blob: df987a53ed9cf918c5c8d318e0dc8b1267f2a96e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001
2/*
3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4 *
5 * $Id: lart.c,v 1.7 2004/08/09 13:19:44 dwmw2 Exp $
6 *
7 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
8 *
9 * Copyright (c) 2001, 2d3D, Inc.
10 *
11 * This code is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * References:
16 *
17 * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
18 * - Order Number: 290644-005
19 * - January 2000
20 *
21 * [2] MTD internal API documentation
22 * - http://www.linux-mtd.infradead.org/tech/
23 *
24 * Limitations:
25 *
26 * Even though this driver is written for 3 Volt Fast Boot
27 * Block Flash Memory, it is rather specific to LART. With
28 * Minor modifications, notably the without data/address line
29 * mangling and different bus settings, etc. it should be
30 * trivial to adapt to other platforms.
31 *
32 * If somebody would sponsor me a different board, I'll
33 * adapt the driver (:
34 */
35
36/* debugging */
37//#define LART_DEBUG
38
39/* partition support */
40#define HAVE_PARTITIONS
41
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/types.h>
45#include <linux/init.h>
46#include <linux/errno.h>
Tim Schmielau4e57b682005-10-30 15:03:48 -080047#include <linux/string.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070048#include <linux/mtd/mtd.h>
49#ifdef HAVE_PARTITIONS
50#include <linux/mtd/partitions.h>
51#endif
52
53#ifndef CONFIG_SA1100_LART
54#error This is for LART architecture only
55#endif
56
57static char module_name[] = "lart";
58
59/*
60 * These values is specific to 28Fxxxx3 flash memory.
61 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
62 */
63#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
64#define FLASH_NUMBLOCKS_16m_PARAM 8
65#define FLASH_NUMBLOCKS_8m_PARAM 8
66
67/*
68 * These values is specific to 28Fxxxx3 flash memory.
69 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
70 */
71#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
72#define FLASH_NUMBLOCKS_16m_MAIN 31
73#define FLASH_NUMBLOCKS_8m_MAIN 15
74
75/*
76 * These values are specific to LART
77 */
78
79/* general */
80#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
81#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
82
83/* blob */
84#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
85#define BLOB_START 0x00000000
86#define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
87
88/* kernel */
89#define NUM_KERNEL_BLOCKS 7
90#define KERNEL_START (BLOB_START + BLOB_LEN)
91#define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
92
93/* initial ramdisk */
94#define NUM_INITRD_BLOCKS 24
95#define INITRD_START (KERNEL_START + KERNEL_LEN)
96#define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
97
98/*
99 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
100 */
101#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
102#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
103#define ERASE_SETUP 0x00200020 /* Block Erase */
104#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
105#define PGM_SETUP 0x00400040 /* Program */
106#define STATUS_READ 0x00700070 /* Read Status Register */
107#define STATUS_CLEAR 0x00500050 /* Clear Status Register */
108#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
109#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
110#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
111
112/*
113 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
114 */
115#define FLASH_MANUFACTURER 0x00890089
116#define FLASH_DEVICE_8mbit_TOP 0x88f188f1
117#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
118#define FLASH_DEVICE_16mbit_TOP 0x88f388f3
119#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
120
121/***************************************************************************************************/
122
123/*
124 * The data line mapping on LART is as follows:
125 *
126 * U2 CPU | U3 CPU
127 * -------------------
128 * 0 20 | 0 12
129 * 1 22 | 1 14
130 * 2 19 | 2 11
131 * 3 17 | 3 9
132 * 4 24 | 4 0
133 * 5 26 | 5 2
134 * 6 31 | 6 7
135 * 7 29 | 7 5
136 * 8 21 | 8 13
137 * 9 23 | 9 15
138 * 10 18 | 10 10
139 * 11 16 | 11 8
140 * 12 25 | 12 1
141 * 13 27 | 13 3
142 * 14 30 | 14 6
143 * 15 28 | 15 4
144 */
145
146/* Mangle data (x) */
147#define DATA_TO_FLASH(x) \
148 ( \
149 (((x) & 0x08009000) >> 11) + \
150 (((x) & 0x00002000) >> 10) + \
151 (((x) & 0x04004000) >> 8) + \
152 (((x) & 0x00000010) >> 4) + \
153 (((x) & 0x91000820) >> 3) + \
154 (((x) & 0x22080080) >> 2) + \
155 ((x) & 0x40000400) + \
156 (((x) & 0x00040040) << 1) + \
157 (((x) & 0x00110000) << 4) + \
158 (((x) & 0x00220100) << 5) + \
159 (((x) & 0x00800208) << 6) + \
160 (((x) & 0x00400004) << 9) + \
161 (((x) & 0x00000001) << 12) + \
162 (((x) & 0x00000002) << 13) \
163 )
164
165/* Unmangle data (x) */
166#define FLASH_TO_DATA(x) \
167 ( \
168 (((x) & 0x00010012) << 11) + \
169 (((x) & 0x00000008) << 10) + \
170 (((x) & 0x00040040) << 8) + \
171 (((x) & 0x00000001) << 4) + \
172 (((x) & 0x12200104) << 3) + \
173 (((x) & 0x08820020) << 2) + \
174 ((x) & 0x40000400) + \
175 (((x) & 0x00080080) >> 1) + \
176 (((x) & 0x01100000) >> 4) + \
177 (((x) & 0x04402000) >> 5) + \
178 (((x) & 0x20008200) >> 6) + \
179 (((x) & 0x80000800) >> 9) + \
180 (((x) & 0x00001000) >> 12) + \
181 (((x) & 0x00004000) >> 13) \
182 )
183
184/*
185 * The address line mapping on LART is as follows:
186 *
187 * U3 CPU | U2 CPU
188 * -------------------
189 * 0 2 | 0 2
190 * 1 3 | 1 3
191 * 2 9 | 2 9
192 * 3 13 | 3 8
193 * 4 8 | 4 7
194 * 5 12 | 5 6
195 * 6 11 | 6 5
196 * 7 10 | 7 4
197 * 8 4 | 8 10
198 * 9 5 | 9 11
199 * 10 6 | 10 12
200 * 11 7 | 11 13
201 *
202 * BOOT BLOCK BOUNDARY
203 *
204 * 12 15 | 12 15
205 * 13 14 | 13 14
206 * 14 16 | 14 16
207 *
208 * MAIN BLOCK BOUNDARY
209 *
210 * 15 17 | 15 18
211 * 16 18 | 16 17
212 * 17 20 | 17 20
213 * 18 19 | 18 19
214 * 19 21 | 19 21
215 *
216 * As we can see from above, the addresses aren't mangled across
217 * block boundaries, so we don't need to worry about address
218 * translations except for sending/reading commands during
219 * initialization
220 */
221
222/* Mangle address (x) on chip U2 */
223#define ADDR_TO_FLASH_U2(x) \
224 ( \
225 (((x) & 0x00000f00) >> 4) + \
226 (((x) & 0x00042000) << 1) + \
227 (((x) & 0x0009c003) << 2) + \
228 (((x) & 0x00021080) << 3) + \
229 (((x) & 0x00000010) << 4) + \
230 (((x) & 0x00000040) << 5) + \
231 (((x) & 0x00000024) << 7) + \
232 (((x) & 0x00000008) << 10) \
233 )
234
235/* Unmangle address (x) on chip U2 */
236#define FLASH_U2_TO_ADDR(x) \
237 ( \
238 (((x) << 4) & 0x00000f00) + \
239 (((x) >> 1) & 0x00042000) + \
240 (((x) >> 2) & 0x0009c003) + \
241 (((x) >> 3) & 0x00021080) + \
242 (((x) >> 4) & 0x00000010) + \
243 (((x) >> 5) & 0x00000040) + \
244 (((x) >> 7) & 0x00000024) + \
245 (((x) >> 10) & 0x00000008) \
246 )
247
248/* Mangle address (x) on chip U3 */
249#define ADDR_TO_FLASH_U3(x) \
250 ( \
251 (((x) & 0x00000080) >> 3) + \
252 (((x) & 0x00000040) >> 1) + \
253 (((x) & 0x00052020) << 1) + \
254 (((x) & 0x00084f03) << 2) + \
255 (((x) & 0x00029010) << 3) + \
256 (((x) & 0x00000008) << 5) + \
257 (((x) & 0x00000004) << 7) \
258 )
259
260/* Unmangle address (x) on chip U3 */
261#define FLASH_U3_TO_ADDR(x) \
262 ( \
263 (((x) << 3) & 0x00000080) + \
264 (((x) << 1) & 0x00000040) + \
265 (((x) >> 1) & 0x00052020) + \
266 (((x) >> 2) & 0x00084f03) + \
267 (((x) >> 3) & 0x00029010) + \
268 (((x) >> 5) & 0x00000008) + \
269 (((x) >> 7) & 0x00000004) \
270 )
271
272/***************************************************************************************************/
273
274static __u8 read8 (__u32 offset)
275{
276 volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
277#ifdef LART_DEBUG
278 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n",__FUNCTION__,offset,*data);
279#endif
280 return (*data);
281}
282
283static __u32 read32 (__u32 offset)
284{
285 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
286#ifdef LART_DEBUG
287 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n",__FUNCTION__,offset,*data);
288#endif
289 return (*data);
290}
291
292static void write32 (__u32 x,__u32 offset)
293{
294 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
295 *data = x;
296#ifdef LART_DEBUG
297 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,*data);
298#endif
299}
300
301/***************************************************************************************************/
302
303/*
304 * Probe for 16mbit flash memory on a LART board without doing
305 * too much damage. Since we need to write 1 dword to memory,
306 * we're f**cked if this happens to be DRAM since we can't
307 * restore the memory (otherwise we might exit Read Array mode).
308 *
309 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
310 */
311static int flash_probe (void)
312{
313 __u32 manufacturer,devtype;
314
315 /* setup "Read Identifier Codes" mode */
316 write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
317
318 /* probe U2. U2/U3 returns the same data since the first 3
319 * address lines is mangled in the same way */
320 manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
321 devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
322
323 /* put the flash back into command mode */
324 write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
325
326 return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || FLASH_DEVICE_16mbit_BOTTOM));
327}
328
329/*
330 * Erase one block of flash memory at offset ``offset'' which is any
331 * address within the block which should be erased.
332 *
333 * Returns 1 if successful, 0 otherwise.
334 */
335static inline int erase_block (__u32 offset)
336{
337 __u32 status;
338
339#ifdef LART_DEBUG
340 printk (KERN_DEBUG "%s(): 0x%.8x\n",__FUNCTION__,offset);
341#endif
342
343 /* erase and confirm */
344 write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
345 write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
346
347 /* wait for block erase to finish */
348 do
349 {
350 write32 (DATA_TO_FLASH (STATUS_READ),offset);
351 status = FLASH_TO_DATA (read32 (offset));
352 }
353 while ((~status & STATUS_BUSY) != 0);
354
355 /* put the flash back into command mode */
356 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
357
358 /* was the erase successfull? */
359 if ((status & STATUS_ERASE_ERR))
360 {
361 printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
362 return (0);
363 }
364
365 return (1);
366}
367
368static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
369{
370 __u32 addr,len;
371 int i,first;
372
373#ifdef LART_DEBUG
374 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
375#endif
376
377 /* sanity checks */
378 if (instr->addr + instr->len > mtd->size) return (-EINVAL);
379
380 /*
381 * check that both start and end of the requested erase are
382 * aligned with the erasesize at the appropriate addresses.
383 *
384 * skip all erase regions which are ended before the start of
385 * the requested erase. Actually, to save on the calculations,
386 * we skip to the first erase region which starts after the
387 * start of the requested erase, and then go back one.
388 */
389 for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
390 i--;
391
392 /*
393 * ok, now i is pointing at the erase region in which this
394 * erase request starts. Check the start of the requested
395 * erase range is aligned with the erase size which is in
396 * effect here.
397 */
398 if (instr->addr & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
399
400 /* Remember the erase region we start on */
401 first = i;
402
403 /*
404 * next, check that the end of the requested erase is aligned
405 * with the erase region at that address.
406 *
407 * as before, drop back one to point at the region in which
408 * the address actually falls
409 */
410 for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
411 i--;
412
413 /* is the end aligned on a block boundary? */
414 if ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
415
416 addr = instr->addr;
417 len = instr->len;
418
419 i = first;
420
421 /* now erase those blocks */
422 while (len)
423 {
424 if (!erase_block (addr))
425 {
426 instr->state = MTD_ERASE_FAILED;
427 return (-EIO);
428 }
429
430 addr += mtd->eraseregions[i].erasesize;
431 len -= mtd->eraseregions[i].erasesize;
432
433 if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
434 }
435
436 instr->state = MTD_ERASE_DONE;
437 mtd_erase_callback(instr);
438
439 return (0);
440}
441
442static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
443{
444#ifdef LART_DEBUG
445 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,len);
446#endif
447
448 /* sanity checks */
449 if (!len) return (0);
450 if (from + len > mtd->size) return (-EINVAL);
451
452 /* we always read len bytes */
453 *retlen = len;
454
455 /* first, we read bytes until we reach a dword boundary */
456 if (from & (BUSWIDTH - 1))
457 {
458 int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
459
460 while (len && gap--) *buf++ = read8 (from++), len--;
461 }
462
463 /* now we read dwords until we reach a non-dword boundary */
464 while (len >= BUSWIDTH)
465 {
466 *((__u32 *) buf) = read32 (from);
467
468 buf += BUSWIDTH;
469 from += BUSWIDTH;
470 len -= BUSWIDTH;
471 }
472
473 /* top up the last unaligned bytes */
474 if (len & (BUSWIDTH - 1))
475 while (len--) *buf++ = read8 (from++);
476
477 return (0);
478}
479
480/*
481 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
482 * must be 32 bits, i.e. it must be on a dword boundary.
483 *
484 * Returns 1 if successful, 0 otherwise.
485 */
486static inline int write_dword (__u32 offset,__u32 x)
487{
488 __u32 status;
489
490#ifdef LART_DEBUG
491 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,x);
492#endif
493
494 /* setup writing */
495 write32 (DATA_TO_FLASH (PGM_SETUP),offset);
496
497 /* write the data */
498 write32 (x,offset);
499
500 /* wait for the write to finish */
501 do
502 {
503 write32 (DATA_TO_FLASH (STATUS_READ),offset);
504 status = FLASH_TO_DATA (read32 (offset));
505 }
506 while ((~status & STATUS_BUSY) != 0);
507
508 /* put the flash back into command mode */
509 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
510
511 /* was the write successfull? */
512 if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
513 {
514 printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
515 return (0);
516 }
517
518 return (1);
519}
520
521static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
522{
523 __u8 tmp[4];
524 int i,n;
525
526#ifdef LART_DEBUG
527 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
528#endif
529
530 *retlen = 0;
531
532 /* sanity checks */
533 if (!len) return (0);
534 if (to + len > mtd->size) return (-EINVAL);
535
536 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
537 if (to & (BUSWIDTH - 1))
538 {
539 __u32 aligned = to & ~(BUSWIDTH - 1);
540 int gap = to - aligned;
541
542 i = n = 0;
543
544 while (gap--) tmp[i++] = 0xFF;
545 while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
546 while (i < BUSWIDTH) tmp[i++] = 0xFF;
547
548 if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
549
550 to += n;
551 buf += n;
552 *retlen += n;
553 }
554
555 /* now we write dwords until we reach a non-dword boundary */
556 while (len >= BUSWIDTH)
557 {
558 if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
559
560 to += BUSWIDTH;
561 buf += BUSWIDTH;
562 *retlen += BUSWIDTH;
563 len -= BUSWIDTH;
564 }
565
566 /* top up the last unaligned bytes, padded with 0xFF.... */
567 if (len & (BUSWIDTH - 1))
568 {
569 i = n = 0;
570
571 while (len--) tmp[i++] = buf[n++];
572 while (i < BUSWIDTH) tmp[i++] = 0xFF;
573
574 if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
575
576 *retlen += n;
577 }
578
579 return (0);
580}
581
582/***************************************************************************************************/
583
584#define NB_OF(x) (sizeof (x) / sizeof (x[0]))
585
586static struct mtd_info mtd;
587
588static struct mtd_erase_region_info erase_regions[] = {
589 /* parameter blocks */
590 {
591 .offset = 0x00000000,
592 .erasesize = FLASH_BLOCKSIZE_PARAM,
593 .numblocks = FLASH_NUMBLOCKS_16m_PARAM,
594 },
595 /* main blocks */
596 {
597 .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
598 .erasesize = FLASH_BLOCKSIZE_MAIN,
599 .numblocks = FLASH_NUMBLOCKS_16m_MAIN,
600 }
601};
602
603#ifdef HAVE_PARTITIONS
604static struct mtd_partition lart_partitions[] = {
605 /* blob */
606 {
607 .name = "blob",
608 .offset = BLOB_START,
609 .size = BLOB_LEN,
610 },
611 /* kernel */
612 {
613 .name = "kernel",
614 .offset = KERNEL_START, /* MTDPART_OFS_APPEND */
615 .size = KERNEL_LEN,
616 },
617 /* initial ramdisk / file system */
618 {
619 .name = "file system",
620 .offset = INITRD_START, /* MTDPART_OFS_APPEND */
621 .size = INITRD_LEN, /* MTDPART_SIZ_FULL */
622 }
623};
624#endif
625
626int __init lart_flash_init (void)
627{
628 int result;
629 memset (&mtd,0,sizeof (mtd));
630 printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
631 printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
632 if (!flash_probe ())
633 {
634 printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
635 return (-ENXIO);
636 }
637 printk ("%s: This looks like a LART board to me.\n",module_name);
638 mtd.name = module_name;
639 mtd.type = MTD_NORFLASH;
640 mtd.flags = MTD_CAP_NORFLASH;
641 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
642 mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
643 mtd.numeraseregions = NB_OF (erase_regions);
644 mtd.eraseregions = erase_regions;
645 mtd.erase = flash_erase;
646 mtd.read = flash_read;
647 mtd.write = flash_write;
648 mtd.owner = THIS_MODULE;
649
650#ifdef LART_DEBUG
651 printk (KERN_DEBUG
652 "mtd.name = %s\n"
653 "mtd.size = 0x%.8x (%uM)\n"
654 "mtd.erasesize = 0x%.8x (%uK)\n"
655 "mtd.numeraseregions = %d\n",
656 mtd.name,
657 mtd.size,mtd.size / (1024*1024),
658 mtd.erasesize,mtd.erasesize / 1024,
659 mtd.numeraseregions);
660
661 if (mtd.numeraseregions)
662 for (result = 0; result < mtd.numeraseregions; result++)
663 printk (KERN_DEBUG
664 "\n\n"
665 "mtd.eraseregions[%d].offset = 0x%.8x\n"
666 "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
667 "mtd.eraseregions[%d].numblocks = %d\n",
668 result,mtd.eraseregions[result].offset,
669 result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
670 result,mtd.eraseregions[result].numblocks);
671
672#ifdef HAVE_PARTITIONS
673 printk ("\npartitions = %d\n",NB_OF (lart_partitions));
674
675 for (result = 0; result < NB_OF (lart_partitions); result++)
676 printk (KERN_DEBUG
677 "\n\n"
678 "lart_partitions[%d].name = %s\n"
679 "lart_partitions[%d].offset = 0x%.8x\n"
680 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
681 result,lart_partitions[result].name,
682 result,lart_partitions[result].offset,
683 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
684#endif
685#endif
686
687#ifndef HAVE_PARTITIONS
688 result = add_mtd_device (&mtd);
689#else
690 result = add_mtd_partitions (&mtd,lart_partitions,NB_OF (lart_partitions));
691#endif
692
693 return (result);
694}
695
696void __exit lart_flash_exit (void)
697{
698#ifndef HAVE_PARTITIONS
699 del_mtd_device (&mtd);
700#else
701 del_mtd_partitions (&mtd);
702#endif
703}
704
705module_init (lart_flash_init);
706module_exit (lart_flash_exit);
707
708MODULE_LICENSE("GPL");
709MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
710MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
711
712