
| 1167 | if (unlikely(!pfn_valid(pfn))) { |
| 1168 | /* |
| 1169 | * This should really halt the system so it can be debugged or |
| 1170 | * at least the kernel stops what it's doing before it corrupts |
| 1171 | * data, but for the moment just pretend this is OOM. |
| 1172 | */ |
| 1173 | pte_unmap(page_table); |
| 1174 | printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", |
| 1175 | address); |
| 1176 | spin_unlock(&mm->page_table_lock); |
| 1177 | return VM_FAULT_OOM; |
| 1178 | } |
| 1179 | old_page = pfn_to_page(pfn); |
| 1180 | |
| 1181 | if (!TestSetPageLocked(old_page)) { |
| 1182 | int reuse = can_share_swap_page(old_page); |
| 1183 | unlock_page(old_page); |
| 1184 | if (reuse) { |
| 1185 | flush_cache_page(vma, address, pfn); |
| 1186 | entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), |
| 1187 | vma); |
| 1188 | ptep_set_access_flags(vma, address, page_table, entry, 1); |
| 1189 | update_mmu_cache(vma, address, entry); |
| 1190 | lazy_mmu_prot_update(entry); |
| 1191 | pte_unmap(page_table); |
| 1192 | spin_unlock(&mm->page_table_lock); |
| 1193 | return VM_FAULT_MINOR; |
| 1194 | } |
| 1195 | } |
| 1196 | pte_unmap(page_table); |
| 1197 | |
| 1198 | /* |
| 1199 | * Ok, we need to copy. Oh, well.. |
| 1200 | */ |
| 1201 | if (!PageReserved(old_page)) |
| 1202 | page_cache_get(old_page); |
| 1203 | spin_unlock(&mm->page_table_lock); |
| 1204 | |
| 1205 | if (unlikely(anon_vma_prepare(vma))) |
| 1206 | goto no_new_page; |
| 1207 | if (old_page == ZERO_PAGE(address)) { |
| 1208 | new_page = alloc_zeroed_user_highpage(vma, address); |
| 1209 | if (!new_page) |
| 1210 | goto no_new_page; |
| 1211 | } else { |
| 1212 | new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); |
| 1213 | if (!new_page) |
| 1214 | goto no_new_page; |
| 1215 | copy_user_highpage(new_page, old_page, address); |
| 1216 | } |
| 1217 | /* |
| 1218 | * Re-check the pte - we dropped the lock |
| 1219 | */ |
| 1220 | spin_lock(&mm->page_table_lock); |
| 1221 | page_table = pte_offset_map(pmd, address); |
| 1222 | if (likely(pte_same(*page_table, pte))) { |
| 1223 | if (PageAnon(old_page)) |
| 1224 | dec_mm_counter(mm, anon_rss); |
| 1225 | if (PageReserved(old_page)) |
| 1226 | inc_mm_counter(mm, rss); |
| 1227 | else |
| 1228 | page_remove_rmap(old_page); |
| 1229 | flush_cache_page(vma, address, pfn); |
| 1230 | break_cow(vma, new_page, address, page_table); |
| 1231 | lru_cache_add_active(new_page); |
| 1232 | page_add_anon_rmap(new_page, vma, address); |
| 1233 | |
| 1234 | /* Free the old page.. */ |
| 1235 | new_page = old_page; |
| 1236 | } |
| 1237 | pte_unmap(page_table); |
| 1238 | page_cache_release(new_page); |
| 1239 | page_cache_release(old_page); |
| 1240 | spin_unlock(&mm->page_table_lock); |
| 1241 | return VM_FAULT_MINOR; |
| 1242 | |
| 1243 | no_new_page: |
| 1244 | page_cache_release(old_page); |
| 1245 | return VM_FAULT_OOM; |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | * Helper functions for unmap_mapping_range(). |
| 1250 | * |
| 1251 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ |
| 1252 | * |
| 1253 | * We have to restart searching the prio_tree whenever we drop the lock, |
| 1254 | * since the iterator is only valid while the lock is held, and anyway |
| 1255 | * a later vma might be split and reinserted earlier while lock dropped. |
| 1256 | * |
| 1257 | * The list of nonlinear vmas could be handled more efficiently, using |
| 1258 | * a placeholder, but handle it in the same way until a need is shown. |
| 1259 | * It is important to search the prio_tree before nonlinear list: a vma |
| 1260 | * may become nonlinear and be shifted from prio_tree to nonlinear list |
| 1261 | * while the lock is dropped; but never shifted from list to prio_tree. |
| 1262 | * |
| 1263 | * In order to make forward progress despite restarting the search, |
| 1264 | * vm_truncate_count is used to mark a vma as now dealt with, so we can |
| 1265 | * quickly skip it next time around. Since the prio_tree search only |
| 1266 | * shows us those vmas affected by unmapping the range in question, we |
| 1267 | * can't efficiently keep all vmas in step with mapping->truncate_count: |
| 1268 | * so instead reset them all whenever it wraps back to 0 (then go to 1). |
| 1269 | * mapping->truncate_count and vma->vm_truncate_count are protected by |
| 1270 | * i_mmap_lock. |
| 1271 | * |
| 1272 | * In order to make forward progress despite repeatedly restarting some |
| 1273 | * large vma, note the break_addr set by unmap_vmas when it breaks out: |
| 1274 | * and restart from that address when we reach that vma again. It might |
| 1275 | * have been split or merged, shrunk or extended, but never shifted: so |
| 1276 | * restart_addr remains valid so long as it remains in the vma's range. |
| 1277 | * unmap_mapping_range forces truncate_count to leap over page-aligned |
| 1278 | * values so we can save vma's restart_addr in its truncate_count field. |
| 1279 | */ |
| 1280 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) |
| 1281 | |
| 1282 | static void reset_vma_truncate_counts(struct address_space *mapping) |
| 1283 | { |
| 1284 | struct vm_area_struct *vma; |
| 1285 | struct prio_tree_iter iter; |
| 1286 | |
| 1287 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) |
| 1288 | vma->vm_truncate_count = 0; |
| 1289 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
| 1290 | vma->vm_truncate_count = 0; |
| 1291 | } |
| 1292 | |
| 1293 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, |
| 1294 | unsigned long start_addr, unsigned long end_addr, |
| 1295 | struct zap_details *details) |
| 1296 | { |
| 1297 | unsigned long restart_addr; |
| 1298 | int need_break; |
| 1299 | |
| 1300 | again: |
| 1301 | restart_addr = vma->vm_truncate_count; |
| 1302 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { |
| 1303 | start_addr = restart_addr; |
| 1304 | if (start_addr >= end_addr) { |
| 1305 | /* Top of vma has been split off since last time */ |
| 1306 | vma->vm_truncate_count = details->truncate_count; |
| 1307 | return 0; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | details->break_addr = end_addr; |
| 1312 | zap_page_range(vma, start_addr, end_addr - start_addr, details); |
| 1313 | |
| 1314 | /* |
| 1315 | * We cannot rely on the break test in unmap_vmas: |
| 1316 | * on the one hand, we don't want to restart our loop |
| 1317 | * just because that broke out for the page_table_lock; |
| 1318 | * on the other hand, it does no test when vma is small. |
| 1319 | */ |
| 1320 | need_break = need_resched() || |
| 1321 | need_lockbreak(details->i_mmap_lock); |
| 1322 | |
| 1323 | if (details->break_addr >= end_addr) { |
| 1324 | /* We have now completed this vma: mark it so */ |
| 1325 | vma->vm_truncate_count = details->truncate_count; |
| 1326 | if (!need_break) |
| 1327 | return 0; |
| 1328 | } else { |
| 1329 | /* Note restart_addr in vma's truncate_count field */ |
| 1330 | vma->vm_truncate_count = details->break_addr; |
| 1331 | if (!need_break) |
| 1332 | goto again; |
| 1333 | } |
| 1334 | |
| 1335 | spin_unlock(details->i_mmap_lock); |
| 1336 | cond_resched(); |
| 1337 | spin_lock(details->i_mmap_lock); |
| 1338 | return -EINTR; |
| 1339 | } |
| 1340 | |
| 1341 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, |
| 1342 | struct zap_details *details) |
| 1343 | { |
| 1344 | struct vm_area_struct *vma; |
| 1345 | struct prio_tree_iter iter; |
| 1346 | pgoff_t vba, vea, zba, zea; |
| 1347 | |
| 1348 | restart: |
| 1349 | vma_prio_tree_foreach(vma, &iter, root, |
| 1350 | details->first_index, details->last_index) { |
| 1351 | /* Skip quickly over those we have already dealt with */ |
| 1352 | if (vma->vm_truncate_count == details->truncate_count) |
| 1353 | continue; |
| 1354 | |
| 1355 | vba = vma->vm_pgoff; |
| 1356 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; |
| 1357 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ |
| 1358 | zba = details->first_index; |
| 1359 | if (zba < vba) |
| 1360 | zba = vba; |
| 1361 | zea = details->last_index; |
| 1362 | if (zea > vea) |
| 1363 | zea = vea; |
| 1364 | |
| 1365 | if (unmap_mapping_range_vma(vma, |
| 1366 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
| 1367 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, |
| 1368 | details) < 0) |
| 1369 | goto restart; |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | static inline void unmap_mapping_range_list(struct list_head *head, |
| 1374 | struct zap_details *details) |
| 1375 | { |
| 1376 | struct vm_area_struct *vma; |
| 1377 | |
| 1378 | /* |
| 1379 | * In nonlinear VMAs there is no correspondence between virtual address |
| 1380 | * offset and file offset. So we must perform an exhaustive search |
| 1381 | * across *all* the pages in each nonlinear VMA, not just the pages |
| 1382 | * whose virtual address lies outside the file truncation point. |
| 1383 | */ |
| 1384 | restart: |
| 1385 | list_for_each_entry(vma, head, shared.vm_set.list) { |
| 1386 | /* Skip quickly over those we have already dealt with */ |
| 1387 | if (vma->vm_truncate_count == details->truncate_count) |
| 1388 | continue; |
| 1389 | details->nonlinear_vma = vma; |
| 1390 | if (unmap_mapping_range_vma(vma, vma->vm_start, |
| 1391 | vma->vm_end, details) < 0) |
| 1392 | goto restart; |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | /** |
| 1397 | * unmap_mapping_range - unmap the portion of all mmaps |
| 1398 | * in the specified address_space corresponding to the specified |
| 1399 | * page range in the underlying file. |
| 1400 | * @address_space: the address space containing mmaps to be unmapped. |
| 1401 | * @holebegin: byte in first page to unmap, relative to the start of |
| 1402 | * the underlying file. This will be rounded down to a PAGE_SIZE |
| 1403 | * boundary. Note that this is different from vmtruncate(), which |
| 1404 | * must keep the partial page. In contrast, we must get rid of |
| 1405 | * partial pages. |
| 1406 | * @holelen: size of prospective hole in bytes. This will be rounded |
| 1407 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the |
| 1408 | * end of the file. |
| 1409 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; |
| 1410 | * but 0 when invalidating pagecache, don't throw away private data. |
| 1411 | */ |
| 1412 | void unmap_mapping_range(struct address_space *mapping, |
| 1413 | loff_t const holebegin, loff_t const holelen, int even_cows) |
| 1414 | { |
| 1415 | struct zap_details details; |
| 1416 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
| 1417 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1418 | |
| 1419 | /* Check for overflow. */ |
| 1420 | if (sizeof(holelen) > sizeof(hlen)) { |
| 1421 | long long holeend = |
| 1422 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1423 | if (holeend & ~(long long)ULONG_MAX) |
| 1424 | hlen = ULONG_MAX - hba + 1; |
| 1425 | } |
| 1426 | |
| 1427 | details.check_mapping = even_cows? NULL: mapping; |
| 1428 | details.nonlinear_vma = NULL; |
| 1429 | details.first_index = hba; |
| 1430 | details.last_index = hba + hlen - 1; |
| 1431 | if (details.last_index < details.first_index) |
| 1432 | details.last_index = ULONG_MAX; |
| 1433 | details.i_mmap_lock = &mapping->i_mmap_lock; |
| 1434 | |
| 1435 | spin_lock(&mapping->i_mmap_lock); |
| 1436 | |
| 1437 | /* serialize i_size write against truncate_count write */ |
| 1438 | smp_wmb(); |
| 1439 | /* Protect against page faults, and endless unmapping loops */ |
| 1440 | mapping->truncate_count++; |
| 1441 | /* |
| 1442 | * For archs where spin_lock has inclusive semantics like ia64 |
| 1443 | * this smp_mb() will prevent to read pagetable contents |
| 1444 | * before the truncate_count increment is visible to |
| 1445 | * other cpus. |
| 1446 | */ |
| 1447 | smp_mb(); |
| 1448 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
| 1449 | if (mapping->truncate_count == 0) |
| 1450 | reset_vma_truncate_counts(mapping); |
| 1451 | mapping->truncate_count++; |
| 1452 | } |
| 1453 | details.truncate_count = mapping->truncate_count; |
| 1454 | |
| 1455 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) |
| 1456 | unmap_mapping_range_tree(&mapping->i_mmap, &details); |
| 1457 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) |
| 1458 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); |
| 1459 | spin_unlock(&mapping->i_mmap_lock); |
| 1460 | } |
| 1461 | EXPORT_SYMBOL(unmap_mapping_range); |
| 1462 | |
| 1463 | /* |
| 1464 | * Handle all mappings that got truncated by a "truncate()" |
| 1465 | * system call. |
| 1466 | * |
| 1467 | * NOTE! We have to be ready to update the memory sharing |
| 1468 | * between the file and the memory map for a potential last |
| 1469 | * incomplete page. Ugly, but necessary. |
| 1470 | */ |
| 1471 | int vmtruncate(struct inode * inode, loff_t offset) |
| 1472 | { |
| 1473 | struct address_space *mapping = inode->i_mapping; |
| 1474 | unsigned long limit; |
| 1475 | |
| 1476 | if (inode->i_size < offset) |
| 1477 | goto do_expand; |
| 1478 | /* |
| 1479 | * truncation of in-use swapfiles is disallowed - it would cause |
| 1480 | * subsequent swapout to scribble on the now-freed blocks. |
| 1481 | */ |
| 1482 | if (IS_SWAPFILE(inode)) |
| 1483 | goto out_busy; |
| 1484 | i_size_write(inode, offset); |
| 1485 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); |
| 1486 | truncate_inode_pages(mapping, offset); |
| 1487 | goto out_truncate; |
| 1488 | |
| 1489 | do_expand: |
| 1490 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; |
| 1491 | if (limit != RLIM_INFINITY && offset > limit) |
| 1492 | goto out_sig; |
| 1493 | if (offset > inode->i_sb->s_maxbytes) |
| 1494 | goto out_big; |
| 1495 | i_size_write(inode, offset); |
| 1496 | |
| 1497 | out_truncate: |
| 1498 | if (inode->i_op && inode->i_op->truncate) |
| 1499 | inode->i_op->truncate(inode); |
| 1500 | return 0; |
| 1501 | out_sig: |
| 1502 | send_sig(SIGXFSZ, current, 0); |
| 1503 | out_big: |
| 1504 | return -EFBIG; |
| 1505 | out_busy: |
| 1506 | return -ETXTBSY; |
| 1507 | } |
| 1508 | |
| 1509 | EXPORT_SYMBOL(vmtruncate); |
| 1510 | |
| 1511 | /* |
| 1512 | * Primitive swap readahead code. We simply read an aligned block of |
| 1513 | * (1 << page_cluster) entries in the swap area. This method is chosen |
| 1514 | * because it doesn't cost us any seek time. We also make sure to queue |
| 1515 | * the 'original' request together with the readahead ones... |
| 1516 | * |
| 1517 | * This has been extended to use the NUMA policies from the mm triggering |
| 1518 | * the readahead. |
| 1519 | * |
| 1520 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. |
| 1521 | */ |
| 1522 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) |
| 1523 | { |
| 1524 | #ifdef CONFIG_NUMA |
| 1525 | struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; |
| 1526 | #endif |
| 1527 | int i, num; |
| 1528 | struct page *new_page; |
| 1529 | unsigned long offset; |
| 1530 | |
| 1531 | /* |
| 1532 | * Get the number of handles we should do readahead io to. |
| 1533 | */ |
| 1534 | num = valid_swaphandles(entry, &offset); |
| 1535 | for (i = 0; i < num; offset++, i++) { |
| 1536 | /* Ok, do the async read-ahead now */ |
| 1537 | new_page = read_swap_cache_async(swp_entry(swp_type(entry), |
| 1538 | offset), vma, addr); |
| 1539 | if (!new_page) |
| 1540 | break; |
| 1541 | page_cache_release(new_page); |
| 1542 | #ifdef CONFIG_NUMA |
| 1543 | /* |
| 1544 | * Find the next applicable VMA for the NUMA policy. |
| 1545 | */ |
| 1546 | addr += PAGE_SIZE; |
| 1547 | if (addr == 0) |
| 1548 | vma = NULL; |
| 1549 | if (vma) { |
| 1550 | if (addr >= vma->vm_end) { |
| 1551 | vma = next_vma; |
| 1552 | next_vma = vma ? vma->vm_next : NULL; |
| 1553 | } |
| 1554 | if (vma && addr < vma->vm_start) |
| 1555 | vma = NULL; |
| 1556 | } else { |
| 1557 | if (next_vma && addr >= next_vma->vm_start) { |
| 1558 | vma = next_vma; |
| 1559 | next_vma = vma->vm_next; |
| 1560 | } |
| 1561 | } |
| 1562 | #endif |
| 1563 | } |
| 1564 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
| 1565 | } |
| 1566 | |
| 1567 | /* |
| 1568 | * We hold the mm semaphore and the page_table_lock on entry and |
| 1569 | * should release the pagetable lock on exit.. |
| 1570 | */ |
| 1571 | static int do_swap_page(struct mm_struct * mm, |
| 1572 | struct vm_area_struct * vma, unsigned long address, |
| 1573 | pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) |
| 1574 | { |
| 1575 | struct page *page; |
| 1576 | swp_entry_t entry = pte_to_swp_entry(orig_pte); |
| 1577 | pte_t pte; |
| 1578 | int ret = VM_FAULT_MINOR; |
| 1579 | |
| 1580 | pte_unmap(page_table); |
| 1581 | spin_unlock(&mm->page_table_lock); |
| 1582 | page = lookup_swap_cache(entry); |
| 1583 | if (!page) { |
| 1584 | swapin_readahead(entry, address, vma); |
| 1585 | page = read_swap_cache_async(entry, vma, address); |
| 1586 | if (!page) { |
| 1587 | /* |
| 1588 | * Back out if somebody else faulted in this pte while |
| 1589 | * we released the page table lock. |
| 1590 | */ |
| 1591 | spin_lock(&mm->page_table_lock); |
| 1592 | page_table = pte_offset_map(pmd, address); |
| 1593 | if (likely(pte_same(*page_table, orig_pte))) |
| 1594 | ret = VM_FAULT_OOM; |
| 1595 | else |
| 1596 | ret = VM_FAULT_MINOR; |
| 1597 | pte_unmap(page_table); |
| 1598 | spin_unlock(&mm->page_table_lock); |
| 1599 | goto out; |
| 1600 | } |
| 1601 | |
| 1602 | /* Had to read the page from swap area: Major fault */ |
| 1603 | ret = VM_FAULT_MAJOR; |
| 1604 | inc_page_state(pgmajfault); |
| 1605 | grab_swap_token(); |
| 1606 | } |
| 1607 | |
| 1608 | mark_page_accessed(page); |
| 1609 | lock_page(page); |
| 1610 | |
| 1611 | /* |
| 1612 | * Back out if somebody else faulted in this pte while we |
| 1613 | * released the page table lock. |
| 1614 | */ |
| 1615 | spin_lock(&mm->page_table_lock); |
| 1616 | page_table = pte_offset_map(pmd, address); |
| 1617 | if (unlikely(!pte_same(*page_table, orig_pte))) { |
| 1618 | pte_unmap(page_table); |
| 1619 | spin_unlock(&mm->page_table_lock); |
| 1620 | unlock_page(page); |
| 1621 | page_cache_release(page); |
| 1622 | ret = VM_FAULT_MINOR; |
| 1623 | goto out; |
| 1624 | } |
| 1625 | |
| 1626 | /* The page isn't present yet, go ahead with the fault. */ |
| 1627 | |
| 1628 | swap_free(entry); |
| 1629 | if (vm_swap_full()) |
| 1630 | remove_exclusive_swap_page(page); |
| 1631 | |
| 1632 | inc_mm_counter(mm, rss); |
| 1633 | pte = mk_pte(page, vma->vm_page_prot); |
| 1634 | if (write_access && can_share_swap_page(page)) { |
| 1635 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
| 1636 | write_access = 0; |
| 1637 | } |
| 1638 | unlock_page(page); |
| 1639 | |
| 1640 | flush_icache_page(vma, page); |
| 1641 | set_pte_at(mm, address, page_table, pte); |
| 1642 | page_add_anon_rmap(page, vma, address); |
| 1643 | |
| 1644 | if (write_access) { |
| 1645 | if (do_wp_page(mm, vma, address, |
| 1646 | page_table, pmd, pte) == VM_FAULT_OOM) |
| 1647 | ret = VM_FAULT_OOM; |
| 1648 | goto out; |
| 1649 | } |
| 1650 | |
| 1651 | /* No need to invalidate - it was non-present before */ |
| 1652 | update_mmu_cache(vma, address, pte); |
| 1653 | lazy_mmu_prot_update(pte); |
| 1654 | pte_unmap(page_table); |
| 1655 | spin_unlock(&mm->page_table_lock); |
| 1656 | out: |
| 1657 | return ret; |
| 1658 | } |
| 1659 | |
| 1660 | /* |
| 1661 | * We are called with the MM semaphore and page_table_lock |
| 1662 | * spinlock held to protect against concurrent faults in |
| 1663 | * multithreaded programs. |
| 1664 | */ |
| 1665 | static int |
| 1666 | do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
| 1667 | pte_t *page_table, pmd_t *pmd, int write_access, |
| 1668 | unsigned long addr) |
| 1669 | { |
| 1670 | pte_t entry; |
| 1671 | struct page * page = ZERO_PAGE(addr); |
| 1672 | |
| 1673 | /* Read-only mapping of ZERO_PAGE. */ |
| 1674 | entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); |
| 1675 | |
| 1676 | /* ..except if it's a write access */ |
| 1677 | if (write_access) { |
| 1678 | /* Allocate our own private page. */ |
| 1679 | pte_unmap(page_table); |
| 1680 | spin_unlock(&mm->page_table_lock); |
| 1681 | |
| 1682 | if (unlikely(anon_vma_prepare(vma))) |
| 1683 | goto no_mem; |
| 1684 | page = alloc_zeroed_user_highpage(vma, addr); |
| 1685 | if (!page) |
| 1686 | goto no_mem; |
| 1687 | |
| 1688 | spin_lock(&mm->page_table_lock); |
| 1689 | page_table = pte_offset_map(pmd, addr); |
| 1690 | |
| 1691 | if (!pte_none(*page_table)) { |
| 1692 | pte_unmap(page_table); |
| 1693 | page_cache_release(page); |
| 1694 | spin_unlock(&mm->page_table_lock); |
| 1695 | goto out; |
| 1696 | } |
| 1697 | inc_mm_counter(mm, rss); |
| 1698 | entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, |
| 1699 | vma->vm_page_prot)), |
| 1700 | vma); |
| 1701 | lru_cache_add_active(page); |
| 1702 | SetPageReferenced(page); |
| 1703 | page_add_anon_rmap(page, vma, addr); |
| 1704 | } |
| 1705 | |
| 1706 | set_pte_at(mm, addr, page_table, entry); |
| 1707 | pte_unmap(page_table); |
| 1708 | |
| 1709 | /* No need to invalidate - it was non-present before */ |
| 1710 | update_mmu_cache(vma, addr, entry); |
| 1711 | lazy_mmu_prot_update(entry); |
| 1712 | spin_unlock(&mm->page_table_lock); |
| 1713 | out: |
| 1714 | return VM_FAULT_MINOR; |
| 1715 | no_mem: |
| 1716 | return VM_FAULT_OOM; |
| 1717 | } |
| 1718 | |
| 1719 | /* |
| 1720 | * do_no_page() tries to create a new page mapping. It aggressively |
| 1721 | * tries to share with existing pages, but makes a separate copy if |
| 1722 | * the "write_access" parameter is true in order to avoid the next |
| 1723 | * page fault. |
| 1724 | * |
| 1725 | * As this is called only for pages that do not currently exist, we |
| 1726 | * do not need to flush old virtual caches or the TLB. |
| 1727 | * |
| 1728 | * This is called with the MM semaphore held and the page table |
| 1729 | * spinlock held. Exit with the spinlock released. |
| 1730 | */ |
| 1731 | static int |
| 1732 | do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
| 1733 | unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) |
| 1734 | { |
| 1735 | struct page * new_page; |
| 1736 | struct address_space *mapping = NULL; |
| 1737 | pte_t entry; |
| 1738 | unsigned int sequence = 0; |
| 1739 | int ret = VM_FAULT_MINOR; |
| 1740 | int anon = 0; |
| 1741 | |
| 1742 | if (!vma->vm_ops || !vma->vm_ops->nopage) |
| 1743 | return do_anonymous_page(mm, vma, page_table, |
| 1744 | pmd, write_access, address); |
| 1745 | pte_unmap(page_table); |
| 1746 | spin_unlock(&mm->page_table_lock); |
| 1747 | |
| 1748 | if (vma->vm_file) { |
| 1749 | mapping = vma->vm_file->f_mapping; |
| 1750 | sequence = mapping->truncate_count; |
| 1751 | smp_rmb(); /* serializes i_size against truncate_count */ |
| 1752 | } |
| 1753 | retry: |
| 1754 | cond_resched(); |
| 1755 | new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); |
| 1756 | /* |
| 1757 | * No smp_rmb is needed here as long as there's a full |
| 1758 | * spin_lock/unlock sequence inside the ->nopage callback |
| 1759 | * (for the pagecache lookup) that acts as an implicit |
| 1760 | * smp_mb() and prevents the i_size read to happen |
| 1761 | * after the next truncate_count read. |
| 1762 | */ |
| 1763 | |
| 1764 | /* no page was available -- either SIGBUS or OOM */ |
| 1765 | if (new_page == NOPAGE_SIGBUS) |
| 1766 | return VM_FAULT_SIGBUS; |
| 1767 | if (new_page == NOPAGE_OOM) |
| 1768 | return VM_FAULT_OOM; |
| 1769 | |
| 1770 | /* |
| 1771 | * Should we do an early C-O-W break? |
| 1772 | */ |
| 1773 | if (write_access && !(vma->vm_flags & VM_SHARED)) { |
| 1774 | struct page *page; |
| 1775 | |
| 1776 | if (unlikely(anon_vma_prepare(vma))) |
| 1777 | goto oom; |
| 1778 | page = alloc_page_vma(GFP_HIGHUSER, vma, address); |
| 1779 | if (!page) |
| 1780 | goto oom; |
| 1781 | copy_user_highpage(page, new_page, address); |
| 1782 | page_cache_release(new_page); |
| 1783 | new_page = page; |
| 1784 | anon = 1; |
| 1785 | } |
| 1786 | |
| 1787 | spin_lock(&mm->page_table_lock); |
| 1788 | /* |
| 1789 | * For a file-backed vma, someone could have truncated or otherwise |
| 1790 | * invalidated this page. If unmap_mapping_range got called, |
| 1791 | * retry getting the page. |
| 1792 | */ |
| 1793 | if (mapping && unlikely(sequence != mapping->truncate_count)) { |
| 1794 | sequence = mapping->truncate_count; |
| 1795 | spin_unlock(&mm->page_table_lock); |
| 1796 | page_cache_release(new_page); |
| 1797 | goto retry; |
| 1798 | } |
| 1799 | page_table = pte_offset_map(pmd, address); |
| 1800 | |
| 1801 | /* |
| 1802 | * This silly early PAGE_DIRTY setting removes a race |
| 1803 | * due to the bad i386 page protection. But it's valid |
| 1804 | * for other architectures too. |
| 1805 | * |
| 1806 | * Note that if write_access is true, we either now have |
| 1807 | * an exclusive copy of the page, or this is a shared mapping, |
| 1808 | * so we can make it writable and dirty to avoid having to |
| 1809 | * handle that later. |
| 1810 | */ |
| 1811 | /* Only go through if we didn't race with anybody else... */ |
| 1812 | if (pte_none(*page_table)) { |
| 1813 | if (!PageReserved(new_page)) |
| 1814 | inc_mm_counter(mm, rss); |
| 1815 | |
| 1816 | flush_icache_page(vma, new_page); |
| 1817 | entry = mk_pte(new_page, vma->vm_page_prot); |
| 1818 | if (write_access) |
| 1819 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
| 1820 | set_pte_at(mm, address, page_table, entry); |
| 1821 | if (anon) { |
| 1822 | lru_cache_add_active(new_page); |
| 1823 | page_add_anon_rmap(new_page, vma, address); |
| 1824 | } else |
| 1825 | page_add_file_rmap(new_page); |
| 1826 | pte_unmap(page_table); |
| 1827 | } else { |
| 1828 | /* One of our sibling threads was faster, back out. */ |
| 1829 | pte_unmap(page_table); |
| 1830 | page_cache_release(new_page); |
| 1831 | spin_unlock(&mm->page_table_lock); |
| 1832 | goto out; |
| 1833 | } |
| 1834 | |
| 1835 | /* no need to invalidate: a not-present page shouldn't be cached */ |
| 1836 | update_mmu_cache(vma, address, entry); |
| 1837 | lazy_mmu_prot_update(entry); |
| 1838 | spin_unlock(&mm->page_table_lock); |
| 1839 | out: |
| 1840 | return ret; |
| 1841 | oom: |
| 1842 | page_cache_release(new_page); |
| 1843 | ret = VM_FAULT_OOM; |
| 1844 | goto out; |
| 1845 | } |
| 1846 | |
| 1847 | /* |
| 1848 | * Fault of a previously existing named mapping. Repopulate the pte |
| 1849 | * from the encoded file_pte if possible. This enables swappable |
| 1850 | * nonlinear vmas. |
| 1851 | */ |
| 1852 | static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, |
| 1853 | unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) |
| 1854 | { |
| 1855 | unsigned long pgoff; |
| 1856 | int err; |
| 1857 | |
| 1858 | BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); |
| 1859 | /* |
| 1860 | * Fall back to the linear mapping if the fs does not support |
| 1861 | * ->populate: |
| 1862 | */ |
| 1863 | if (!vma->vm_ops || !vma->vm_ops->populate || |
| 1864 | (write_access && !(vma->vm_flags & VM_SHARED))) { |
| 1865 | pte_clear(mm, address, pte); |
| 1866 | return do_no_page(mm, vma, address, write_access, pte, pmd); |
| 1867 | } |
| 1868 | |
| 1869 | pgoff = pte_to_pgoff(*pte); |
| 1870 | |
| 1871 | pte_unmap(pte); |
| 1872 | spin_unlock(&mm->page_table_lock); |
| 1873 | |
| 1874 | err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); |
| 1875 | if (err == -ENOMEM) |
| 1876 | return VM_FAULT_OOM; |
| 1877 | if (err) |
| 1878 | return VM_FAULT_SIGBUS; |
| 1879 | return VM_FAULT_MAJOR; |
| 1880 | } |
| 1881 | |
| 1882 | /* |
| 1883 | * These routines also need to handle stuff like marking pages dirty |
| 1884 | * and/or accessed for architectures that don't do it in hardware (most |
| 1885 | * RISC architectures). The early dirtying is also good on the i386. |
| 1886 | * |
| 1887 | * There is also a hook called "update_mmu_cache()" that architectures |
| 1888 | * with external mmu caches can use to update those (ie the Sparc or |
| 1889 | * PowerPC hashed page tables that act as extended TLBs). |
| 1890 | * |
| 1891 | * Note the "page_table_lock". It is to protect against kswapd removing |
| 1892 | * pages from under us. Note that kswapd only ever _removes_ pages, never |
| 1893 | * adds them. As such, once we have noticed that the page is not present, |
| 1894 | * we can drop the lock early. |
| 1895 | * |
| 1896 | * The adding of pages is protected by the MM semaphore (which we hold), |
| 1897 | * so we don't need to worry about a page being suddenly been added into |
| 1898 | * our VM. |
| 1899 | * |
| 1900 | * We enter with the pagetable spinlock held, we are supposed to |
| 1901 | * release it when done. |
| 1902 | */ |
| 1903 | static inline int handle_pte_fault(struct mm_struct *mm, |
| 1904 | struct vm_area_struct * vma, unsigned long address, |
| 1905 | int write_access, pte_t *pte, pmd_t *pmd) |
| 1906 | { |
| 1907 | pte_t entry; |
| 1908 | |
| 1909 | entry = *pte; |
| 1910 | if (!pte_present(entry)) { |
| 1911 | /* |
| 1912 | * If it truly wasn't present, we know that kswapd |
| 1913 | * and the PTE updates will not touch it later. So |
| 1914 | * drop the lock. |
| 1915 | */ |
| 1916 | if (pte_none(entry)) |
| 1917 | return do_no_page(mm, vma, address, write_access, pte, pmd); |
| 1918 | if (pte_file(entry)) |
| 1919 | return do_file_page(mm, vma, address, write_access, pte, pmd); |
| 1920 | return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); |
| 1921 | } |
| 1922 | |
| 1923 | if (write_access) { |
| 1924 | if (!pte_write(entry)) |
| 1925 | return do_wp_page(mm, vma, address, pte, pmd, entry); |
| 1926 | |
| 1927 | entry = pte_mkdirty(entry); |
| 1928 | } |
| 1929 | entry = pte_mkyoung(entry); |
| 1930 | ptep_set_access_flags(vma, address, pte, entry, write_access); |
| 1931 | update_mmu_cache(vma, address, entry); |
| 1932 | lazy_mmu_prot_update(entry); |
| 1933 | pte_unmap(pte); |
| 1934 | spin_unlock(&mm->page_table_lock); |
| 1935 | return VM_FAULT_MINOR; |
| 1936 | } |
| 1937 | |
| 1938 | /* |
| 1939 | * By the time we get here, we already hold the mm semaphore |
| 1940 | */ |
| 1941 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, |
| 1942 | unsigned long address, int write_access) |
| 1943 | { |
| 1944 | pgd_t *pgd; |
| 1945 | pud_t *pud; |
| 1946 | pmd_t *pmd; |
| 1947 | pte_t *pte; |
| 1948 | |
| 1949 | __set_current_state(TASK_RUNNING); |
| 1950 | |
| 1951 | inc_page_state(pgfault); |
| 1952 | |
| 1953 | if (is_vm_hugetlb_page(vma)) |
| 1954 | return VM_FAULT_SIGBUS; /* mapping truncation does this. */ |
| 1955 | |
| 1956 | /* |
| 1957 | * We need the page table lock to synchronize with kswapd |
| 1958 | * and the SMP-safe atomic PTE updates. |
| 1959 | */ |
| 1960 | pgd = pgd_offset(mm, address); |
| 1961 | spin_lock(&mm->page_table_lock); |
| 1962 | |
| 1963 | pud = pud_alloc(mm, pgd, address); |
| 1964 | if (!pud) |
| 1965 | goto oom; |
| 1966 | |
| 1967 | pmd = pmd_alloc(mm, pud, address); |
| 1968 | if (!pmd) |
| 1969 | goto oom; |
| 1970 | |
| 1971 | pte = pte_alloc_map(mm, pmd, address); |
| 1972 | if (!pte) |
| 1973 | goto oom; |
| 1974 | |
| 1975 | return handle_pte_fault(mm, vma, address, write_access, pte, pmd); |
| 1976 | |
| 1977 | oom: |
| 1978 | spin_unlock(&mm->page_table_lock); |
| 1979 | return VM_FAULT_OOM; |
| 1980 | } |
| 1981 | |
| 1982 | #ifndef __PAGETABLE_PUD_FOLDED |
| 1983 | /* |
| 1984 | * Allocate page upper directory. |
| 1985 | * |
| 1986 | * We've already handled the fast-path in-line, and we own the |
| 1987 | * page table lock. |
| 1988 | */ |
| 1989 | pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
| 1990 | { |
| 1991 | pud_t *new; |
| 1992 | |
| 1993 | spin_unlock(&mm->page_table_lock); |
| 1994 | new = pud_alloc_one(mm, address); |
| 1995 | spin_lock(&mm->page_table_lock); |
| 1996 | if (!new) |
| 1997 | return NULL; |
| 1998 | |
| 1999 | /* |
| 2000 | * Because we dropped the lock, we should re-check the |
| 2001 | * entry, as somebody else could have populated it.. |
| 2002 | */ |
| 2003 | if (pgd_present(*pgd)) { |
| 2004 | pud_free(new); |
| 2005 | goto out; |
| 2006 | } |
| 2007 | pgd_populate(mm, pgd, new); |
| 2008 | out: |
| 2009 | return pud_offset(pgd, address); |
| 2010 | } |
| 2011 | #endif /* __PAGETABLE_PUD_FOLDED */ |
| 2012 | |
| 2013 | #ifndef __PAGETABLE_PMD_FOLDED |
| 2014 | /* |
| 2015 | * Allocate page middle directory. |
| 2016 | * |
| 2017 | * We've already handled the fast-path in-line, and we own the |
| 2018 | * page table lock. |
| 2019 | */ |
| 2020 | pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
| 2021 | { |
| 2022 | pmd_t *new; |
| 2023 | |
| 2024 | spin_unlock(&mm->page_table_lock); |
| 2025 | new = pmd_alloc_one(mm, address); |
| 2026 | spin_lock(&mm->page_table_lock); |
| 2027 | if (!new) |
| 2028 | return NULL; |
| 2029 | |
| 2030 | /* |
| 2031 | * Because we dropped the lock, we should re-check the |
| 2032 | * entry, as somebody else could have populated it.. |
| 2033 | */ |
| 2034 | #ifndef __ARCH_HAS_4LEVEL_HACK |
| 2035 | if (pud_present(*pud)) { |
| 2036 | pmd_free(new); |
| 2037 | goto out; |
| 2038 | } |
| 2039 | pud_populate(mm, pud, new); |
| 2040 | #else |
| 2041 | if (pgd_present(*pud)) { |
| 2042 | pmd_free(new); |
| 2043 | goto out; |
| 2044 | } |
| 2045 | pgd_populate(mm, pud, new); |
| 2046 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
| 2047 | |
| 2048 | out: |
| 2049 | return pmd_offset(pud, address); |
| 2050 | } |
| 2051 | #endif /* __PAGETABLE_PMD_FOLDED */ |
| 2052 | |
| 2053 | int make_pages_present(unsigned long addr, unsigned long end) |
| 2054 | { |
| 2055 | int ret, len, write; |
| 2056 | struct vm_area_struct * vma; |
| 2057 | |
| 2058 | vma = find_vma(current->mm, addr); |
| 2059 | if (!vma) |
| 2060 | return -1; |
| 2061 | write = (vma->vm_flags & VM_WRITE) != 0; |
| 2062 | if (addr >= end) |
| 2063 | BUG(); |
| 2064 | if (end > vma->vm_end) |
| 2065 | BUG(); |
| 2066 | len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; |
| 2067 | ret = get_user_pages(current, current->mm, addr, |
| 2068 | len, write, 0, NULL, NULL); |
| 2069 | if (ret < 0) |
| 2070 | return ret; |
| 2071 | return ret == len ? 0 : -1; |
| 2072 | } |
| 2073 | |
| 2074 | /* |
| 2075 | * Map a vmalloc()-space virtual address to the physical page. |
| 2076 | */ |
| 2077 | struct page * vmalloc_to_page(void * vmalloc_addr) |
| 2078 | { |
| 2079 | unsigned long addr = (unsigned long) vmalloc_addr; |
| 2080 | struct page *page = NULL; |
| 2081 | pgd_t *pgd = pgd_offset_k(addr); |
| 2082 | pud_t *pud; |
| 2083 | pmd_t *pmd; |
| 2084 | pte_t *ptep, pte; |
| 2085 | |
| 2086 | if (!pgd_none(*pgd)) { |
| 2087 | pud = pud_offset(pgd, addr); |
| 2088 | if (!pud_none(*pud)) { |
| 2089 | pmd = pmd_offset(pud, addr); |
| 2090 | if (!pmd_none(*pmd)) { |
| 2091 | ptep = pte_offset_map(pmd, addr); |
| 2092 | pte = *ptep; |
| 2093 | if (pte_present(pte)) |
| 2094 | page = pte_page(pte); |
| 2095 | pte_unmap(ptep); |
| 2096 | } |
| 2097 | } |
| 2098 | } |
| 2099 | return page; |
| 2100 | } |
| 2101 | |
| 2102 | EXPORT_SYMBOL(vmalloc_to_page); |
| 2103 | |
| 2104 | /* |
| 2105 | * Map a vmalloc()-space virtual address to the physical page frame number. |
| 2106 | */ |
| 2107 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) |
| 2108 | { |
| 2109 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
| 2110 | } |
| 2111 | |
| 2112 | EXPORT_SYMBOL(vmalloc_to_pfn); |
| 2113 | |
| 2114 | /* |
| 2115 | * update_mem_hiwater |
| 2116 | * - update per process rss and vm high water data |
| 2117 | */ |
| 2118 | void update_mem_hiwater(struct task_struct *tsk) |
| 2119 | { |
| 2120 | if (tsk->mm) { |
| 2121 | unsigned long rss = get_mm_counter(tsk->mm, rss); |
| 2122 | |
| 2123 | if (tsk->mm->hiwater_rss < rss) |
| 2124 | tsk->mm->hiwater_rss = rss; |
| 2125 | if (tsk->mm->hiwater_vm < tsk->mm->total_vm) |
| 2126 | tsk->mm->hiwater_vm = tsk->mm->total_vm; |
| 2127 | } |
| 2128 | } |
| 2129 | |
| 2130 | #if !defined(__HAVE_ARCH_GATE_AREA) |
| 2131 | |
| 2132 | #if defined(AT_SYSINFO_EHDR) |
| 2133 | struct vm_area_struct gate_vma; |
| 2134 | |
| 2135 | static int __init gate_vma_init(void) |
| 2136 | { |
| 2137 | gate_vma.vm_mm = NULL; |
| 2138 | gate_vma.vm_start = FIXADDR_USER_START; |
| 2139 | gate_vma.vm_end = FIXADDR_USER_END; |
| 2140 | gate_vma.vm_page_prot = PAGE_READONLY; |
| 2141 | gate_vma.vm_flags = 0; |
| 2142 | return 0; |
| 2143 | } |
| 2144 | __initcall(gate_vma_init); |
| 2145 | #endif |
| 2146 | |
| 2147 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) |
| 2148 | { |
| 2149 | #ifdef AT_SYSINFO_EHDR |
| 2150 | return &gate_vma; |
| 2151 | #else |
| 2152 | return NULL; |
| 2153 | #endif |
| 2154 | } |
| 2155 | |
| 2156 | int in_gate_area_no_task(unsigned long addr) |
| 2157 | { |
| 2158 | #ifdef AT_SYSINFO_EHDR |
| 2159 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) |
| 2160 | return 1; |
| 2161 | #endif |
| 2162 | return 0; |
| 2163 | } |
| 2164 | |
| 2165 | #endif /* __HAVE_ARCH_GATE_AREA */ |