Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #define DEBG(x) |
| 2 | #define DEBG1(x) |
| 3 | /* inflate.c -- Not copyrighted 1992 by Mark Adler |
| 4 | version c10p1, 10 January 1993 */ |
| 5 | |
| 6 | /* |
| 7 | * Adapted for booting Linux by Hannu Savolainen 1993 |
| 8 | * based on gzip-1.0.3 |
| 9 | * |
| 10 | * Nicolas Pitre <nico@cam.org>, 1999/04/14 : |
| 11 | * Little mods for all variable to reside either into rodata or bss segments |
| 12 | * by marking constant variables with 'const' and initializing all the others |
| 13 | * at run-time only. This allows for the kernel uncompressor to run |
| 14 | * directly from Flash or ROM memory on embedded systems. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | Inflate deflated (PKZIP's method 8 compressed) data. The compression |
| 19 | method searches for as much of the current string of bytes (up to a |
| 20 | length of 258) in the previous 32 K bytes. If it doesn't find any |
| 21 | matches (of at least length 3), it codes the next byte. Otherwise, it |
| 22 | codes the length of the matched string and its distance backwards from |
| 23 | the current position. There is a single Huffman code that codes both |
| 24 | single bytes (called "literals") and match lengths. A second Huffman |
| 25 | code codes the distance information, which follows a length code. Each |
| 26 | length or distance code actually represents a base value and a number |
| 27 | of "extra" (sometimes zero) bits to get to add to the base value. At |
| 28 | the end of each deflated block is a special end-of-block (EOB) literal/ |
| 29 | length code. The decoding process is basically: get a literal/length |
| 30 | code; if EOB then done; if a literal, emit the decoded byte; if a |
| 31 | length then get the distance and emit the referred-to bytes from the |
| 32 | sliding window of previously emitted data. |
| 33 | |
| 34 | There are (currently) three kinds of inflate blocks: stored, fixed, and |
| 35 | dynamic. The compressor deals with some chunk of data at a time, and |
| 36 | decides which method to use on a chunk-by-chunk basis. A chunk might |
| 37 | typically be 32 K or 64 K. If the chunk is incompressible, then the |
| 38 | "stored" method is used. In this case, the bytes are simply stored as |
| 39 | is, eight bits per byte, with none of the above coding. The bytes are |
| 40 | preceded by a count, since there is no longer an EOB code. |
| 41 | |
| 42 | If the data is compressible, then either the fixed or dynamic methods |
| 43 | are used. In the dynamic method, the compressed data is preceded by |
| 44 | an encoding of the literal/length and distance Huffman codes that are |
| 45 | to be used to decode this block. The representation is itself Huffman |
| 46 | coded, and so is preceded by a description of that code. These code |
| 47 | descriptions take up a little space, and so for small blocks, there is |
| 48 | a predefined set of codes, called the fixed codes. The fixed method is |
| 49 | used if the block codes up smaller that way (usually for quite small |
| 50 | chunks), otherwise the dynamic method is used. In the latter case, the |
| 51 | codes are customized to the probabilities in the current block, and so |
| 52 | can code it much better than the pre-determined fixed codes. |
| 53 | |
| 54 | The Huffman codes themselves are decoded using a multi-level table |
| 55 | lookup, in order to maximize the speed of decoding plus the speed of |
| 56 | building the decoding tables. See the comments below that precede the |
| 57 | lbits and dbits tuning parameters. |
| 58 | */ |
| 59 | |
| 60 | |
| 61 | /* |
| 62 | Notes beyond the 1.93a appnote.txt: |
| 63 | |
| 64 | 1. Distance pointers never point before the beginning of the output |
| 65 | stream. |
| 66 | 2. Distance pointers can point back across blocks, up to 32k away. |
| 67 | 3. There is an implied maximum of 7 bits for the bit length table and |
| 68 | 15 bits for the actual data. |
| 69 | 4. If only one code exists, then it is encoded using one bit. (Zero |
| 70 | would be more efficient, but perhaps a little confusing.) If two |
| 71 | codes exist, they are coded using one bit each (0 and 1). |
| 72 | 5. There is no way of sending zero distance codes--a dummy must be |
| 73 | sent if there are none. (History: a pre 2.0 version of PKZIP would |
| 74 | store blocks with no distance codes, but this was discovered to be |
| 75 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
| 76 | zero distance codes, which is sent as one code of zero bits in |
| 77 | length. |
| 78 | 6. There are up to 286 literal/length codes. Code 256 represents the |
| 79 | end-of-block. Note however that the static length tree defines |
| 80 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 |
| 81 | cannot be used though, since there is no length base or extra bits |
| 82 | defined for them. Similarly, there are up to 30 distance codes. |
| 83 | However, static trees define 32 codes (all 5 bits) to fill out the |
| 84 | Huffman codes, but the last two had better not show up in the data. |
| 85 | 7. Unzip can check dynamic Huffman blocks for complete code sets. |
| 86 | The exception is that a single code would not be complete (see #4). |
| 87 | 8. The five bits following the block type is really the number of |
| 88 | literal codes sent minus 257. |
| 89 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
| 90 | (1+6+6). Therefore, to output three times the length, you output |
| 91 | three codes (1+1+1), whereas to output four times the same length, |
| 92 | you only need two codes (1+3). Hmm. |
| 93 | 10. In the tree reconstruction algorithm, Code = Code + Increment |
| 94 | only if BitLength(i) is not zero. (Pretty obvious.) |
| 95 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
| 96 | 12. Note: length code 284 can represent 227-258, but length code 285 |
| 97 | really is 258. The last length deserves its own, short code |
| 98 | since it gets used a lot in very redundant files. The length |
| 99 | 258 is special since 258 - 3 (the min match length) is 255. |
| 100 | 13. The literal/length and distance code bit lengths are read as a |
| 101 | single stream of lengths. It is possible (and advantageous) for |
| 102 | a repeat code (16, 17, or 18) to go across the boundary between |
| 103 | the two sets of lengths. |
| 104 | */ |
| 105 | #include <linux/compiler.h> |
| 106 | |
| 107 | #ifdef RCSID |
| 108 | static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; |
| 109 | #endif |
| 110 | |
| 111 | #ifndef STATIC |
| 112 | |
| 113 | #if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H) |
| 114 | # include <sys/types.h> |
| 115 | # include <stdlib.h> |
| 116 | #endif |
| 117 | |
| 118 | #include "gzip.h" |
| 119 | #define STATIC |
| 120 | #endif /* !STATIC */ |
| 121 | |
| 122 | #ifndef INIT |
| 123 | #define INIT |
| 124 | #endif |
| 125 | |
| 126 | #define slide window |
| 127 | |
| 128 | /* Huffman code lookup table entry--this entry is four bytes for machines |
| 129 | that have 16-bit pointers (e.g. PC's in the small or medium model). |
| 130 | Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 |
| 131 | means that v is a literal, 16 < e < 32 means that v is a pointer to |
| 132 | the next table, which codes e - 16 bits, and lastly e == 99 indicates |
| 133 | an unused code. If a code with e == 99 is looked up, this implies an |
| 134 | error in the data. */ |
| 135 | struct huft { |
| 136 | uch e; /* number of extra bits or operation */ |
| 137 | uch b; /* number of bits in this code or subcode */ |
| 138 | union { |
| 139 | ush n; /* literal, length base, or distance base */ |
| 140 | struct huft *t; /* pointer to next level of table */ |
| 141 | } v; |
| 142 | }; |
| 143 | |
| 144 | |
| 145 | /* Function prototypes */ |
| 146 | STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned, |
| 147 | const ush *, const ush *, struct huft **, int *)); |
| 148 | STATIC int INIT huft_free OF((struct huft *)); |
| 149 | STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int)); |
| 150 | STATIC int INIT inflate_stored OF((void)); |
| 151 | STATIC int INIT inflate_fixed OF((void)); |
| 152 | STATIC int INIT inflate_dynamic OF((void)); |
| 153 | STATIC int INIT inflate_block OF((int *)); |
| 154 | STATIC int INIT inflate OF((void)); |
| 155 | |
| 156 | |
| 157 | /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed |
| 158 | stream to find repeated byte strings. This is implemented here as a |
| 159 | circular buffer. The index is updated simply by incrementing and then |
| 160 | ANDing with 0x7fff (32K-1). */ |
| 161 | /* It is left to other modules to supply the 32 K area. It is assumed |
| 162 | to be usable as if it were declared "uch slide[32768];" or as just |
| 163 | "uch *slide;" and then malloc'ed in the latter case. The definition |
| 164 | must be in unzip.h, included above. */ |
| 165 | /* unsigned wp; current position in slide */ |
| 166 | #define wp outcnt |
| 167 | #define flush_output(w) (wp=(w),flush_window()) |
| 168 | |
| 169 | /* Tables for deflate from PKZIP's appnote.txt. */ |
| 170 | static const unsigned border[] = { /* Order of the bit length code lengths */ |
| 171 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| 172 | static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ |
| 173 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
| 174 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; |
| 175 | /* note: see note #13 above about the 258 in this list. */ |
| 176 | static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ |
| 177 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
| 178 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ |
| 179 | static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ |
| 180 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
| 181 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
| 182 | 8193, 12289, 16385, 24577}; |
| 183 | static const ush cpdext[] = { /* Extra bits for distance codes */ |
| 184 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
| 185 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
| 186 | 12, 12, 13, 13}; |
| 187 | |
| 188 | |
| 189 | |
| 190 | /* Macros for inflate() bit peeking and grabbing. |
| 191 | The usage is: |
| 192 | |
| 193 | NEEDBITS(j) |
| 194 | x = b & mask_bits[j]; |
| 195 | DUMPBITS(j) |
| 196 | |
| 197 | where NEEDBITS makes sure that b has at least j bits in it, and |
| 198 | DUMPBITS removes the bits from b. The macros use the variable k |
| 199 | for the number of bits in b. Normally, b and k are register |
| 200 | variables for speed, and are initialized at the beginning of a |
| 201 | routine that uses these macros from a global bit buffer and count. |
| 202 | |
| 203 | If we assume that EOB will be the longest code, then we will never |
| 204 | ask for bits with NEEDBITS that are beyond the end of the stream. |
| 205 | So, NEEDBITS should not read any more bytes than are needed to |
| 206 | meet the request. Then no bytes need to be "returned" to the buffer |
| 207 | at the end of the last block. |
| 208 | |
| 209 | However, this assumption is not true for fixed blocks--the EOB code |
| 210 | is 7 bits, but the other literal/length codes can be 8 or 9 bits. |
| 211 | (The EOB code is shorter than other codes because fixed blocks are |
| 212 | generally short. So, while a block always has an EOB, many other |
| 213 | literal/length codes have a significantly lower probability of |
| 214 | showing up at all.) However, by making the first table have a |
| 215 | lookup of seven bits, the EOB code will be found in that first |
| 216 | lookup, and so will not require that too many bits be pulled from |
| 217 | the stream. |
| 218 | */ |
| 219 | |
| 220 | STATIC ulg bb; /* bit buffer */ |
| 221 | STATIC unsigned bk; /* bits in bit buffer */ |
| 222 | |
| 223 | STATIC const ush mask_bits[] = { |
| 224 | 0x0000, |
| 225 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
| 226 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
| 227 | }; |
| 228 | |
| 229 | #define NEXTBYTE() ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; }) |
| 230 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} |
| 231 | #define DUMPBITS(n) {b>>=(n);k-=(n);} |
| 232 | |
| 233 | |
| 234 | /* |
| 235 | Huffman code decoding is performed using a multi-level table lookup. |
| 236 | The fastest way to decode is to simply build a lookup table whose |
| 237 | size is determined by the longest code. However, the time it takes |
| 238 | to build this table can also be a factor if the data being decoded |
| 239 | is not very long. The most common codes are necessarily the |
| 240 | shortest codes, so those codes dominate the decoding time, and hence |
| 241 | the speed. The idea is you can have a shorter table that decodes the |
| 242 | shorter, more probable codes, and then point to subsidiary tables for |
| 243 | the longer codes. The time it costs to decode the longer codes is |
| 244 | then traded against the time it takes to make longer tables. |
| 245 | |
| 246 | This results of this trade are in the variables lbits and dbits |
| 247 | below. lbits is the number of bits the first level table for literal/ |
| 248 | length codes can decode in one step, and dbits is the same thing for |
| 249 | the distance codes. Subsequent tables are also less than or equal to |
| 250 | those sizes. These values may be adjusted either when all of the |
| 251 | codes are shorter than that, in which case the longest code length in |
| 252 | bits is used, or when the shortest code is *longer* than the requested |
| 253 | table size, in which case the length of the shortest code in bits is |
| 254 | used. |
| 255 | |
| 256 | There are two different values for the two tables, since they code a |
| 257 | different number of possibilities each. The literal/length table |
| 258 | codes 286 possible values, or in a flat code, a little over eight |
| 259 | bits. The distance table codes 30 possible values, or a little less |
| 260 | than five bits, flat. The optimum values for speed end up being |
| 261 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. |
| 262 | The optimum values may differ though from machine to machine, and |
| 263 | possibly even between compilers. Your mileage may vary. |
| 264 | */ |
| 265 | |
| 266 | |
| 267 | STATIC const int lbits = 9; /* bits in base literal/length lookup table */ |
| 268 | STATIC const int dbits = 6; /* bits in base distance lookup table */ |
| 269 | |
| 270 | |
| 271 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ |
| 272 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */ |
| 273 | #define N_MAX 288 /* maximum number of codes in any set */ |
| 274 | |
| 275 | |
| 276 | STATIC unsigned hufts; /* track memory usage */ |
| 277 | |
| 278 | |
| 279 | STATIC int INIT huft_build( |
| 280 | unsigned *b, /* code lengths in bits (all assumed <= BMAX) */ |
| 281 | unsigned n, /* number of codes (assumed <= N_MAX) */ |
| 282 | unsigned s, /* number of simple-valued codes (0..s-1) */ |
| 283 | const ush *d, /* list of base values for non-simple codes */ |
| 284 | const ush *e, /* list of extra bits for non-simple codes */ |
| 285 | struct huft **t, /* result: starting table */ |
| 286 | int *m /* maximum lookup bits, returns actual */ |
| 287 | ) |
| 288 | /* Given a list of code lengths and a maximum table size, make a set of |
| 289 | tables to decode that set of codes. Return zero on success, one if |
| 290 | the given code set is incomplete (the tables are still built in this |
| 291 | case), two if the input is invalid (all zero length codes or an |
| 292 | oversubscribed set of lengths), and three if not enough memory. */ |
| 293 | { |
| 294 | unsigned a; /* counter for codes of length k */ |
| 295 | unsigned c[BMAX+1]; /* bit length count table */ |
| 296 | unsigned f; /* i repeats in table every f entries */ |
| 297 | int g; /* maximum code length */ |
| 298 | int h; /* table level */ |
| 299 | register unsigned i; /* counter, current code */ |
| 300 | register unsigned j; /* counter */ |
| 301 | register int k; /* number of bits in current code */ |
| 302 | int l; /* bits per table (returned in m) */ |
| 303 | register unsigned *p; /* pointer into c[], b[], or v[] */ |
| 304 | register struct huft *q; /* points to current table */ |
| 305 | struct huft r; /* table entry for structure assignment */ |
| 306 | struct huft *u[BMAX]; /* table stack */ |
| 307 | unsigned v[N_MAX]; /* values in order of bit length */ |
| 308 | register int w; /* bits before this table == (l * h) */ |
| 309 | unsigned x[BMAX+1]; /* bit offsets, then code stack */ |
| 310 | unsigned *xp; /* pointer into x */ |
| 311 | int y; /* number of dummy codes added */ |
| 312 | unsigned z; /* number of entries in current table */ |
| 313 | |
| 314 | DEBG("huft1 "); |
| 315 | |
| 316 | /* Generate counts for each bit length */ |
| 317 | memzero(c, sizeof(c)); |
| 318 | p = b; i = n; |
| 319 | do { |
| 320 | Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), |
| 321 | n-i, *p)); |
| 322 | c[*p]++; /* assume all entries <= BMAX */ |
| 323 | p++; /* Can't combine with above line (Solaris bug) */ |
| 324 | } while (--i); |
| 325 | if (c[0] == n) /* null input--all zero length codes */ |
| 326 | { |
| 327 | *t = (struct huft *)NULL; |
| 328 | *m = 0; |
Tim Yamin | 4aad724 | 2005-07-25 23:16:13 +0100 | [diff] [blame^] | 329 | return 2; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 330 | } |
| 331 | |
| 332 | DEBG("huft2 "); |
| 333 | |
| 334 | /* Find minimum and maximum length, bound *m by those */ |
| 335 | l = *m; |
| 336 | for (j = 1; j <= BMAX; j++) |
| 337 | if (c[j]) |
| 338 | break; |
| 339 | k = j; /* minimum code length */ |
| 340 | if ((unsigned)l < j) |
| 341 | l = j; |
| 342 | for (i = BMAX; i; i--) |
| 343 | if (c[i]) |
| 344 | break; |
| 345 | g = i; /* maximum code length */ |
| 346 | if ((unsigned)l > i) |
| 347 | l = i; |
| 348 | *m = l; |
| 349 | |
| 350 | DEBG("huft3 "); |
| 351 | |
| 352 | /* Adjust last length count to fill out codes, if needed */ |
| 353 | for (y = 1 << j; j < i; j++, y <<= 1) |
| 354 | if ((y -= c[j]) < 0) |
| 355 | return 2; /* bad input: more codes than bits */ |
| 356 | if ((y -= c[i]) < 0) |
| 357 | return 2; |
| 358 | c[i] += y; |
| 359 | |
| 360 | DEBG("huft4 "); |
| 361 | |
| 362 | /* Generate starting offsets into the value table for each length */ |
| 363 | x[1] = j = 0; |
| 364 | p = c + 1; xp = x + 2; |
| 365 | while (--i) { /* note that i == g from above */ |
| 366 | *xp++ = (j += *p++); |
| 367 | } |
| 368 | |
| 369 | DEBG("huft5 "); |
| 370 | |
| 371 | /* Make a table of values in order of bit lengths */ |
| 372 | p = b; i = 0; |
| 373 | do { |
| 374 | if ((j = *p++) != 0) |
| 375 | v[x[j]++] = i; |
| 376 | } while (++i < n); |
Tim Yamin | 4aad724 | 2005-07-25 23:16:13 +0100 | [diff] [blame^] | 377 | n = x[g]; /* set n to length of v */ |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 378 | |
| 379 | DEBG("h6 "); |
| 380 | |
| 381 | /* Generate the Huffman codes and for each, make the table entries */ |
| 382 | x[0] = i = 0; /* first Huffman code is zero */ |
| 383 | p = v; /* grab values in bit order */ |
| 384 | h = -1; /* no tables yet--level -1 */ |
| 385 | w = -l; /* bits decoded == (l * h) */ |
| 386 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */ |
| 387 | q = (struct huft *)NULL; /* ditto */ |
| 388 | z = 0; /* ditto */ |
| 389 | DEBG("h6a "); |
| 390 | |
| 391 | /* go through the bit lengths (k already is bits in shortest code) */ |
| 392 | for (; k <= g; k++) |
| 393 | { |
| 394 | DEBG("h6b "); |
| 395 | a = c[k]; |
| 396 | while (a--) |
| 397 | { |
| 398 | DEBG("h6b1 "); |
| 399 | /* here i is the Huffman code of length k bits for value *p */ |
| 400 | /* make tables up to required level */ |
| 401 | while (k > w + l) |
| 402 | { |
| 403 | DEBG1("1 "); |
| 404 | h++; |
| 405 | w += l; /* previous table always l bits */ |
| 406 | |
| 407 | /* compute minimum size table less than or equal to l bits */ |
| 408 | z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ |
| 409 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ |
| 410 | { /* too few codes for k-w bit table */ |
| 411 | DEBG1("2 "); |
| 412 | f -= a + 1; /* deduct codes from patterns left */ |
| 413 | xp = c + k; |
Tim Yamin | 4aad724 | 2005-07-25 23:16:13 +0100 | [diff] [blame^] | 414 | if (j < z) |
| 415 | while (++j < z) /* try smaller tables up to z bits */ |
| 416 | { |
| 417 | if ((f <<= 1) <= *++xp) |
| 418 | break; /* enough codes to use up j bits */ |
| 419 | f -= *xp; /* else deduct codes from patterns */ |
| 420 | } |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 421 | } |
| 422 | DEBG1("3 "); |
| 423 | z = 1 << j; /* table entries for j-bit table */ |
| 424 | |
| 425 | /* allocate and link in new table */ |
| 426 | if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == |
| 427 | (struct huft *)NULL) |
| 428 | { |
| 429 | if (h) |
| 430 | huft_free(u[0]); |
| 431 | return 3; /* not enough memory */ |
| 432 | } |
| 433 | DEBG1("4 "); |
| 434 | hufts += z + 1; /* track memory usage */ |
| 435 | *t = q + 1; /* link to list for huft_free() */ |
| 436 | *(t = &(q->v.t)) = (struct huft *)NULL; |
| 437 | u[h] = ++q; /* table starts after link */ |
| 438 | |
| 439 | DEBG1("5 "); |
| 440 | /* connect to last table, if there is one */ |
| 441 | if (h) |
| 442 | { |
| 443 | x[h] = i; /* save pattern for backing up */ |
| 444 | r.b = (uch)l; /* bits to dump before this table */ |
| 445 | r.e = (uch)(16 + j); /* bits in this table */ |
| 446 | r.v.t = q; /* pointer to this table */ |
| 447 | j = i >> (w - l); /* (get around Turbo C bug) */ |
| 448 | u[h-1][j] = r; /* connect to last table */ |
| 449 | } |
| 450 | DEBG1("6 "); |
| 451 | } |
| 452 | DEBG("h6c "); |
| 453 | |
| 454 | /* set up table entry in r */ |
| 455 | r.b = (uch)(k - w); |
| 456 | if (p >= v + n) |
| 457 | r.e = 99; /* out of values--invalid code */ |
| 458 | else if (*p < s) |
| 459 | { |
| 460 | r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ |
| 461 | r.v.n = (ush)(*p); /* simple code is just the value */ |
| 462 | p++; /* one compiler does not like *p++ */ |
| 463 | } |
| 464 | else |
| 465 | { |
| 466 | r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ |
| 467 | r.v.n = d[*p++ - s]; |
| 468 | } |
| 469 | DEBG("h6d "); |
| 470 | |
| 471 | /* fill code-like entries with r */ |
| 472 | f = 1 << (k - w); |
| 473 | for (j = i >> w; j < z; j += f) |
| 474 | q[j] = r; |
| 475 | |
| 476 | /* backwards increment the k-bit code i */ |
| 477 | for (j = 1 << (k - 1); i & j; j >>= 1) |
| 478 | i ^= j; |
| 479 | i ^= j; |
| 480 | |
| 481 | /* backup over finished tables */ |
| 482 | while ((i & ((1 << w) - 1)) != x[h]) |
| 483 | { |
| 484 | h--; /* don't need to update q */ |
| 485 | w -= l; |
| 486 | } |
| 487 | DEBG("h6e "); |
| 488 | } |
| 489 | DEBG("h6f "); |
| 490 | } |
| 491 | |
| 492 | DEBG("huft7 "); |
| 493 | |
| 494 | /* Return true (1) if we were given an incomplete table */ |
| 495 | return y != 0 && g != 1; |
| 496 | } |
| 497 | |
| 498 | |
| 499 | |
| 500 | STATIC int INIT huft_free( |
| 501 | struct huft *t /* table to free */ |
| 502 | ) |
| 503 | /* Free the malloc'ed tables built by huft_build(), which makes a linked |
| 504 | list of the tables it made, with the links in a dummy first entry of |
| 505 | each table. */ |
| 506 | { |
| 507 | register struct huft *p, *q; |
| 508 | |
| 509 | |
| 510 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ |
| 511 | p = t; |
| 512 | while (p != (struct huft *)NULL) |
| 513 | { |
| 514 | q = (--p)->v.t; |
| 515 | free((char*)p); |
| 516 | p = q; |
| 517 | } |
| 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | |
| 522 | STATIC int INIT inflate_codes( |
| 523 | struct huft *tl, /* literal/length decoder tables */ |
| 524 | struct huft *td, /* distance decoder tables */ |
| 525 | int bl, /* number of bits decoded by tl[] */ |
| 526 | int bd /* number of bits decoded by td[] */ |
| 527 | ) |
| 528 | /* inflate (decompress) the codes in a deflated (compressed) block. |
| 529 | Return an error code or zero if it all goes ok. */ |
| 530 | { |
| 531 | register unsigned e; /* table entry flag/number of extra bits */ |
| 532 | unsigned n, d; /* length and index for copy */ |
| 533 | unsigned w; /* current window position */ |
| 534 | struct huft *t; /* pointer to table entry */ |
| 535 | unsigned ml, md; /* masks for bl and bd bits */ |
| 536 | register ulg b; /* bit buffer */ |
| 537 | register unsigned k; /* number of bits in bit buffer */ |
| 538 | |
| 539 | |
| 540 | /* make local copies of globals */ |
| 541 | b = bb; /* initialize bit buffer */ |
| 542 | k = bk; |
| 543 | w = wp; /* initialize window position */ |
| 544 | |
| 545 | /* inflate the coded data */ |
| 546 | ml = mask_bits[bl]; /* precompute masks for speed */ |
| 547 | md = mask_bits[bd]; |
| 548 | for (;;) /* do until end of block */ |
| 549 | { |
| 550 | NEEDBITS((unsigned)bl) |
| 551 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) |
| 552 | do { |
| 553 | if (e == 99) |
| 554 | return 1; |
| 555 | DUMPBITS(t->b) |
| 556 | e -= 16; |
| 557 | NEEDBITS(e) |
| 558 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
| 559 | DUMPBITS(t->b) |
| 560 | if (e == 16) /* then it's a literal */ |
| 561 | { |
| 562 | slide[w++] = (uch)t->v.n; |
| 563 | Tracevv((stderr, "%c", slide[w-1])); |
| 564 | if (w == WSIZE) |
| 565 | { |
| 566 | flush_output(w); |
| 567 | w = 0; |
| 568 | } |
| 569 | } |
| 570 | else /* it's an EOB or a length */ |
| 571 | { |
| 572 | /* exit if end of block */ |
| 573 | if (e == 15) |
| 574 | break; |
| 575 | |
| 576 | /* get length of block to copy */ |
| 577 | NEEDBITS(e) |
| 578 | n = t->v.n + ((unsigned)b & mask_bits[e]); |
| 579 | DUMPBITS(e); |
| 580 | |
| 581 | /* decode distance of block to copy */ |
| 582 | NEEDBITS((unsigned)bd) |
| 583 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) |
| 584 | do { |
| 585 | if (e == 99) |
| 586 | return 1; |
| 587 | DUMPBITS(t->b) |
| 588 | e -= 16; |
| 589 | NEEDBITS(e) |
| 590 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
| 591 | DUMPBITS(t->b) |
| 592 | NEEDBITS(e) |
| 593 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); |
| 594 | DUMPBITS(e) |
| 595 | Tracevv((stderr,"\\[%d,%d]", w-d, n)); |
| 596 | |
| 597 | /* do the copy */ |
| 598 | do { |
| 599 | n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); |
| 600 | #if !defined(NOMEMCPY) && !defined(DEBUG) |
| 601 | if (w - d >= e) /* (this test assumes unsigned comparison) */ |
| 602 | { |
| 603 | memcpy(slide + w, slide + d, e); |
| 604 | w += e; |
| 605 | d += e; |
| 606 | } |
| 607 | else /* do it slow to avoid memcpy() overlap */ |
| 608 | #endif /* !NOMEMCPY */ |
| 609 | do { |
| 610 | slide[w++] = slide[d++]; |
| 611 | Tracevv((stderr, "%c", slide[w-1])); |
| 612 | } while (--e); |
| 613 | if (w == WSIZE) |
| 614 | { |
| 615 | flush_output(w); |
| 616 | w = 0; |
| 617 | } |
| 618 | } while (n); |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | |
| 623 | /* restore the globals from the locals */ |
| 624 | wp = w; /* restore global window pointer */ |
| 625 | bb = b; /* restore global bit buffer */ |
| 626 | bk = k; |
| 627 | |
| 628 | /* done */ |
| 629 | return 0; |
| 630 | |
| 631 | underrun: |
| 632 | return 4; /* Input underrun */ |
| 633 | } |
| 634 | |
| 635 | |
| 636 | |
| 637 | STATIC int INIT inflate_stored(void) |
| 638 | /* "decompress" an inflated type 0 (stored) block. */ |
| 639 | { |
| 640 | unsigned n; /* number of bytes in block */ |
| 641 | unsigned w; /* current window position */ |
| 642 | register ulg b; /* bit buffer */ |
| 643 | register unsigned k; /* number of bits in bit buffer */ |
| 644 | |
| 645 | DEBG("<stor"); |
| 646 | |
| 647 | /* make local copies of globals */ |
| 648 | b = bb; /* initialize bit buffer */ |
| 649 | k = bk; |
| 650 | w = wp; /* initialize window position */ |
| 651 | |
| 652 | |
| 653 | /* go to byte boundary */ |
| 654 | n = k & 7; |
| 655 | DUMPBITS(n); |
| 656 | |
| 657 | |
| 658 | /* get the length and its complement */ |
| 659 | NEEDBITS(16) |
| 660 | n = ((unsigned)b & 0xffff); |
| 661 | DUMPBITS(16) |
| 662 | NEEDBITS(16) |
| 663 | if (n != (unsigned)((~b) & 0xffff)) |
| 664 | return 1; /* error in compressed data */ |
| 665 | DUMPBITS(16) |
| 666 | |
| 667 | |
| 668 | /* read and output the compressed data */ |
| 669 | while (n--) |
| 670 | { |
| 671 | NEEDBITS(8) |
| 672 | slide[w++] = (uch)b; |
| 673 | if (w == WSIZE) |
| 674 | { |
| 675 | flush_output(w); |
| 676 | w = 0; |
| 677 | } |
| 678 | DUMPBITS(8) |
| 679 | } |
| 680 | |
| 681 | |
| 682 | /* restore the globals from the locals */ |
| 683 | wp = w; /* restore global window pointer */ |
| 684 | bb = b; /* restore global bit buffer */ |
| 685 | bk = k; |
| 686 | |
| 687 | DEBG(">"); |
| 688 | return 0; |
| 689 | |
| 690 | underrun: |
| 691 | return 4; /* Input underrun */ |
| 692 | } |
| 693 | |
| 694 | |
| 695 | /* |
| 696 | * We use `noinline' here to prevent gcc-3.5 from using too much stack space |
| 697 | */ |
| 698 | STATIC int noinline INIT inflate_fixed(void) |
| 699 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should |
| 700 | either replace this with a custom decoder, or at least precompute the |
| 701 | Huffman tables. */ |
| 702 | { |
| 703 | int i; /* temporary variable */ |
| 704 | struct huft *tl; /* literal/length code table */ |
| 705 | struct huft *td; /* distance code table */ |
| 706 | int bl; /* lookup bits for tl */ |
| 707 | int bd; /* lookup bits for td */ |
| 708 | unsigned l[288]; /* length list for huft_build */ |
| 709 | |
| 710 | DEBG("<fix"); |
| 711 | |
| 712 | /* set up literal table */ |
| 713 | for (i = 0; i < 144; i++) |
| 714 | l[i] = 8; |
| 715 | for (; i < 256; i++) |
| 716 | l[i] = 9; |
| 717 | for (; i < 280; i++) |
| 718 | l[i] = 7; |
| 719 | for (; i < 288; i++) /* make a complete, but wrong code set */ |
| 720 | l[i] = 8; |
| 721 | bl = 7; |
| 722 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) |
| 723 | return i; |
| 724 | |
| 725 | |
| 726 | /* set up distance table */ |
| 727 | for (i = 0; i < 30; i++) /* make an incomplete code set */ |
| 728 | l[i] = 5; |
| 729 | bd = 5; |
| 730 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) |
| 731 | { |
| 732 | huft_free(tl); |
| 733 | |
| 734 | DEBG(">"); |
| 735 | return i; |
| 736 | } |
| 737 | |
| 738 | |
| 739 | /* decompress until an end-of-block code */ |
| 740 | if (inflate_codes(tl, td, bl, bd)) |
| 741 | return 1; |
| 742 | |
| 743 | |
| 744 | /* free the decoding tables, return */ |
| 745 | huft_free(tl); |
| 746 | huft_free(td); |
| 747 | return 0; |
| 748 | } |
| 749 | |
| 750 | |
| 751 | /* |
| 752 | * We use `noinline' here to prevent gcc-3.5 from using too much stack space |
| 753 | */ |
| 754 | STATIC int noinline INIT inflate_dynamic(void) |
| 755 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ |
| 756 | { |
| 757 | int i; /* temporary variables */ |
| 758 | unsigned j; |
| 759 | unsigned l; /* last length */ |
| 760 | unsigned m; /* mask for bit lengths table */ |
| 761 | unsigned n; /* number of lengths to get */ |
| 762 | struct huft *tl; /* literal/length code table */ |
| 763 | struct huft *td; /* distance code table */ |
| 764 | int bl; /* lookup bits for tl */ |
| 765 | int bd; /* lookup bits for td */ |
| 766 | unsigned nb; /* number of bit length codes */ |
| 767 | unsigned nl; /* number of literal/length codes */ |
| 768 | unsigned nd; /* number of distance codes */ |
| 769 | #ifdef PKZIP_BUG_WORKAROUND |
| 770 | unsigned ll[288+32]; /* literal/length and distance code lengths */ |
| 771 | #else |
| 772 | unsigned ll[286+30]; /* literal/length and distance code lengths */ |
| 773 | #endif |
| 774 | register ulg b; /* bit buffer */ |
| 775 | register unsigned k; /* number of bits in bit buffer */ |
| 776 | |
| 777 | DEBG("<dyn"); |
| 778 | |
| 779 | /* make local bit buffer */ |
| 780 | b = bb; |
| 781 | k = bk; |
| 782 | |
| 783 | |
| 784 | /* read in table lengths */ |
| 785 | NEEDBITS(5) |
| 786 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ |
| 787 | DUMPBITS(5) |
| 788 | NEEDBITS(5) |
| 789 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ |
| 790 | DUMPBITS(5) |
| 791 | NEEDBITS(4) |
| 792 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ |
| 793 | DUMPBITS(4) |
| 794 | #ifdef PKZIP_BUG_WORKAROUND |
| 795 | if (nl > 288 || nd > 32) |
| 796 | #else |
| 797 | if (nl > 286 || nd > 30) |
| 798 | #endif |
| 799 | return 1; /* bad lengths */ |
| 800 | |
| 801 | DEBG("dyn1 "); |
| 802 | |
| 803 | /* read in bit-length-code lengths */ |
| 804 | for (j = 0; j < nb; j++) |
| 805 | { |
| 806 | NEEDBITS(3) |
| 807 | ll[border[j]] = (unsigned)b & 7; |
| 808 | DUMPBITS(3) |
| 809 | } |
| 810 | for (; j < 19; j++) |
| 811 | ll[border[j]] = 0; |
| 812 | |
| 813 | DEBG("dyn2 "); |
| 814 | |
| 815 | /* build decoding table for trees--single level, 7 bit lookup */ |
| 816 | bl = 7; |
| 817 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) |
| 818 | { |
| 819 | if (i == 1) |
| 820 | huft_free(tl); |
| 821 | return i; /* incomplete code set */ |
| 822 | } |
| 823 | |
| 824 | DEBG("dyn3 "); |
| 825 | |
| 826 | /* read in literal and distance code lengths */ |
| 827 | n = nl + nd; |
| 828 | m = mask_bits[bl]; |
| 829 | i = l = 0; |
| 830 | while ((unsigned)i < n) |
| 831 | { |
| 832 | NEEDBITS((unsigned)bl) |
| 833 | j = (td = tl + ((unsigned)b & m))->b; |
| 834 | DUMPBITS(j) |
| 835 | j = td->v.n; |
| 836 | if (j < 16) /* length of code in bits (0..15) */ |
| 837 | ll[i++] = l = j; /* save last length in l */ |
| 838 | else if (j == 16) /* repeat last length 3 to 6 times */ |
| 839 | { |
| 840 | NEEDBITS(2) |
| 841 | j = 3 + ((unsigned)b & 3); |
| 842 | DUMPBITS(2) |
| 843 | if ((unsigned)i + j > n) |
| 844 | return 1; |
| 845 | while (j--) |
| 846 | ll[i++] = l; |
| 847 | } |
| 848 | else if (j == 17) /* 3 to 10 zero length codes */ |
| 849 | { |
| 850 | NEEDBITS(3) |
| 851 | j = 3 + ((unsigned)b & 7); |
| 852 | DUMPBITS(3) |
| 853 | if ((unsigned)i + j > n) |
| 854 | return 1; |
| 855 | while (j--) |
| 856 | ll[i++] = 0; |
| 857 | l = 0; |
| 858 | } |
| 859 | else /* j == 18: 11 to 138 zero length codes */ |
| 860 | { |
| 861 | NEEDBITS(7) |
| 862 | j = 11 + ((unsigned)b & 0x7f); |
| 863 | DUMPBITS(7) |
| 864 | if ((unsigned)i + j > n) |
| 865 | return 1; |
| 866 | while (j--) |
| 867 | ll[i++] = 0; |
| 868 | l = 0; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | DEBG("dyn4 "); |
| 873 | |
| 874 | /* free decoding table for trees */ |
| 875 | huft_free(tl); |
| 876 | |
| 877 | DEBG("dyn5 "); |
| 878 | |
| 879 | /* restore the global bit buffer */ |
| 880 | bb = b; |
| 881 | bk = k; |
| 882 | |
| 883 | DEBG("dyn5a "); |
| 884 | |
| 885 | /* build the decoding tables for literal/length and distance codes */ |
| 886 | bl = lbits; |
| 887 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) |
| 888 | { |
| 889 | DEBG("dyn5b "); |
| 890 | if (i == 1) { |
| 891 | error("incomplete literal tree"); |
| 892 | huft_free(tl); |
| 893 | } |
| 894 | return i; /* incomplete code set */ |
| 895 | } |
| 896 | DEBG("dyn5c "); |
| 897 | bd = dbits; |
| 898 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) |
| 899 | { |
| 900 | DEBG("dyn5d "); |
| 901 | if (i == 1) { |
| 902 | error("incomplete distance tree"); |
| 903 | #ifdef PKZIP_BUG_WORKAROUND |
| 904 | i = 0; |
| 905 | } |
| 906 | #else |
| 907 | huft_free(td); |
| 908 | } |
| 909 | huft_free(tl); |
| 910 | return i; /* incomplete code set */ |
| 911 | #endif |
| 912 | } |
| 913 | |
| 914 | DEBG("dyn6 "); |
| 915 | |
| 916 | /* decompress until an end-of-block code */ |
| 917 | if (inflate_codes(tl, td, bl, bd)) |
| 918 | return 1; |
| 919 | |
| 920 | DEBG("dyn7 "); |
| 921 | |
| 922 | /* free the decoding tables, return */ |
| 923 | huft_free(tl); |
| 924 | huft_free(td); |
| 925 | |
| 926 | DEBG(">"); |
| 927 | return 0; |
| 928 | |
| 929 | underrun: |
| 930 | return 4; /* Input underrun */ |
| 931 | } |
| 932 | |
| 933 | |
| 934 | |
| 935 | STATIC int INIT inflate_block( |
| 936 | int *e /* last block flag */ |
| 937 | ) |
| 938 | /* decompress an inflated block */ |
| 939 | { |
| 940 | unsigned t; /* block type */ |
| 941 | register ulg b; /* bit buffer */ |
| 942 | register unsigned k; /* number of bits in bit buffer */ |
| 943 | |
| 944 | DEBG("<blk"); |
| 945 | |
| 946 | /* make local bit buffer */ |
| 947 | b = bb; |
| 948 | k = bk; |
| 949 | |
| 950 | |
| 951 | /* read in last block bit */ |
| 952 | NEEDBITS(1) |
| 953 | *e = (int)b & 1; |
| 954 | DUMPBITS(1) |
| 955 | |
| 956 | |
| 957 | /* read in block type */ |
| 958 | NEEDBITS(2) |
| 959 | t = (unsigned)b & 3; |
| 960 | DUMPBITS(2) |
| 961 | |
| 962 | |
| 963 | /* restore the global bit buffer */ |
| 964 | bb = b; |
| 965 | bk = k; |
| 966 | |
| 967 | /* inflate that block type */ |
| 968 | if (t == 2) |
| 969 | return inflate_dynamic(); |
| 970 | if (t == 0) |
| 971 | return inflate_stored(); |
| 972 | if (t == 1) |
| 973 | return inflate_fixed(); |
| 974 | |
| 975 | DEBG(">"); |
| 976 | |
| 977 | /* bad block type */ |
| 978 | return 2; |
| 979 | |
| 980 | underrun: |
| 981 | return 4; /* Input underrun */ |
| 982 | } |
| 983 | |
| 984 | |
| 985 | |
| 986 | STATIC int INIT inflate(void) |
| 987 | /* decompress an inflated entry */ |
| 988 | { |
| 989 | int e; /* last block flag */ |
| 990 | int r; /* result code */ |
| 991 | unsigned h; /* maximum struct huft's malloc'ed */ |
| 992 | void *ptr; |
| 993 | |
| 994 | /* initialize window, bit buffer */ |
| 995 | wp = 0; |
| 996 | bk = 0; |
| 997 | bb = 0; |
| 998 | |
| 999 | |
| 1000 | /* decompress until the last block */ |
| 1001 | h = 0; |
| 1002 | do { |
| 1003 | hufts = 0; |
| 1004 | gzip_mark(&ptr); |
| 1005 | if ((r = inflate_block(&e)) != 0) { |
| 1006 | gzip_release(&ptr); |
| 1007 | return r; |
| 1008 | } |
| 1009 | gzip_release(&ptr); |
| 1010 | if (hufts > h) |
| 1011 | h = hufts; |
| 1012 | } while (!e); |
| 1013 | |
| 1014 | /* Undo too much lookahead. The next read will be byte aligned so we |
| 1015 | * can discard unused bits in the last meaningful byte. |
| 1016 | */ |
| 1017 | while (bk >= 8) { |
| 1018 | bk -= 8; |
| 1019 | inptr--; |
| 1020 | } |
| 1021 | |
| 1022 | /* flush out slide */ |
| 1023 | flush_output(wp); |
| 1024 | |
| 1025 | |
| 1026 | /* return success */ |
| 1027 | #ifdef DEBUG |
| 1028 | fprintf(stderr, "<%u> ", h); |
| 1029 | #endif /* DEBUG */ |
| 1030 | return 0; |
| 1031 | } |
| 1032 | |
| 1033 | /********************************************************************** |
| 1034 | * |
| 1035 | * The following are support routines for inflate.c |
| 1036 | * |
| 1037 | **********************************************************************/ |
| 1038 | |
| 1039 | static ulg crc_32_tab[256]; |
| 1040 | static ulg crc; /* initialized in makecrc() so it'll reside in bss */ |
| 1041 | #define CRC_VALUE (crc ^ 0xffffffffUL) |
| 1042 | |
| 1043 | /* |
| 1044 | * Code to compute the CRC-32 table. Borrowed from |
| 1045 | * gzip-1.0.3/makecrc.c. |
| 1046 | */ |
| 1047 | |
| 1048 | static void INIT |
| 1049 | makecrc(void) |
| 1050 | { |
| 1051 | /* Not copyrighted 1990 Mark Adler */ |
| 1052 | |
| 1053 | unsigned long c; /* crc shift register */ |
| 1054 | unsigned long e; /* polynomial exclusive-or pattern */ |
| 1055 | int i; /* counter for all possible eight bit values */ |
| 1056 | int k; /* byte being shifted into crc apparatus */ |
| 1057 | |
| 1058 | /* terms of polynomial defining this crc (except x^32): */ |
| 1059 | static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; |
| 1060 | |
| 1061 | /* Make exclusive-or pattern from polynomial */ |
| 1062 | e = 0; |
| 1063 | for (i = 0; i < sizeof(p)/sizeof(int); i++) |
| 1064 | e |= 1L << (31 - p[i]); |
| 1065 | |
| 1066 | crc_32_tab[0] = 0; |
| 1067 | |
| 1068 | for (i = 1; i < 256; i++) |
| 1069 | { |
| 1070 | c = 0; |
| 1071 | for (k = i | 256; k != 1; k >>= 1) |
| 1072 | { |
| 1073 | c = c & 1 ? (c >> 1) ^ e : c >> 1; |
| 1074 | if (k & 1) |
| 1075 | c ^= e; |
| 1076 | } |
| 1077 | crc_32_tab[i] = c; |
| 1078 | } |
| 1079 | |
| 1080 | /* this is initialized here so this code could reside in ROM */ |
| 1081 | crc = (ulg)0xffffffffUL; /* shift register contents */ |
| 1082 | } |
| 1083 | |
| 1084 | /* gzip flag byte */ |
| 1085 | #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ |
| 1086 | #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ |
| 1087 | #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ |
| 1088 | #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ |
| 1089 | #define COMMENT 0x10 /* bit 4 set: file comment present */ |
| 1090 | #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ |
| 1091 | #define RESERVED 0xC0 /* bit 6,7: reserved */ |
| 1092 | |
| 1093 | /* |
| 1094 | * Do the uncompression! |
| 1095 | */ |
| 1096 | static int INIT gunzip(void) |
| 1097 | { |
| 1098 | uch flags; |
| 1099 | unsigned char magic[2]; /* magic header */ |
| 1100 | char method; |
| 1101 | ulg orig_crc = 0; /* original crc */ |
| 1102 | ulg orig_len = 0; /* original uncompressed length */ |
| 1103 | int res; |
| 1104 | |
| 1105 | magic[0] = NEXTBYTE(); |
| 1106 | magic[1] = NEXTBYTE(); |
| 1107 | method = NEXTBYTE(); |
| 1108 | |
| 1109 | if (magic[0] != 037 || |
| 1110 | ((magic[1] != 0213) && (magic[1] != 0236))) { |
| 1111 | error("bad gzip magic numbers"); |
| 1112 | return -1; |
| 1113 | } |
| 1114 | |
| 1115 | /* We only support method #8, DEFLATED */ |
| 1116 | if (method != 8) { |
| 1117 | error("internal error, invalid method"); |
| 1118 | return -1; |
| 1119 | } |
| 1120 | |
| 1121 | flags = (uch)get_byte(); |
| 1122 | if ((flags & ENCRYPTED) != 0) { |
| 1123 | error("Input is encrypted"); |
| 1124 | return -1; |
| 1125 | } |
| 1126 | if ((flags & CONTINUATION) != 0) { |
| 1127 | error("Multi part input"); |
| 1128 | return -1; |
| 1129 | } |
| 1130 | if ((flags & RESERVED) != 0) { |
| 1131 | error("Input has invalid flags"); |
| 1132 | return -1; |
| 1133 | } |
| 1134 | NEXTBYTE(); /* Get timestamp */ |
| 1135 | NEXTBYTE(); |
| 1136 | NEXTBYTE(); |
| 1137 | NEXTBYTE(); |
| 1138 | |
| 1139 | (void)NEXTBYTE(); /* Ignore extra flags for the moment */ |
| 1140 | (void)NEXTBYTE(); /* Ignore OS type for the moment */ |
| 1141 | |
| 1142 | if ((flags & EXTRA_FIELD) != 0) { |
| 1143 | unsigned len = (unsigned)NEXTBYTE(); |
| 1144 | len |= ((unsigned)NEXTBYTE())<<8; |
| 1145 | while (len--) (void)NEXTBYTE(); |
| 1146 | } |
| 1147 | |
| 1148 | /* Get original file name if it was truncated */ |
| 1149 | if ((flags & ORIG_NAME) != 0) { |
| 1150 | /* Discard the old name */ |
| 1151 | while (NEXTBYTE() != 0) /* null */ ; |
| 1152 | } |
| 1153 | |
| 1154 | /* Discard file comment if any */ |
| 1155 | if ((flags & COMMENT) != 0) { |
| 1156 | while (NEXTBYTE() != 0) /* null */ ; |
| 1157 | } |
| 1158 | |
| 1159 | /* Decompress */ |
| 1160 | if ((res = inflate())) { |
| 1161 | switch (res) { |
| 1162 | case 0: |
| 1163 | break; |
| 1164 | case 1: |
| 1165 | error("invalid compressed format (err=1)"); |
| 1166 | break; |
| 1167 | case 2: |
| 1168 | error("invalid compressed format (err=2)"); |
| 1169 | break; |
| 1170 | case 3: |
| 1171 | error("out of memory"); |
| 1172 | break; |
| 1173 | case 4: |
| 1174 | error("out of input data"); |
| 1175 | break; |
| 1176 | default: |
| 1177 | error("invalid compressed format (other)"); |
| 1178 | } |
| 1179 | return -1; |
| 1180 | } |
| 1181 | |
| 1182 | /* Get the crc and original length */ |
| 1183 | /* crc32 (see algorithm.doc) |
| 1184 | * uncompressed input size modulo 2^32 |
| 1185 | */ |
| 1186 | orig_crc = (ulg) NEXTBYTE(); |
| 1187 | orig_crc |= (ulg) NEXTBYTE() << 8; |
| 1188 | orig_crc |= (ulg) NEXTBYTE() << 16; |
| 1189 | orig_crc |= (ulg) NEXTBYTE() << 24; |
| 1190 | |
| 1191 | orig_len = (ulg) NEXTBYTE(); |
| 1192 | orig_len |= (ulg) NEXTBYTE() << 8; |
| 1193 | orig_len |= (ulg) NEXTBYTE() << 16; |
| 1194 | orig_len |= (ulg) NEXTBYTE() << 24; |
| 1195 | |
| 1196 | /* Validate decompression */ |
| 1197 | if (orig_crc != CRC_VALUE) { |
| 1198 | error("crc error"); |
| 1199 | return -1; |
| 1200 | } |
| 1201 | if (orig_len != bytes_out) { |
| 1202 | error("length error"); |
| 1203 | return -1; |
| 1204 | } |
| 1205 | return 0; |
| 1206 | |
| 1207 | underrun: /* NEXTBYTE() goto's here if needed */ |
| 1208 | error("out of input data"); |
| 1209 | return -1; |
| 1210 | } |
| 1211 | |
| 1212 | |