blob: a537a7f1635782fbfaff538dd669c0c22c15d920 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
22#include <linux/file.h>
23#include <linux/writeback.h>
24#include <linux/blkdev.h>
25#include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27#include <linux/mm_inline.h>
28#include <linux/pagevec.h>
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
34#include <linux/notifier.h>
35#include <linux/rwsem.h>
36
37#include <asm/tlbflush.h>
38#include <asm/div64.h>
39
40#include <linux/swapops.h>
41
42/* possible outcome of pageout() */
43typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52} pageout_t;
53
54struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
Linus Torvalds1da177e2005-04-16 15:20:36 -070066 /* Ask shrink_caches, or shrink_zone to scan at this priority */
67 unsigned int priority;
68
69 /* This context's GFP mask */
Al Viro6daa0e22005-10-21 03:18:50 -040070 gfp_t gfp_mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -070071
72 int may_writepage;
73
74 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
75 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
76 * In this context, it doesn't matter that we scan the
77 * whole list at once. */
78 int swap_cluster_max;
79};
80
81/*
82 * The list of shrinker callbacks used by to apply pressure to
83 * ageable caches.
84 */
85struct shrinker {
86 shrinker_t shrinker;
87 struct list_head list;
88 int seeks; /* seeks to recreate an obj */
89 long nr; /* objs pending delete */
90};
91
92#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
93
94#ifdef ARCH_HAS_PREFETCH
95#define prefetch_prev_lru_page(_page, _base, _field) \
96 do { \
97 if ((_page)->lru.prev != _base) { \
98 struct page *prev; \
99 \
100 prev = lru_to_page(&(_page->lru)); \
101 prefetch(&prev->_field); \
102 } \
103 } while (0)
104#else
105#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
106#endif
107
108#ifdef ARCH_HAS_PREFETCHW
109#define prefetchw_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetchw(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122/*
123 * From 0 .. 100. Higher means more swappy.
124 */
125int vm_swappiness = 60;
126static long total_memory;
127
128static LIST_HEAD(shrinker_list);
129static DECLARE_RWSEM(shrinker_rwsem);
130
131/*
132 * Add a shrinker callback to be called from the vm
133 */
134struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
135{
136 struct shrinker *shrinker;
137
138 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
139 if (shrinker) {
140 shrinker->shrinker = theshrinker;
141 shrinker->seeks = seeks;
142 shrinker->nr = 0;
143 down_write(&shrinker_rwsem);
144 list_add_tail(&shrinker->list, &shrinker_list);
145 up_write(&shrinker_rwsem);
146 }
147 return shrinker;
148}
149EXPORT_SYMBOL(set_shrinker);
150
151/*
152 * Remove one
153 */
154void remove_shrinker(struct shrinker *shrinker)
155{
156 down_write(&shrinker_rwsem);
157 list_del(&shrinker->list);
158 up_write(&shrinker_rwsem);
159 kfree(shrinker);
160}
161EXPORT_SYMBOL(remove_shrinker);
162
163#define SHRINK_BATCH 128
164/*
165 * Call the shrink functions to age shrinkable caches
166 *
167 * Here we assume it costs one seek to replace a lru page and that it also
168 * takes a seek to recreate a cache object. With this in mind we age equal
169 * percentages of the lru and ageable caches. This should balance the seeks
170 * generated by these structures.
171 *
172 * If the vm encounted mapped pages on the LRU it increase the pressure on
173 * slab to avoid swapping.
174 *
175 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
176 *
177 * `lru_pages' represents the number of on-LRU pages in all the zones which
178 * are eligible for the caller's allocation attempt. It is used for balancing
179 * slab reclaim versus page reclaim.
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700180 *
181 * Returns the number of slab objects which we shrunk.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 */
Andrew Morton9d0243b2006-01-08 01:00:39 -0800183int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184{
185 struct shrinker *shrinker;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700186 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187
188 if (scanned == 0)
189 scanned = SWAP_CLUSTER_MAX;
190
191 if (!down_read_trylock(&shrinker_rwsem))
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700192 return 1; /* Assume we'll be able to shrink next time */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193
194 list_for_each_entry(shrinker, &shrinker_list, list) {
195 unsigned long long delta;
196 unsigned long total_scan;
Andrea Arcangeliea164d72005-11-28 13:44:15 -0800197 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198
199 delta = (4 * scanned) / shrinker->seeks;
Andrea Arcangeliea164d72005-11-28 13:44:15 -0800200 delta *= max_pass;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201 do_div(delta, lru_pages + 1);
202 shrinker->nr += delta;
Andrea Arcangeliea164d72005-11-28 13:44:15 -0800203 if (shrinker->nr < 0) {
204 printk(KERN_ERR "%s: nr=%ld\n",
205 __FUNCTION__, shrinker->nr);
206 shrinker->nr = max_pass;
207 }
208
209 /*
210 * Avoid risking looping forever due to too large nr value:
211 * never try to free more than twice the estimate number of
212 * freeable entries.
213 */
214 if (shrinker->nr > max_pass * 2)
215 shrinker->nr = max_pass * 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216
217 total_scan = shrinker->nr;
218 shrinker->nr = 0;
219
220 while (total_scan >= SHRINK_BATCH) {
221 long this_scan = SHRINK_BATCH;
222 int shrink_ret;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700223 int nr_before;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700225 nr_before = (*shrinker->shrinker)(0, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
227 if (shrink_ret == -1)
228 break;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700229 if (shrink_ret < nr_before)
230 ret += nr_before - shrink_ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700231 mod_page_state(slabs_scanned, this_scan);
232 total_scan -= this_scan;
233
234 cond_resched();
235 }
236
237 shrinker->nr += total_scan;
238 }
239 up_read(&shrinker_rwsem);
akpm@osdl.orgb15e0902005-06-21 17:14:35 -0700240 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700241}
242
243/* Called without lock on whether page is mapped, so answer is unstable */
244static inline int page_mapping_inuse(struct page *page)
245{
246 struct address_space *mapping;
247
248 /* Page is in somebody's page tables. */
249 if (page_mapped(page))
250 return 1;
251
252 /* Be more reluctant to reclaim swapcache than pagecache */
253 if (PageSwapCache(page))
254 return 1;
255
256 mapping = page_mapping(page);
257 if (!mapping)
258 return 0;
259
260 /* File is mmap'd by somebody? */
261 return mapping_mapped(mapping);
262}
263
264static inline int is_page_cache_freeable(struct page *page)
265{
266 return page_count(page) - !!PagePrivate(page) == 2;
267}
268
269static int may_write_to_queue(struct backing_dev_info *bdi)
270{
Christoph Lameter930d9152006-01-08 01:00:47 -0800271 if (current->flags & PF_SWAPWRITE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272 return 1;
273 if (!bdi_write_congested(bdi))
274 return 1;
275 if (bdi == current->backing_dev_info)
276 return 1;
277 return 0;
278}
279
280/*
281 * We detected a synchronous write error writing a page out. Probably
282 * -ENOSPC. We need to propagate that into the address_space for a subsequent
283 * fsync(), msync() or close().
284 *
285 * The tricky part is that after writepage we cannot touch the mapping: nothing
286 * prevents it from being freed up. But we have a ref on the page and once
287 * that page is locked, the mapping is pinned.
288 *
289 * We're allowed to run sleeping lock_page() here because we know the caller has
290 * __GFP_FS.
291 */
292static void handle_write_error(struct address_space *mapping,
293 struct page *page, int error)
294{
295 lock_page(page);
296 if (page_mapping(page) == mapping) {
297 if (error == -ENOSPC)
298 set_bit(AS_ENOSPC, &mapping->flags);
299 else
300 set_bit(AS_EIO, &mapping->flags);
301 }
302 unlock_page(page);
303}
304
305/*
306 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
307 */
308static pageout_t pageout(struct page *page, struct address_space *mapping)
309{
310 /*
311 * If the page is dirty, only perform writeback if that write
312 * will be non-blocking. To prevent this allocation from being
313 * stalled by pagecache activity. But note that there may be
314 * stalls if we need to run get_block(). We could test
315 * PagePrivate for that.
316 *
317 * If this process is currently in generic_file_write() against
318 * this page's queue, we can perform writeback even if that
319 * will block.
320 *
321 * If the page is swapcache, write it back even if that would
322 * block, for some throttling. This happens by accident, because
323 * swap_backing_dev_info is bust: it doesn't reflect the
324 * congestion state of the swapdevs. Easy to fix, if needed.
325 * See swapfile.c:page_queue_congested().
326 */
327 if (!is_page_cache_freeable(page))
328 return PAGE_KEEP;
329 if (!mapping) {
330 /*
331 * Some data journaling orphaned pages can have
332 * page->mapping == NULL while being dirty with clean buffers.
333 */
akpm@osdl.org323aca62005-04-16 15:24:06 -0700334 if (PagePrivate(page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700335 if (try_to_free_buffers(page)) {
336 ClearPageDirty(page);
337 printk("%s: orphaned page\n", __FUNCTION__);
338 return PAGE_CLEAN;
339 }
340 }
341 return PAGE_KEEP;
342 }
343 if (mapping->a_ops->writepage == NULL)
344 return PAGE_ACTIVATE;
345 if (!may_write_to_queue(mapping->backing_dev_info))
346 return PAGE_KEEP;
347
348 if (clear_page_dirty_for_io(page)) {
349 int res;
350 struct writeback_control wbc = {
351 .sync_mode = WB_SYNC_NONE,
352 .nr_to_write = SWAP_CLUSTER_MAX,
353 .nonblocking = 1,
354 .for_reclaim = 1,
355 };
356
357 SetPageReclaim(page);
358 res = mapping->a_ops->writepage(page, &wbc);
359 if (res < 0)
360 handle_write_error(mapping, page, res);
Zach Brown994fc28c2005-12-15 14:28:17 -0800361 if (res == AOP_WRITEPAGE_ACTIVATE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700362 ClearPageReclaim(page);
363 return PAGE_ACTIVATE;
364 }
365 if (!PageWriteback(page)) {
366 /* synchronous write or broken a_ops? */
367 ClearPageReclaim(page);
368 }
369
370 return PAGE_SUCCESS;
371 }
372
373 return PAGE_CLEAN;
374}
375
Christoph Lameter49d2e9c2006-01-08 01:00:48 -0800376static int remove_mapping(struct address_space *mapping, struct page *page)
377{
378 if (!mapping)
379 return 0; /* truncate got there first */
380
381 write_lock_irq(&mapping->tree_lock);
382
383 /*
384 * The non-racy check for busy page. It is critical to check
385 * PageDirty _after_ making sure that the page is freeable and
386 * not in use by anybody. (pagecache + us == 2)
387 */
388 if (unlikely(page_count(page) != 2))
389 goto cannot_free;
390 smp_rmb();
391 if (unlikely(PageDirty(page)))
392 goto cannot_free;
393
394 if (PageSwapCache(page)) {
395 swp_entry_t swap = { .val = page_private(page) };
396 __delete_from_swap_cache(page);
397 write_unlock_irq(&mapping->tree_lock);
398 swap_free(swap);
399 __put_page(page); /* The pagecache ref */
400 return 1;
401 }
402
403 __remove_from_page_cache(page);
404 write_unlock_irq(&mapping->tree_lock);
405 __put_page(page);
406 return 1;
407
408cannot_free:
409 write_unlock_irq(&mapping->tree_lock);
410 return 0;
411}
412
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413/*
414 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
415 */
416static int shrink_list(struct list_head *page_list, struct scan_control *sc)
417{
418 LIST_HEAD(ret_pages);
419 struct pagevec freed_pvec;
420 int pgactivate = 0;
421 int reclaimed = 0;
422
423 cond_resched();
424
425 pagevec_init(&freed_pvec, 1);
426 while (!list_empty(page_list)) {
427 struct address_space *mapping;
428 struct page *page;
429 int may_enter_fs;
430 int referenced;
431
432 cond_resched();
433
434 page = lru_to_page(page_list);
435 list_del(&page->lru);
436
437 if (TestSetPageLocked(page))
438 goto keep;
439
440 BUG_ON(PageActive(page));
441
442 sc->nr_scanned++;
443 /* Double the slab pressure for mapped and swapcache pages */
444 if (page_mapped(page) || PageSwapCache(page))
445 sc->nr_scanned++;
446
447 if (PageWriteback(page))
448 goto keep_locked;
449
Rik van Rielf7b7fd82005-11-28 13:44:07 -0800450 referenced = page_referenced(page, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 /* In active use or really unfreeable? Activate it. */
452 if (referenced && page_mapping_inuse(page))
453 goto activate_locked;
454
455#ifdef CONFIG_SWAP
456 /*
457 * Anonymous process memory has backing store?
458 * Try to allocate it some swap space here.
459 */
Lee Schermerhornc3400102005-10-29 18:15:51 -0700460 if (PageAnon(page) && !PageSwapCache(page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700461 if (!add_to_swap(page))
462 goto activate_locked;
463 }
464#endif /* CONFIG_SWAP */
465
466 mapping = page_mapping(page);
467 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
468 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
469
470 /*
471 * The page is mapped into the page tables of one or more
472 * processes. Try to unmap it here.
473 */
474 if (page_mapped(page) && mapping) {
475 switch (try_to_unmap(page)) {
476 case SWAP_FAIL:
477 goto activate_locked;
478 case SWAP_AGAIN:
479 goto keep_locked;
480 case SWAP_SUCCESS:
481 ; /* try to free the page below */
482 }
483 }
484
485 if (PageDirty(page)) {
486 if (referenced)
487 goto keep_locked;
488 if (!may_enter_fs)
489 goto keep_locked;
490 if (laptop_mode && !sc->may_writepage)
491 goto keep_locked;
492
493 /* Page is dirty, try to write it out here */
494 switch(pageout(page, mapping)) {
495 case PAGE_KEEP:
496 goto keep_locked;
497 case PAGE_ACTIVATE:
498 goto activate_locked;
499 case PAGE_SUCCESS:
500 if (PageWriteback(page) || PageDirty(page))
501 goto keep;
502 /*
503 * A synchronous write - probably a ramdisk. Go
504 * ahead and try to reclaim the page.
505 */
506 if (TestSetPageLocked(page))
507 goto keep;
508 if (PageDirty(page) || PageWriteback(page))
509 goto keep_locked;
510 mapping = page_mapping(page);
511 case PAGE_CLEAN:
512 ; /* try to free the page below */
513 }
514 }
515
516 /*
517 * If the page has buffers, try to free the buffer mappings
518 * associated with this page. If we succeed we try to free
519 * the page as well.
520 *
521 * We do this even if the page is PageDirty().
522 * try_to_release_page() does not perform I/O, but it is
523 * possible for a page to have PageDirty set, but it is actually
524 * clean (all its buffers are clean). This happens if the
525 * buffers were written out directly, with submit_bh(). ext3
526 * will do this, as well as the blockdev mapping.
527 * try_to_release_page() will discover that cleanness and will
528 * drop the buffers and mark the page clean - it can be freed.
529 *
530 * Rarely, pages can have buffers and no ->mapping. These are
531 * the pages which were not successfully invalidated in
532 * truncate_complete_page(). We try to drop those buffers here
533 * and if that worked, and the page is no longer mapped into
534 * process address space (page_count == 1) it can be freed.
535 * Otherwise, leave the page on the LRU so it is swappable.
536 */
537 if (PagePrivate(page)) {
538 if (!try_to_release_page(page, sc->gfp_mask))
539 goto activate_locked;
540 if (!mapping && page_count(page) == 1)
541 goto free_it;
542 }
543
Christoph Lameter49d2e9c2006-01-08 01:00:48 -0800544 if (!remove_mapping(mapping, page))
545 goto keep_locked;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546
547free_it:
548 unlock_page(page);
549 reclaimed++;
550 if (!pagevec_add(&freed_pvec, page))
551 __pagevec_release_nonlru(&freed_pvec);
552 continue;
553
554activate_locked:
555 SetPageActive(page);
556 pgactivate++;
557keep_locked:
558 unlock_page(page);
559keep:
560 list_add(&page->lru, &ret_pages);
561 BUG_ON(PageLRU(page));
562 }
563 list_splice(&ret_pages, page_list);
564 if (pagevec_count(&freed_pvec))
565 __pagevec_release_nonlru(&freed_pvec);
566 mod_page_state(pgactivate, pgactivate);
567 sc->nr_reclaimed += reclaimed;
568 return reclaimed;
569}
570
571/*
Christoph Lameter49d2e9c2006-01-08 01:00:48 -0800572 * swapout a single page
573 * page is locked upon entry, unlocked on exit
574 *
575 * return codes:
576 * 0 = complete
577 * 1 = retry
578 */
579static int swap_page(struct page *page)
580{
581 struct address_space *mapping = page_mapping(page);
582
583 if (page_mapped(page) && mapping)
584 if (try_to_unmap(page) != SWAP_SUCCESS)
585 goto unlock_retry;
586
587 if (PageDirty(page)) {
588 /* Page is dirty, try to write it out here */
589 switch(pageout(page, mapping)) {
590 case PAGE_KEEP:
591 case PAGE_ACTIVATE:
592 goto unlock_retry;
593
594 case PAGE_SUCCESS:
595 goto retry;
596
597 case PAGE_CLEAN:
598 ; /* try to free the page below */
599 }
600 }
601
602 if (PagePrivate(page)) {
603 if (!try_to_release_page(page, GFP_KERNEL) ||
604 (!mapping && page_count(page) == 1))
605 goto unlock_retry;
606 }
607
608 if (remove_mapping(mapping, page)) {
609 /* Success */
610 unlock_page(page);
611 return 0;
612 }
613
614unlock_retry:
615 unlock_page(page);
616
617retry:
618 return 1;
619}
620/*
621 * migrate_pages
622 *
623 * Two lists are passed to this function. The first list
624 * contains the pages isolated from the LRU to be migrated.
625 * The second list contains new pages that the pages isolated
626 * can be moved to. If the second list is NULL then all
627 * pages are swapped out.
628 *
629 * The function returns after 10 attempts or if no pages
630 * are movable anymore because t has become empty
631 * or no retryable pages exist anymore.
632 *
633 * SIMPLIFIED VERSION: This implementation of migrate_pages
634 * is only swapping out pages and never touches the second
635 * list. The direct migration patchset
636 * extends this function to avoid the use of swap.
637 */
638int migrate_pages(struct list_head *l, struct list_head *t)
639{
640 int retry;
641 LIST_HEAD(failed);
642 int nr_failed = 0;
643 int pass = 0;
644 struct page *page;
645 struct page *page2;
646 int swapwrite = current->flags & PF_SWAPWRITE;
647
648 if (!swapwrite)
649 current->flags |= PF_SWAPWRITE;
650
651redo:
652 retry = 0;
653
654 list_for_each_entry_safe(page, page2, l, lru) {
655 cond_resched();
656
657 /*
658 * Skip locked pages during the first two passes to give the
659 * functions holding the lock time to release the page. Later we use
660 * lock_page to have a higher chance of acquiring the lock.
661 */
662 if (pass > 2)
663 lock_page(page);
664 else
665 if (TestSetPageLocked(page))
666 goto retry_later;
667
668 /*
669 * Only wait on writeback if we have already done a pass where
670 * we we may have triggered writeouts for lots of pages.
671 */
672 if (pass > 0)
673 wait_on_page_writeback(page);
674 else
675 if (PageWriteback(page)) {
676 unlock_page(page);
677 goto retry_later;
678 }
679
680#ifdef CONFIG_SWAP
681 if (PageAnon(page) && !PageSwapCache(page)) {
682 if (!add_to_swap(page)) {
683 unlock_page(page);
684 list_move(&page->lru, &failed);
685 nr_failed++;
686 continue;
687 }
688 }
689#endif /* CONFIG_SWAP */
690
691 /*
692 * Page is properly locked and writeback is complete.
693 * Try to migrate the page.
694 */
695 if (swap_page(page)) {
696retry_later:
697 retry++;
698 }
699 }
700 if (retry && pass++ < 10)
701 goto redo;
702
703 if (!swapwrite)
704 current->flags &= ~PF_SWAPWRITE;
705
706 if (!list_empty(&failed))
707 list_splice(&failed, l);
708
709 return nr_failed + retry;
710}
711
712/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700713 * zone->lru_lock is heavily contended. Some of the functions that
714 * shrink the lists perform better by taking out a batch of pages
715 * and working on them outside the LRU lock.
716 *
717 * For pagecache intensive workloads, this function is the hottest
718 * spot in the kernel (apart from copy_*_user functions).
719 *
720 * Appropriate locks must be held before calling this function.
721 *
722 * @nr_to_scan: The number of pages to look through on the list.
723 * @src: The LRU list to pull pages off.
724 * @dst: The temp list to put pages on to.
725 * @scanned: The number of pages that were scanned.
726 *
727 * returns how many pages were moved onto *@dst.
728 */
729static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
730 struct list_head *dst, int *scanned)
731{
732 int nr_taken = 0;
733 struct page *page;
734 int scan = 0;
735
736 while (scan++ < nr_to_scan && !list_empty(src)) {
737 page = lru_to_page(src);
738 prefetchw_prev_lru_page(page, src, flags);
739
Christoph Lameter21eac812006-01-08 01:00:45 -0800740 switch (__isolate_lru_page(page)) {
741 case 1:
742 /* Succeeded to isolate page */
743 list_move(&page->lru, dst);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744 nr_taken++;
Christoph Lameter21eac812006-01-08 01:00:45 -0800745 break;
746 case -ENOENT:
747 /* Not possible to isolate */
748 list_move(&page->lru, src);
749 break;
750 default:
751 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752 }
753 }
754
755 *scanned = scan;
756 return nr_taken;
757}
758
Christoph Lameter21eac812006-01-08 01:00:45 -0800759static void lru_add_drain_per_cpu(void *dummy)
760{
761 lru_add_drain();
762}
763
764/*
765 * Isolate one page from the LRU lists and put it on the
766 * indicated list. Do necessary cache draining if the
767 * page is not on the LRU lists yet.
768 *
769 * Result:
770 * 0 = page not on LRU list
771 * 1 = page removed from LRU list and added to the specified list.
772 * -ENOENT = page is being freed elsewhere.
773 */
774int isolate_lru_page(struct page *page)
775{
776 int rc = 0;
777 struct zone *zone = page_zone(page);
778
779redo:
780 spin_lock_irq(&zone->lru_lock);
781 rc = __isolate_lru_page(page);
782 if (rc == 1) {
783 if (PageActive(page))
784 del_page_from_active_list(zone, page);
785 else
786 del_page_from_inactive_list(zone, page);
787 }
788 spin_unlock_irq(&zone->lru_lock);
789 if (rc == 0) {
790 /*
791 * Maybe this page is still waiting for a cpu to drain it
792 * from one of the lru lists?
793 */
794 rc = schedule_on_each_cpu(lru_add_drain_per_cpu, NULL);
795 if (rc == 0 && PageLRU(page))
796 goto redo;
797 }
798 return rc;
799}
800
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801/*
802 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
803 */
804static void shrink_cache(struct zone *zone, struct scan_control *sc)
805{
806 LIST_HEAD(page_list);
807 struct pagevec pvec;
808 int max_scan = sc->nr_to_scan;
809
810 pagevec_init(&pvec, 1);
811
812 lru_add_drain();
813 spin_lock_irq(&zone->lru_lock);
814 while (max_scan > 0) {
815 struct page *page;
816 int nr_taken;
817 int nr_scan;
818 int nr_freed;
819
820 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
821 &zone->inactive_list,
822 &page_list, &nr_scan);
823 zone->nr_inactive -= nr_taken;
824 zone->pages_scanned += nr_scan;
825 spin_unlock_irq(&zone->lru_lock);
826
827 if (nr_taken == 0)
828 goto done;
829
830 max_scan -= nr_scan;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700831 nr_freed = shrink_list(&page_list, sc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832
Nick Piggina74609f2006-01-06 00:11:20 -0800833 local_irq_disable();
834 if (current_is_kswapd()) {
835 __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
836 __mod_page_state(kswapd_steal, nr_freed);
837 } else
838 __mod_page_state_zone(zone, pgscan_direct, nr_scan);
839 __mod_page_state_zone(zone, pgsteal, nr_freed);
840
841 spin_lock(&zone->lru_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842 /*
843 * Put back any unfreeable pages.
844 */
845 while (!list_empty(&page_list)) {
846 page = lru_to_page(&page_list);
847 if (TestSetPageLRU(page))
848 BUG();
849 list_del(&page->lru);
850 if (PageActive(page))
851 add_page_to_active_list(zone, page);
852 else
853 add_page_to_inactive_list(zone, page);
854 if (!pagevec_add(&pvec, page)) {
855 spin_unlock_irq(&zone->lru_lock);
856 __pagevec_release(&pvec);
857 spin_lock_irq(&zone->lru_lock);
858 }
859 }
860 }
861 spin_unlock_irq(&zone->lru_lock);
862done:
863 pagevec_release(&pvec);
864}
865
Christoph Lameter21eac812006-01-08 01:00:45 -0800866static inline void move_to_lru(struct page *page)
867{
868 list_del(&page->lru);
869 if (PageActive(page)) {
870 /*
871 * lru_cache_add_active checks that
872 * the PG_active bit is off.
873 */
874 ClearPageActive(page);
875 lru_cache_add_active(page);
876 } else {
877 lru_cache_add(page);
878 }
879 put_page(page);
880}
881
882/*
883 * Add isolated pages on the list back to the LRU
884 *
885 * returns the number of pages put back.
886 */
887int putback_lru_pages(struct list_head *l)
888{
889 struct page *page;
890 struct page *page2;
891 int count = 0;
892
893 list_for_each_entry_safe(page, page2, l, lru) {
894 move_to_lru(page);
895 count++;
896 }
897 return count;
898}
899
Linus Torvalds1da177e2005-04-16 15:20:36 -0700900/*
901 * This moves pages from the active list to the inactive list.
902 *
903 * We move them the other way if the page is referenced by one or more
904 * processes, from rmap.
905 *
906 * If the pages are mostly unmapped, the processing is fast and it is
907 * appropriate to hold zone->lru_lock across the whole operation. But if
908 * the pages are mapped, the processing is slow (page_referenced()) so we
909 * should drop zone->lru_lock around each page. It's impossible to balance
910 * this, so instead we remove the pages from the LRU while processing them.
911 * It is safe to rely on PG_active against the non-LRU pages in here because
912 * nobody will play with that bit on a non-LRU page.
913 *
914 * The downside is that we have to touch page->_count against each page.
915 * But we had to alter page->flags anyway.
916 */
917static void
918refill_inactive_zone(struct zone *zone, struct scan_control *sc)
919{
920 int pgmoved;
921 int pgdeactivate = 0;
922 int pgscanned;
923 int nr_pages = sc->nr_to_scan;
924 LIST_HEAD(l_hold); /* The pages which were snipped off */
925 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
926 LIST_HEAD(l_active); /* Pages to go onto the active_list */
927 struct page *page;
928 struct pagevec pvec;
929 int reclaim_mapped = 0;
930 long mapped_ratio;
931 long distress;
932 long swap_tendency;
933
934 lru_add_drain();
935 spin_lock_irq(&zone->lru_lock);
936 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
937 &l_hold, &pgscanned);
938 zone->pages_scanned += pgscanned;
939 zone->nr_active -= pgmoved;
940 spin_unlock_irq(&zone->lru_lock);
941
942 /*
943 * `distress' is a measure of how much trouble we're having reclaiming
944 * pages. 0 -> no problems. 100 -> great trouble.
945 */
946 distress = 100 >> zone->prev_priority;
947
948 /*
949 * The point of this algorithm is to decide when to start reclaiming
950 * mapped memory instead of just pagecache. Work out how much memory
951 * is mapped.
952 */
953 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
954
955 /*
956 * Now decide how much we really want to unmap some pages. The mapped
957 * ratio is downgraded - just because there's a lot of mapped memory
958 * doesn't necessarily mean that page reclaim isn't succeeding.
959 *
960 * The distress ratio is important - we don't want to start going oom.
961 *
962 * A 100% value of vm_swappiness overrides this algorithm altogether.
963 */
964 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
965
966 /*
967 * Now use this metric to decide whether to start moving mapped memory
968 * onto the inactive list.
969 */
970 if (swap_tendency >= 100)
971 reclaim_mapped = 1;
972
973 while (!list_empty(&l_hold)) {
974 cond_resched();
975 page = lru_to_page(&l_hold);
976 list_del(&page->lru);
977 if (page_mapped(page)) {
978 if (!reclaim_mapped ||
979 (total_swap_pages == 0 && PageAnon(page)) ||
Rik van Rielf7b7fd82005-11-28 13:44:07 -0800980 page_referenced(page, 0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981 list_add(&page->lru, &l_active);
982 continue;
983 }
984 }
985 list_add(&page->lru, &l_inactive);
986 }
987
988 pagevec_init(&pvec, 1);
989 pgmoved = 0;
990 spin_lock_irq(&zone->lru_lock);
991 while (!list_empty(&l_inactive)) {
992 page = lru_to_page(&l_inactive);
993 prefetchw_prev_lru_page(page, &l_inactive, flags);
994 if (TestSetPageLRU(page))
995 BUG();
996 if (!TestClearPageActive(page))
997 BUG();
998 list_move(&page->lru, &zone->inactive_list);
999 pgmoved++;
1000 if (!pagevec_add(&pvec, page)) {
1001 zone->nr_inactive += pgmoved;
1002 spin_unlock_irq(&zone->lru_lock);
1003 pgdeactivate += pgmoved;
1004 pgmoved = 0;
1005 if (buffer_heads_over_limit)
1006 pagevec_strip(&pvec);
1007 __pagevec_release(&pvec);
1008 spin_lock_irq(&zone->lru_lock);
1009 }
1010 }
1011 zone->nr_inactive += pgmoved;
1012 pgdeactivate += pgmoved;
1013 if (buffer_heads_over_limit) {
1014 spin_unlock_irq(&zone->lru_lock);
1015 pagevec_strip(&pvec);
1016 spin_lock_irq(&zone->lru_lock);
1017 }
1018
1019 pgmoved = 0;
1020 while (!list_empty(&l_active)) {
1021 page = lru_to_page(&l_active);
1022 prefetchw_prev_lru_page(page, &l_active, flags);
1023 if (TestSetPageLRU(page))
1024 BUG();
1025 BUG_ON(!PageActive(page));
1026 list_move(&page->lru, &zone->active_list);
1027 pgmoved++;
1028 if (!pagevec_add(&pvec, page)) {
1029 zone->nr_active += pgmoved;
1030 pgmoved = 0;
1031 spin_unlock_irq(&zone->lru_lock);
1032 __pagevec_release(&pvec);
1033 spin_lock_irq(&zone->lru_lock);
1034 }
1035 }
1036 zone->nr_active += pgmoved;
Nick Piggina74609f2006-01-06 00:11:20 -08001037 spin_unlock(&zone->lru_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038
Nick Piggina74609f2006-01-06 00:11:20 -08001039 __mod_page_state_zone(zone, pgrefill, pgscanned);
1040 __mod_page_state(pgdeactivate, pgdeactivate);
1041 local_irq_enable();
1042
1043 pagevec_release(&pvec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044}
1045
1046/*
1047 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1048 */
1049static void
1050shrink_zone(struct zone *zone, struct scan_control *sc)
1051{
1052 unsigned long nr_active;
1053 unsigned long nr_inactive;
1054
Martin Hicks53e9a612005-09-03 15:54:51 -07001055 atomic_inc(&zone->reclaim_in_progress);
1056
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057 /*
1058 * Add one to `nr_to_scan' just to make sure that the kernel will
1059 * slowly sift through the active list.
1060 */
1061 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
1062 nr_active = zone->nr_scan_active;
1063 if (nr_active >= sc->swap_cluster_max)
1064 zone->nr_scan_active = 0;
1065 else
1066 nr_active = 0;
1067
1068 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
1069 nr_inactive = zone->nr_scan_inactive;
1070 if (nr_inactive >= sc->swap_cluster_max)
1071 zone->nr_scan_inactive = 0;
1072 else
1073 nr_inactive = 0;
1074
Linus Torvalds1da177e2005-04-16 15:20:36 -07001075 while (nr_active || nr_inactive) {
1076 if (nr_active) {
1077 sc->nr_to_scan = min(nr_active,
1078 (unsigned long)sc->swap_cluster_max);
1079 nr_active -= sc->nr_to_scan;
1080 refill_inactive_zone(zone, sc);
1081 }
1082
1083 if (nr_inactive) {
1084 sc->nr_to_scan = min(nr_inactive,
1085 (unsigned long)sc->swap_cluster_max);
1086 nr_inactive -= sc->nr_to_scan;
1087 shrink_cache(zone, sc);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088 }
1089 }
1090
1091 throttle_vm_writeout();
Martin Hicks53e9a612005-09-03 15:54:51 -07001092
1093 atomic_dec(&zone->reclaim_in_progress);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094}
1095
1096/*
1097 * This is the direct reclaim path, for page-allocating processes. We only
1098 * try to reclaim pages from zones which will satisfy the caller's allocation
1099 * request.
1100 *
1101 * We reclaim from a zone even if that zone is over pages_high. Because:
1102 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1103 * allocation or
1104 * b) The zones may be over pages_high but they must go *over* pages_high to
1105 * satisfy the `incremental min' zone defense algorithm.
1106 *
1107 * Returns the number of reclaimed pages.
1108 *
1109 * If a zone is deemed to be full of pinned pages then just give it a light
1110 * scan then give up on it.
1111 */
1112static void
1113shrink_caches(struct zone **zones, struct scan_control *sc)
1114{
1115 int i;
1116
1117 for (i = 0; zones[i] != NULL; i++) {
1118 struct zone *zone = zones[i];
1119
Con Kolivasf3fe6512006-01-06 00:11:15 -08001120 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 continue;
1122
Paul Jackson9bf22292005-09-06 15:18:12 -07001123 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 continue;
1125
1126 zone->temp_priority = sc->priority;
1127 if (zone->prev_priority > sc->priority)
1128 zone->prev_priority = sc->priority;
1129
1130 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
1131 continue; /* Let kswapd poll it */
1132
1133 shrink_zone(zone, sc);
1134 }
1135}
1136
1137/*
1138 * This is the main entry point to direct page reclaim.
1139 *
1140 * If a full scan of the inactive list fails to free enough memory then we
1141 * are "out of memory" and something needs to be killed.
1142 *
1143 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1144 * high - the zone may be full of dirty or under-writeback pages, which this
1145 * caller can't do much about. We kick pdflush and take explicit naps in the
1146 * hope that some of these pages can be written. But if the allocating task
1147 * holds filesystem locks which prevent writeout this might not work, and the
1148 * allocation attempt will fail.
1149 */
Al Viro6daa0e22005-10-21 03:18:50 -04001150int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001151{
1152 int priority;
1153 int ret = 0;
1154 int total_scanned = 0, total_reclaimed = 0;
1155 struct reclaim_state *reclaim_state = current->reclaim_state;
1156 struct scan_control sc;
1157 unsigned long lru_pages = 0;
1158 int i;
1159
1160 sc.gfp_mask = gfp_mask;
1161 sc.may_writepage = 0;
1162
1163 inc_page_state(allocstall);
1164
1165 for (i = 0; zones[i] != NULL; i++) {
1166 struct zone *zone = zones[i];
1167
Paul Jackson9bf22292005-09-06 15:18:12 -07001168 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169 continue;
1170
1171 zone->temp_priority = DEF_PRIORITY;
1172 lru_pages += zone->nr_active + zone->nr_inactive;
1173 }
1174
1175 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1176 sc.nr_mapped = read_page_state(nr_mapped);
1177 sc.nr_scanned = 0;
1178 sc.nr_reclaimed = 0;
1179 sc.priority = priority;
1180 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
Rik van Rielf7b7fd82005-11-28 13:44:07 -08001181 if (!priority)
1182 disable_swap_token();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001183 shrink_caches(zones, &sc);
1184 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1185 if (reclaim_state) {
1186 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1187 reclaim_state->reclaimed_slab = 0;
1188 }
1189 total_scanned += sc.nr_scanned;
1190 total_reclaimed += sc.nr_reclaimed;
1191 if (total_reclaimed >= sc.swap_cluster_max) {
1192 ret = 1;
1193 goto out;
1194 }
1195
1196 /*
1197 * Try to write back as many pages as we just scanned. This
1198 * tends to cause slow streaming writers to write data to the
1199 * disk smoothly, at the dirtying rate, which is nice. But
1200 * that's undesirable in laptop mode, where we *want* lumpy
1201 * writeout. So in laptop mode, write out the whole world.
1202 */
1203 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
Pekka J Enberg687a21c2005-06-28 20:44:55 -07001204 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205 sc.may_writepage = 1;
1206 }
1207
1208 /* Take a nap, wait for some writeback to complete */
1209 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1210 blk_congestion_wait(WRITE, HZ/10);
1211 }
1212out:
1213 for (i = 0; zones[i] != 0; i++) {
1214 struct zone *zone = zones[i];
1215
Paul Jackson9bf22292005-09-06 15:18:12 -07001216 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001217 continue;
1218
1219 zone->prev_priority = zone->temp_priority;
1220 }
1221 return ret;
1222}
1223
1224/*
1225 * For kswapd, balance_pgdat() will work across all this node's zones until
1226 * they are all at pages_high.
1227 *
1228 * If `nr_pages' is non-zero then it is the number of pages which are to be
1229 * reclaimed, regardless of the zone occupancies. This is a software suspend
1230 * special.
1231 *
1232 * Returns the number of pages which were actually freed.
1233 *
1234 * There is special handling here for zones which are full of pinned pages.
1235 * This can happen if the pages are all mlocked, or if they are all used by
1236 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1237 * What we do is to detect the case where all pages in the zone have been
1238 * scanned twice and there has been zero successful reclaim. Mark the zone as
1239 * dead and from now on, only perform a short scan. Basically we're polling
1240 * the zone for when the problem goes away.
1241 *
1242 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1243 * zones which have free_pages > pages_high, but once a zone is found to have
1244 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1245 * of the number of free pages in the lower zones. This interoperates with
1246 * the page allocator fallback scheme to ensure that aging of pages is balanced
1247 * across the zones.
1248 */
1249static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1250{
1251 int to_free = nr_pages;
1252 int all_zones_ok;
1253 int priority;
1254 int i;
1255 int total_scanned, total_reclaimed;
1256 struct reclaim_state *reclaim_state = current->reclaim_state;
1257 struct scan_control sc;
1258
1259loop_again:
1260 total_scanned = 0;
1261 total_reclaimed = 0;
1262 sc.gfp_mask = GFP_KERNEL;
1263 sc.may_writepage = 0;
1264 sc.nr_mapped = read_page_state(nr_mapped);
1265
1266 inc_page_state(pageoutrun);
1267
1268 for (i = 0; i < pgdat->nr_zones; i++) {
1269 struct zone *zone = pgdat->node_zones + i;
1270
1271 zone->temp_priority = DEF_PRIORITY;
1272 }
1273
1274 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1275 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1276 unsigned long lru_pages = 0;
1277
Rik van Rielf7b7fd82005-11-28 13:44:07 -08001278 /* The swap token gets in the way of swapout... */
1279 if (!priority)
1280 disable_swap_token();
1281
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282 all_zones_ok = 1;
1283
1284 if (nr_pages == 0) {
1285 /*
1286 * Scan in the highmem->dma direction for the highest
1287 * zone which needs scanning
1288 */
1289 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1290 struct zone *zone = pgdat->node_zones + i;
1291
Con Kolivasf3fe6512006-01-06 00:11:15 -08001292 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 continue;
1294
1295 if (zone->all_unreclaimable &&
1296 priority != DEF_PRIORITY)
1297 continue;
1298
1299 if (!zone_watermark_ok(zone, order,
Rohit Seth7fb1d9f2005-11-13 16:06:43 -08001300 zone->pages_high, 0, 0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301 end_zone = i;
1302 goto scan;
1303 }
1304 }
1305 goto out;
1306 } else {
1307 end_zone = pgdat->nr_zones - 1;
1308 }
1309scan:
1310 for (i = 0; i <= end_zone; i++) {
1311 struct zone *zone = pgdat->node_zones + i;
1312
1313 lru_pages += zone->nr_active + zone->nr_inactive;
1314 }
1315
1316 /*
1317 * Now scan the zone in the dma->highmem direction, stopping
1318 * at the last zone which needs scanning.
1319 *
1320 * We do this because the page allocator works in the opposite
1321 * direction. This prevents the page allocator from allocating
1322 * pages behind kswapd's direction of progress, which would
1323 * cause too much scanning of the lower zones.
1324 */
1325 for (i = 0; i <= end_zone; i++) {
1326 struct zone *zone = pgdat->node_zones + i;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -07001327 int nr_slab;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328
Con Kolivasf3fe6512006-01-06 00:11:15 -08001329 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330 continue;
1331
1332 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1333 continue;
1334
1335 if (nr_pages == 0) { /* Not software suspend */
1336 if (!zone_watermark_ok(zone, order,
Rohit Seth7fb1d9f2005-11-13 16:06:43 -08001337 zone->pages_high, end_zone, 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001338 all_zones_ok = 0;
1339 }
1340 zone->temp_priority = priority;
1341 if (zone->prev_priority > priority)
1342 zone->prev_priority = priority;
1343 sc.nr_scanned = 0;
1344 sc.nr_reclaimed = 0;
1345 sc.priority = priority;
1346 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
Martin Hicks1e7e5a92005-06-21 17:14:43 -07001347 atomic_inc(&zone->reclaim_in_progress);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348 shrink_zone(zone, &sc);
Martin Hicks1e7e5a92005-06-21 17:14:43 -07001349 atomic_dec(&zone->reclaim_in_progress);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350 reclaim_state->reclaimed_slab = 0;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -07001351 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1352 lru_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001353 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1354 total_reclaimed += sc.nr_reclaimed;
1355 total_scanned += sc.nr_scanned;
1356 if (zone->all_unreclaimable)
1357 continue;
akpm@osdl.orgb15e0902005-06-21 17:14:35 -07001358 if (nr_slab == 0 && zone->pages_scanned >=
1359 (zone->nr_active + zone->nr_inactive) * 4)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 zone->all_unreclaimable = 1;
1361 /*
1362 * If we've done a decent amount of scanning and
1363 * the reclaim ratio is low, start doing writepage
1364 * even in laptop mode
1365 */
1366 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1367 total_scanned > total_reclaimed+total_reclaimed/2)
1368 sc.may_writepage = 1;
1369 }
1370 if (nr_pages && to_free > total_reclaimed)
1371 continue; /* swsusp: need to do more work */
1372 if (all_zones_ok)
1373 break; /* kswapd: all done */
1374 /*
1375 * OK, kswapd is getting into trouble. Take a nap, then take
1376 * another pass across the zones.
1377 */
1378 if (total_scanned && priority < DEF_PRIORITY - 2)
1379 blk_congestion_wait(WRITE, HZ/10);
1380
1381 /*
1382 * We do this so kswapd doesn't build up large priorities for
1383 * example when it is freeing in parallel with allocators. It
1384 * matches the direct reclaim path behaviour in terms of impact
1385 * on zone->*_priority.
1386 */
1387 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1388 break;
1389 }
1390out:
1391 for (i = 0; i < pgdat->nr_zones; i++) {
1392 struct zone *zone = pgdat->node_zones + i;
1393
1394 zone->prev_priority = zone->temp_priority;
1395 }
1396 if (!all_zones_ok) {
1397 cond_resched();
1398 goto loop_again;
1399 }
1400
1401 return total_reclaimed;
1402}
1403
1404/*
1405 * The background pageout daemon, started as a kernel thread
1406 * from the init process.
1407 *
1408 * This basically trickles out pages so that we have _some_
1409 * free memory available even if there is no other activity
1410 * that frees anything up. This is needed for things like routing
1411 * etc, where we otherwise might have all activity going on in
1412 * asynchronous contexts that cannot page things out.
1413 *
1414 * If there are applications that are active memory-allocators
1415 * (most normal use), this basically shouldn't matter.
1416 */
1417static int kswapd(void *p)
1418{
1419 unsigned long order;
1420 pg_data_t *pgdat = (pg_data_t*)p;
1421 struct task_struct *tsk = current;
1422 DEFINE_WAIT(wait);
1423 struct reclaim_state reclaim_state = {
1424 .reclaimed_slab = 0,
1425 };
1426 cpumask_t cpumask;
1427
1428 daemonize("kswapd%d", pgdat->node_id);
1429 cpumask = node_to_cpumask(pgdat->node_id);
1430 if (!cpus_empty(cpumask))
1431 set_cpus_allowed(tsk, cpumask);
1432 current->reclaim_state = &reclaim_state;
1433
1434 /*
1435 * Tell the memory management that we're a "memory allocator",
1436 * and that if we need more memory we should get access to it
1437 * regardless (see "__alloc_pages()"). "kswapd" should
1438 * never get caught in the normal page freeing logic.
1439 *
1440 * (Kswapd normally doesn't need memory anyway, but sometimes
1441 * you need a small amount of memory in order to be able to
1442 * page out something else, and this flag essentially protects
1443 * us from recursively trying to free more memory as we're
1444 * trying to free the first piece of memory in the first place).
1445 */
Christoph Lameter930d9152006-01-08 01:00:47 -08001446 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447
1448 order = 0;
1449 for ( ; ; ) {
1450 unsigned long new_order;
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07001451
1452 try_to_freeze();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453
1454 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1455 new_order = pgdat->kswapd_max_order;
1456 pgdat->kswapd_max_order = 0;
1457 if (order < new_order) {
1458 /*
1459 * Don't sleep if someone wants a larger 'order'
1460 * allocation
1461 */
1462 order = new_order;
1463 } else {
1464 schedule();
1465 order = pgdat->kswapd_max_order;
1466 }
1467 finish_wait(&pgdat->kswapd_wait, &wait);
1468
1469 balance_pgdat(pgdat, 0, order);
1470 }
1471 return 0;
1472}
1473
1474/*
1475 * A zone is low on free memory, so wake its kswapd task to service it.
1476 */
1477void wakeup_kswapd(struct zone *zone, int order)
1478{
1479 pg_data_t *pgdat;
1480
Con Kolivasf3fe6512006-01-06 00:11:15 -08001481 if (!populated_zone(zone))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482 return;
1483
1484 pgdat = zone->zone_pgdat;
Rohit Seth7fb1d9f2005-11-13 16:06:43 -08001485 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001486 return;
1487 if (pgdat->kswapd_max_order < order)
1488 pgdat->kswapd_max_order = order;
Paul Jackson9bf22292005-09-06 15:18:12 -07001489 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490 return;
Con Kolivas8d0986e2005-09-13 01:25:07 -07001491 if (!waitqueue_active(&pgdat->kswapd_wait))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 return;
Con Kolivas8d0986e2005-09-13 01:25:07 -07001493 wake_up_interruptible(&pgdat->kswapd_wait);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001494}
1495
1496#ifdef CONFIG_PM
1497/*
1498 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1499 * pages.
1500 */
1501int shrink_all_memory(int nr_pages)
1502{
1503 pg_data_t *pgdat;
1504 int nr_to_free = nr_pages;
1505 int ret = 0;
1506 struct reclaim_state reclaim_state = {
1507 .reclaimed_slab = 0,
1508 };
1509
1510 current->reclaim_state = &reclaim_state;
1511 for_each_pgdat(pgdat) {
1512 int freed;
1513 freed = balance_pgdat(pgdat, nr_to_free, 0);
1514 ret += freed;
1515 nr_to_free -= freed;
1516 if (nr_to_free <= 0)
1517 break;
1518 }
1519 current->reclaim_state = NULL;
1520 return ret;
1521}
1522#endif
1523
1524#ifdef CONFIG_HOTPLUG_CPU
1525/* It's optimal to keep kswapds on the same CPUs as their memory, but
1526 not required for correctness. So if the last cpu in a node goes
1527 away, we get changed to run anywhere: as the first one comes back,
1528 restore their cpu bindings. */
1529static int __devinit cpu_callback(struct notifier_block *nfb,
1530 unsigned long action,
1531 void *hcpu)
1532{
1533 pg_data_t *pgdat;
1534 cpumask_t mask;
1535
1536 if (action == CPU_ONLINE) {
1537 for_each_pgdat(pgdat) {
1538 mask = node_to_cpumask(pgdat->node_id);
1539 if (any_online_cpu(mask) != NR_CPUS)
1540 /* One of our CPUs online: restore mask */
1541 set_cpus_allowed(pgdat->kswapd, mask);
1542 }
1543 }
1544 return NOTIFY_OK;
1545}
1546#endif /* CONFIG_HOTPLUG_CPU */
1547
1548static int __init kswapd_init(void)
1549{
1550 pg_data_t *pgdat;
1551 swap_setup();
1552 for_each_pgdat(pgdat)
1553 pgdat->kswapd
1554 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1555 total_memory = nr_free_pagecache_pages();
1556 hotcpu_notifier(cpu_callback, 0);
1557 return 0;
1558}
1559
1560module_init(kswapd_init)