Kunihiko Hayashi | 667b925 | 2020-02-21 16:52:30 +0900 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * External DMA controller driver for UniPhier SoCs |
| 4 | * Copyright 2019 Socionext Inc. |
| 5 | * Author: Kunihiko Hayashi <hayashi.kunihiko@socionext.com> |
| 6 | */ |
| 7 | |
| 8 | #include <linux/bitops.h> |
| 9 | #include <linux/bitfield.h> |
| 10 | #include <linux/iopoll.h> |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/of.h> |
| 13 | #include <linux/of_dma.h> |
| 14 | #include <linux/platform_device.h> |
| 15 | |
| 16 | #include "dmaengine.h" |
| 17 | #include "virt-dma.h" |
| 18 | |
| 19 | #define XDMAC_CH_WIDTH 0x100 |
| 20 | |
| 21 | #define XDMAC_TFA 0x08 |
| 22 | #define XDMAC_TFA_MCNT_MASK GENMASK(23, 16) |
| 23 | #define XDMAC_TFA_MASK GENMASK(5, 0) |
| 24 | #define XDMAC_SADM 0x10 |
| 25 | #define XDMAC_SADM_STW_MASK GENMASK(25, 24) |
| 26 | #define XDMAC_SADM_SAM BIT(4) |
| 27 | #define XDMAC_SADM_SAM_FIXED XDMAC_SADM_SAM |
| 28 | #define XDMAC_SADM_SAM_INC 0 |
| 29 | #define XDMAC_DADM 0x14 |
| 30 | #define XDMAC_DADM_DTW_MASK XDMAC_SADM_STW_MASK |
| 31 | #define XDMAC_DADM_DAM XDMAC_SADM_SAM |
| 32 | #define XDMAC_DADM_DAM_FIXED XDMAC_SADM_SAM_FIXED |
| 33 | #define XDMAC_DADM_DAM_INC XDMAC_SADM_SAM_INC |
| 34 | #define XDMAC_EXSAD 0x18 |
| 35 | #define XDMAC_EXDAD 0x1c |
| 36 | #define XDMAC_SAD 0x20 |
| 37 | #define XDMAC_DAD 0x24 |
| 38 | #define XDMAC_ITS 0x28 |
| 39 | #define XDMAC_ITS_MASK GENMASK(25, 0) |
| 40 | #define XDMAC_TNUM 0x2c |
| 41 | #define XDMAC_TNUM_MASK GENMASK(15, 0) |
| 42 | #define XDMAC_TSS 0x30 |
| 43 | #define XDMAC_TSS_REQ BIT(0) |
| 44 | #define XDMAC_IEN 0x34 |
| 45 | #define XDMAC_IEN_ERRIEN BIT(1) |
| 46 | #define XDMAC_IEN_ENDIEN BIT(0) |
| 47 | #define XDMAC_STAT 0x40 |
| 48 | #define XDMAC_STAT_TENF BIT(0) |
| 49 | #define XDMAC_IR 0x44 |
| 50 | #define XDMAC_IR_ERRF BIT(1) |
| 51 | #define XDMAC_IR_ENDF BIT(0) |
| 52 | #define XDMAC_ID 0x48 |
| 53 | #define XDMAC_ID_ERRIDF BIT(1) |
| 54 | #define XDMAC_ID_ENDIDF BIT(0) |
| 55 | |
| 56 | #define XDMAC_MAX_CHANS 16 |
| 57 | #define XDMAC_INTERVAL_CLKS 20 |
| 58 | #define XDMAC_MAX_WORDS XDMAC_TNUM_MASK |
| 59 | |
| 60 | /* cut lower bit for maintain alignment of maximum transfer size */ |
| 61 | #define XDMAC_MAX_WORD_SIZE (XDMAC_ITS_MASK & ~GENMASK(3, 0)) |
| 62 | |
| 63 | #define UNIPHIER_XDMAC_BUSWIDTHS \ |
| 64 | (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| 65 | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| 66 | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ |
| 67 | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) |
| 68 | |
| 69 | struct uniphier_xdmac_desc_node { |
| 70 | dma_addr_t src; |
| 71 | dma_addr_t dst; |
| 72 | u32 burst_size; |
| 73 | u32 nr_burst; |
| 74 | }; |
| 75 | |
| 76 | struct uniphier_xdmac_desc { |
| 77 | struct virt_dma_desc vd; |
| 78 | |
| 79 | unsigned int nr_node; |
| 80 | unsigned int cur_node; |
| 81 | enum dma_transfer_direction dir; |
| 82 | struct uniphier_xdmac_desc_node nodes[]; |
| 83 | }; |
| 84 | |
| 85 | struct uniphier_xdmac_chan { |
| 86 | struct virt_dma_chan vc; |
| 87 | struct uniphier_xdmac_device *xdev; |
| 88 | struct uniphier_xdmac_desc *xd; |
| 89 | void __iomem *reg_ch_base; |
| 90 | struct dma_slave_config sconfig; |
| 91 | int id; |
| 92 | unsigned int req_factor; |
| 93 | }; |
| 94 | |
| 95 | struct uniphier_xdmac_device { |
| 96 | struct dma_device ddev; |
| 97 | void __iomem *reg_base; |
| 98 | int nr_chans; |
| 99 | struct uniphier_xdmac_chan channels[]; |
| 100 | }; |
| 101 | |
| 102 | static struct uniphier_xdmac_chan * |
| 103 | to_uniphier_xdmac_chan(struct virt_dma_chan *vc) |
| 104 | { |
| 105 | return container_of(vc, struct uniphier_xdmac_chan, vc); |
| 106 | } |
| 107 | |
| 108 | static struct uniphier_xdmac_desc * |
| 109 | to_uniphier_xdmac_desc(struct virt_dma_desc *vd) |
| 110 | { |
| 111 | return container_of(vd, struct uniphier_xdmac_desc, vd); |
| 112 | } |
| 113 | |
| 114 | /* xc->vc.lock must be held by caller */ |
| 115 | static struct uniphier_xdmac_desc * |
| 116 | uniphier_xdmac_next_desc(struct uniphier_xdmac_chan *xc) |
| 117 | { |
| 118 | struct virt_dma_desc *vd; |
| 119 | |
| 120 | vd = vchan_next_desc(&xc->vc); |
| 121 | if (!vd) |
| 122 | return NULL; |
| 123 | |
| 124 | list_del(&vd->node); |
| 125 | |
| 126 | return to_uniphier_xdmac_desc(vd); |
| 127 | } |
| 128 | |
| 129 | /* xc->vc.lock must be held by caller */ |
| 130 | static void uniphier_xdmac_chan_start(struct uniphier_xdmac_chan *xc, |
| 131 | struct uniphier_xdmac_desc *xd) |
| 132 | { |
| 133 | u32 src_mode, src_addr, src_width; |
| 134 | u32 dst_mode, dst_addr, dst_width; |
| 135 | u32 val, its, tnum; |
| 136 | enum dma_slave_buswidth buswidth; |
| 137 | |
| 138 | src_addr = xd->nodes[xd->cur_node].src; |
| 139 | dst_addr = xd->nodes[xd->cur_node].dst; |
| 140 | its = xd->nodes[xd->cur_node].burst_size; |
| 141 | tnum = xd->nodes[xd->cur_node].nr_burst; |
| 142 | |
| 143 | /* |
| 144 | * The width of MEM side must be 4 or 8 bytes, that does not |
| 145 | * affect that of DEV side and transfer size. |
| 146 | */ |
| 147 | if (xd->dir == DMA_DEV_TO_MEM) { |
| 148 | src_mode = XDMAC_SADM_SAM_FIXED; |
| 149 | buswidth = xc->sconfig.src_addr_width; |
| 150 | } else { |
| 151 | src_mode = XDMAC_SADM_SAM_INC; |
| 152 | buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES; |
| 153 | } |
| 154 | src_width = FIELD_PREP(XDMAC_SADM_STW_MASK, __ffs(buswidth)); |
| 155 | |
| 156 | if (xd->dir == DMA_MEM_TO_DEV) { |
| 157 | dst_mode = XDMAC_DADM_DAM_FIXED; |
| 158 | buswidth = xc->sconfig.dst_addr_width; |
| 159 | } else { |
| 160 | dst_mode = XDMAC_DADM_DAM_INC; |
| 161 | buswidth = DMA_SLAVE_BUSWIDTH_8_BYTES; |
| 162 | } |
| 163 | dst_width = FIELD_PREP(XDMAC_DADM_DTW_MASK, __ffs(buswidth)); |
| 164 | |
| 165 | /* setup transfer factor */ |
| 166 | val = FIELD_PREP(XDMAC_TFA_MCNT_MASK, XDMAC_INTERVAL_CLKS); |
| 167 | val |= FIELD_PREP(XDMAC_TFA_MASK, xc->req_factor); |
| 168 | writel(val, xc->reg_ch_base + XDMAC_TFA); |
| 169 | |
| 170 | /* setup the channel */ |
| 171 | writel(lower_32_bits(src_addr), xc->reg_ch_base + XDMAC_SAD); |
| 172 | writel(upper_32_bits(src_addr), xc->reg_ch_base + XDMAC_EXSAD); |
| 173 | |
| 174 | writel(lower_32_bits(dst_addr), xc->reg_ch_base + XDMAC_DAD); |
| 175 | writel(upper_32_bits(dst_addr), xc->reg_ch_base + XDMAC_EXDAD); |
| 176 | |
| 177 | src_mode |= src_width; |
| 178 | dst_mode |= dst_width; |
| 179 | writel(src_mode, xc->reg_ch_base + XDMAC_SADM); |
| 180 | writel(dst_mode, xc->reg_ch_base + XDMAC_DADM); |
| 181 | |
| 182 | writel(its, xc->reg_ch_base + XDMAC_ITS); |
| 183 | writel(tnum, xc->reg_ch_base + XDMAC_TNUM); |
| 184 | |
| 185 | /* enable interrupt */ |
| 186 | writel(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN, |
| 187 | xc->reg_ch_base + XDMAC_IEN); |
| 188 | |
| 189 | /* start XDMAC */ |
| 190 | val = readl(xc->reg_ch_base + XDMAC_TSS); |
| 191 | val |= XDMAC_TSS_REQ; |
| 192 | writel(val, xc->reg_ch_base + XDMAC_TSS); |
| 193 | } |
| 194 | |
| 195 | /* xc->vc.lock must be held by caller */ |
| 196 | static int uniphier_xdmac_chan_stop(struct uniphier_xdmac_chan *xc) |
| 197 | { |
| 198 | u32 val; |
| 199 | |
| 200 | /* disable interrupt */ |
| 201 | val = readl(xc->reg_ch_base + XDMAC_IEN); |
| 202 | val &= ~(XDMAC_IEN_ENDIEN | XDMAC_IEN_ERRIEN); |
| 203 | writel(val, xc->reg_ch_base + XDMAC_IEN); |
| 204 | |
| 205 | /* stop XDMAC */ |
| 206 | val = readl(xc->reg_ch_base + XDMAC_TSS); |
| 207 | val &= ~XDMAC_TSS_REQ; |
| 208 | writel(0, xc->reg_ch_base + XDMAC_TSS); |
| 209 | |
| 210 | /* wait until transfer is stopped */ |
| 211 | return readl_poll_timeout(xc->reg_ch_base + XDMAC_STAT, val, |
| 212 | !(val & XDMAC_STAT_TENF), 100, 1000); |
| 213 | } |
| 214 | |
| 215 | /* xc->vc.lock must be held by caller */ |
| 216 | static void uniphier_xdmac_start(struct uniphier_xdmac_chan *xc) |
| 217 | { |
| 218 | struct uniphier_xdmac_desc *xd; |
| 219 | |
| 220 | xd = uniphier_xdmac_next_desc(xc); |
| 221 | if (xd) |
| 222 | uniphier_xdmac_chan_start(xc, xd); |
| 223 | |
| 224 | /* set desc to chan regardless of xd is null */ |
| 225 | xc->xd = xd; |
| 226 | } |
| 227 | |
| 228 | static void uniphier_xdmac_chan_irq(struct uniphier_xdmac_chan *xc) |
| 229 | { |
| 230 | u32 stat; |
| 231 | int ret; |
| 232 | |
| 233 | spin_lock(&xc->vc.lock); |
| 234 | |
| 235 | stat = readl(xc->reg_ch_base + XDMAC_ID); |
| 236 | |
| 237 | if (stat & XDMAC_ID_ERRIDF) { |
| 238 | ret = uniphier_xdmac_chan_stop(xc); |
| 239 | if (ret) |
| 240 | dev_err(xc->xdev->ddev.dev, |
| 241 | "DMA transfer error with aborting issue\n"); |
| 242 | else |
| 243 | dev_err(xc->xdev->ddev.dev, |
| 244 | "DMA transfer error\n"); |
| 245 | |
| 246 | } else if ((stat & XDMAC_ID_ENDIDF) && xc->xd) { |
| 247 | xc->xd->cur_node++; |
| 248 | if (xc->xd->cur_node >= xc->xd->nr_node) { |
| 249 | vchan_cookie_complete(&xc->xd->vd); |
| 250 | uniphier_xdmac_start(xc); |
| 251 | } else { |
| 252 | uniphier_xdmac_chan_start(xc, xc->xd); |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | /* write bits to clear */ |
| 257 | writel(stat, xc->reg_ch_base + XDMAC_IR); |
| 258 | |
| 259 | spin_unlock(&xc->vc.lock); |
| 260 | } |
| 261 | |
| 262 | static irqreturn_t uniphier_xdmac_irq_handler(int irq, void *dev_id) |
| 263 | { |
| 264 | struct uniphier_xdmac_device *xdev = dev_id; |
| 265 | int i; |
| 266 | |
| 267 | for (i = 0; i < xdev->nr_chans; i++) |
| 268 | uniphier_xdmac_chan_irq(&xdev->channels[i]); |
| 269 | |
| 270 | return IRQ_HANDLED; |
| 271 | } |
| 272 | |
| 273 | static void uniphier_xdmac_free_chan_resources(struct dma_chan *chan) |
| 274 | { |
| 275 | vchan_free_chan_resources(to_virt_chan(chan)); |
| 276 | } |
| 277 | |
| 278 | static struct dma_async_tx_descriptor * |
| 279 | uniphier_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst, |
| 280 | dma_addr_t src, size_t len, unsigned long flags) |
| 281 | { |
| 282 | struct virt_dma_chan *vc = to_virt_chan(chan); |
| 283 | struct uniphier_xdmac_desc *xd; |
| 284 | unsigned int nr; |
| 285 | size_t burst_size, tlen; |
| 286 | int i; |
| 287 | |
| 288 | if (len > XDMAC_MAX_WORD_SIZE * XDMAC_MAX_WORDS) |
| 289 | return NULL; |
| 290 | |
| 291 | nr = 1 + len / XDMAC_MAX_WORD_SIZE; |
| 292 | |
| 293 | xd = kzalloc(struct_size(xd, nodes, nr), GFP_NOWAIT); |
| 294 | if (!xd) |
| 295 | return NULL; |
| 296 | |
| 297 | for (i = 0; i < nr; i++) { |
| 298 | burst_size = min_t(size_t, len, XDMAC_MAX_WORD_SIZE); |
| 299 | xd->nodes[i].src = src; |
| 300 | xd->nodes[i].dst = dst; |
| 301 | xd->nodes[i].burst_size = burst_size; |
| 302 | xd->nodes[i].nr_burst = len / burst_size; |
| 303 | tlen = rounddown(len, burst_size); |
| 304 | src += tlen; |
| 305 | dst += tlen; |
| 306 | len -= tlen; |
| 307 | } |
| 308 | |
| 309 | xd->dir = DMA_MEM_TO_MEM; |
| 310 | xd->nr_node = nr; |
| 311 | xd->cur_node = 0; |
| 312 | |
| 313 | return vchan_tx_prep(vc, &xd->vd, flags); |
| 314 | } |
| 315 | |
| 316 | static struct dma_async_tx_descriptor * |
| 317 | uniphier_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, |
| 318 | unsigned int sg_len, |
| 319 | enum dma_transfer_direction direction, |
| 320 | unsigned long flags, void *context) |
| 321 | { |
| 322 | struct virt_dma_chan *vc = to_virt_chan(chan); |
| 323 | struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc); |
| 324 | struct uniphier_xdmac_desc *xd; |
| 325 | struct scatterlist *sg; |
| 326 | enum dma_slave_buswidth buswidth; |
| 327 | u32 maxburst; |
| 328 | int i; |
| 329 | |
| 330 | if (!is_slave_direction(direction)) |
| 331 | return NULL; |
| 332 | |
| 333 | if (direction == DMA_DEV_TO_MEM) { |
| 334 | buswidth = xc->sconfig.src_addr_width; |
| 335 | maxburst = xc->sconfig.src_maxburst; |
| 336 | } else { |
| 337 | buswidth = xc->sconfig.dst_addr_width; |
| 338 | maxburst = xc->sconfig.dst_maxburst; |
| 339 | } |
| 340 | |
| 341 | if (!maxburst) |
| 342 | maxburst = 1; |
| 343 | if (maxburst > xc->xdev->ddev.max_burst) { |
| 344 | dev_err(xc->xdev->ddev.dev, |
| 345 | "Exceed maximum number of burst words\n"); |
| 346 | return NULL; |
| 347 | } |
| 348 | |
| 349 | xd = kzalloc(struct_size(xd, nodes, sg_len), GFP_NOWAIT); |
| 350 | if (!xd) |
| 351 | return NULL; |
| 352 | |
| 353 | for_each_sg(sgl, sg, sg_len, i) { |
| 354 | xd->nodes[i].src = (direction == DMA_DEV_TO_MEM) |
| 355 | ? xc->sconfig.src_addr : sg_dma_address(sg); |
| 356 | xd->nodes[i].dst = (direction == DMA_MEM_TO_DEV) |
| 357 | ? xc->sconfig.dst_addr : sg_dma_address(sg); |
| 358 | xd->nodes[i].burst_size = maxburst * buswidth; |
| 359 | xd->nodes[i].nr_burst = |
| 360 | sg_dma_len(sg) / xd->nodes[i].burst_size; |
| 361 | |
| 362 | /* |
| 363 | * Currently transfer that size doesn't align the unit size |
| 364 | * (the number of burst words * bus-width) is not allowed, |
| 365 | * because the driver does not support the way to transfer |
| 366 | * residue size. As a matter of fact, in order to transfer |
| 367 | * arbitrary size, 'src_maxburst' or 'dst_maxburst' of |
| 368 | * dma_slave_config must be 1. |
| 369 | */ |
| 370 | if (sg_dma_len(sg) % xd->nodes[i].burst_size) { |
| 371 | dev_err(xc->xdev->ddev.dev, |
| 372 | "Unaligned transfer size: %d", sg_dma_len(sg)); |
| 373 | kfree(xd); |
| 374 | return NULL; |
| 375 | } |
| 376 | |
| 377 | if (xd->nodes[i].nr_burst > XDMAC_MAX_WORDS) { |
| 378 | dev_err(xc->xdev->ddev.dev, |
| 379 | "Exceed maximum transfer size"); |
| 380 | kfree(xd); |
| 381 | return NULL; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | xd->dir = direction; |
| 386 | xd->nr_node = sg_len; |
| 387 | xd->cur_node = 0; |
| 388 | |
| 389 | return vchan_tx_prep(vc, &xd->vd, flags); |
| 390 | } |
| 391 | |
| 392 | static int uniphier_xdmac_slave_config(struct dma_chan *chan, |
| 393 | struct dma_slave_config *config) |
| 394 | { |
| 395 | struct virt_dma_chan *vc = to_virt_chan(chan); |
| 396 | struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc); |
| 397 | |
| 398 | memcpy(&xc->sconfig, config, sizeof(*config)); |
| 399 | |
| 400 | return 0; |
| 401 | } |
| 402 | |
| 403 | static int uniphier_xdmac_terminate_all(struct dma_chan *chan) |
| 404 | { |
| 405 | struct virt_dma_chan *vc = to_virt_chan(chan); |
| 406 | struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc); |
| 407 | unsigned long flags; |
| 408 | int ret = 0; |
| 409 | LIST_HEAD(head); |
| 410 | |
| 411 | spin_lock_irqsave(&vc->lock, flags); |
| 412 | |
| 413 | if (xc->xd) { |
| 414 | vchan_terminate_vdesc(&xc->xd->vd); |
| 415 | xc->xd = NULL; |
| 416 | ret = uniphier_xdmac_chan_stop(xc); |
| 417 | } |
| 418 | |
| 419 | vchan_get_all_descriptors(vc, &head); |
| 420 | |
| 421 | spin_unlock_irqrestore(&vc->lock, flags); |
| 422 | |
| 423 | vchan_dma_desc_free_list(vc, &head); |
| 424 | |
| 425 | return ret; |
| 426 | } |
| 427 | |
| 428 | static void uniphier_xdmac_synchronize(struct dma_chan *chan) |
| 429 | { |
| 430 | vchan_synchronize(to_virt_chan(chan)); |
| 431 | } |
| 432 | |
| 433 | static void uniphier_xdmac_issue_pending(struct dma_chan *chan) |
| 434 | { |
| 435 | struct virt_dma_chan *vc = to_virt_chan(chan); |
| 436 | struct uniphier_xdmac_chan *xc = to_uniphier_xdmac_chan(vc); |
| 437 | unsigned long flags; |
| 438 | |
| 439 | spin_lock_irqsave(&vc->lock, flags); |
| 440 | |
| 441 | if (vchan_issue_pending(vc) && !xc->xd) |
| 442 | uniphier_xdmac_start(xc); |
| 443 | |
| 444 | spin_unlock_irqrestore(&vc->lock, flags); |
| 445 | } |
| 446 | |
| 447 | static void uniphier_xdmac_desc_free(struct virt_dma_desc *vd) |
| 448 | { |
| 449 | kfree(to_uniphier_xdmac_desc(vd)); |
| 450 | } |
| 451 | |
| 452 | static void uniphier_xdmac_chan_init(struct uniphier_xdmac_device *xdev, |
| 453 | int ch) |
| 454 | { |
| 455 | struct uniphier_xdmac_chan *xc = &xdev->channels[ch]; |
| 456 | |
| 457 | xc->xdev = xdev; |
| 458 | xc->reg_ch_base = xdev->reg_base + XDMAC_CH_WIDTH * ch; |
| 459 | xc->vc.desc_free = uniphier_xdmac_desc_free; |
| 460 | |
| 461 | vchan_init(&xc->vc, &xdev->ddev); |
| 462 | } |
| 463 | |
| 464 | static struct dma_chan *of_dma_uniphier_xlate(struct of_phandle_args *dma_spec, |
| 465 | struct of_dma *ofdma) |
| 466 | { |
| 467 | struct uniphier_xdmac_device *xdev = ofdma->of_dma_data; |
| 468 | int chan_id = dma_spec->args[0]; |
| 469 | |
| 470 | if (chan_id >= xdev->nr_chans) |
| 471 | return NULL; |
| 472 | |
| 473 | xdev->channels[chan_id].id = chan_id; |
| 474 | xdev->channels[chan_id].req_factor = dma_spec->args[1]; |
| 475 | |
| 476 | return dma_get_slave_channel(&xdev->channels[chan_id].vc.chan); |
| 477 | } |
| 478 | |
| 479 | static int uniphier_xdmac_probe(struct platform_device *pdev) |
| 480 | { |
| 481 | struct uniphier_xdmac_device *xdev; |
| 482 | struct device *dev = &pdev->dev; |
| 483 | struct dma_device *ddev; |
| 484 | int irq; |
| 485 | int nr_chans; |
| 486 | int i, ret; |
| 487 | |
| 488 | if (of_property_read_u32(dev->of_node, "dma-channels", &nr_chans)) |
| 489 | return -EINVAL; |
| 490 | if (nr_chans > XDMAC_MAX_CHANS) |
| 491 | nr_chans = XDMAC_MAX_CHANS; |
| 492 | |
| 493 | xdev = devm_kzalloc(dev, struct_size(xdev, channels, nr_chans), |
| 494 | GFP_KERNEL); |
| 495 | if (!xdev) |
| 496 | return -ENOMEM; |
| 497 | |
| 498 | xdev->nr_chans = nr_chans; |
| 499 | xdev->reg_base = devm_platform_ioremap_resource(pdev, 0); |
| 500 | if (IS_ERR(xdev->reg_base)) |
| 501 | return PTR_ERR(xdev->reg_base); |
| 502 | |
| 503 | ddev = &xdev->ddev; |
| 504 | ddev->dev = dev; |
| 505 | dma_cap_zero(ddev->cap_mask); |
| 506 | dma_cap_set(DMA_MEMCPY, ddev->cap_mask); |
| 507 | dma_cap_set(DMA_SLAVE, ddev->cap_mask); |
| 508 | ddev->src_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS; |
| 509 | ddev->dst_addr_widths = UNIPHIER_XDMAC_BUSWIDTHS; |
| 510 | ddev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | |
| 511 | BIT(DMA_MEM_TO_MEM); |
| 512 | ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| 513 | ddev->max_burst = XDMAC_MAX_WORDS; |
| 514 | ddev->device_free_chan_resources = uniphier_xdmac_free_chan_resources; |
| 515 | ddev->device_prep_dma_memcpy = uniphier_xdmac_prep_dma_memcpy; |
| 516 | ddev->device_prep_slave_sg = uniphier_xdmac_prep_slave_sg; |
| 517 | ddev->device_config = uniphier_xdmac_slave_config; |
| 518 | ddev->device_terminate_all = uniphier_xdmac_terminate_all; |
| 519 | ddev->device_synchronize = uniphier_xdmac_synchronize; |
| 520 | ddev->device_tx_status = dma_cookie_status; |
| 521 | ddev->device_issue_pending = uniphier_xdmac_issue_pending; |
| 522 | INIT_LIST_HEAD(&ddev->channels); |
| 523 | |
| 524 | for (i = 0; i < nr_chans; i++) |
| 525 | uniphier_xdmac_chan_init(xdev, i); |
| 526 | |
| 527 | irq = platform_get_irq(pdev, 0); |
Vinod Koul | 0950c7f | 2020-03-23 22:49:28 +0530 | [diff] [blame] | 528 | if (irq < 0) |
Kunihiko Hayashi | 667b925 | 2020-02-21 16:52:30 +0900 | [diff] [blame] | 529 | return irq; |
Kunihiko Hayashi | 667b925 | 2020-02-21 16:52:30 +0900 | [diff] [blame] | 530 | |
| 531 | ret = devm_request_irq(dev, irq, uniphier_xdmac_irq_handler, |
| 532 | IRQF_SHARED, "xdmac", xdev); |
| 533 | if (ret) { |
| 534 | dev_err(dev, "Failed to request IRQ\n"); |
| 535 | return ret; |
| 536 | } |
| 537 | |
| 538 | ret = dma_async_device_register(ddev); |
| 539 | if (ret) { |
| 540 | dev_err(dev, "Failed to register XDMA device\n"); |
| 541 | return ret; |
| 542 | } |
| 543 | |
| 544 | ret = of_dma_controller_register(dev->of_node, |
| 545 | of_dma_uniphier_xlate, xdev); |
| 546 | if (ret) { |
| 547 | dev_err(dev, "Failed to register XDMA controller\n"); |
| 548 | goto out_unregister_dmac; |
| 549 | } |
| 550 | |
| 551 | platform_set_drvdata(pdev, xdev); |
| 552 | |
| 553 | dev_info(&pdev->dev, "UniPhier XDMAC driver (%d channels)\n", |
| 554 | nr_chans); |
| 555 | |
| 556 | return 0; |
| 557 | |
| 558 | out_unregister_dmac: |
| 559 | dma_async_device_unregister(ddev); |
| 560 | |
| 561 | return ret; |
| 562 | } |
| 563 | |
| 564 | static int uniphier_xdmac_remove(struct platform_device *pdev) |
| 565 | { |
| 566 | struct uniphier_xdmac_device *xdev = platform_get_drvdata(pdev); |
| 567 | struct dma_device *ddev = &xdev->ddev; |
| 568 | struct dma_chan *chan; |
| 569 | int ret; |
| 570 | |
| 571 | /* |
| 572 | * Before reaching here, almost all descriptors have been freed by the |
| 573 | * ->device_free_chan_resources() hook. However, each channel might |
| 574 | * be still holding one descriptor that was on-flight at that moment. |
| 575 | * Terminate it to make sure this hardware is no longer running. Then, |
| 576 | * free the channel resources once again to avoid memory leak. |
| 577 | */ |
| 578 | list_for_each_entry(chan, &ddev->channels, device_node) { |
| 579 | ret = dmaengine_terminate_sync(chan); |
| 580 | if (ret) |
| 581 | return ret; |
| 582 | uniphier_xdmac_free_chan_resources(chan); |
| 583 | } |
| 584 | |
| 585 | of_dma_controller_free(pdev->dev.of_node); |
| 586 | dma_async_device_unregister(ddev); |
| 587 | |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | static const struct of_device_id uniphier_xdmac_match[] = { |
| 592 | { .compatible = "socionext,uniphier-xdmac" }, |
| 593 | { /* sentinel */ } |
| 594 | }; |
| 595 | MODULE_DEVICE_TABLE(of, uniphier_xdmac_match); |
| 596 | |
| 597 | static struct platform_driver uniphier_xdmac_driver = { |
| 598 | .probe = uniphier_xdmac_probe, |
| 599 | .remove = uniphier_xdmac_remove, |
| 600 | .driver = { |
| 601 | .name = "uniphier-xdmac", |
| 602 | .of_match_table = uniphier_xdmac_match, |
| 603 | }, |
| 604 | }; |
| 605 | module_platform_driver(uniphier_xdmac_driver); |
| 606 | |
| 607 | MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>"); |
| 608 | MODULE_DESCRIPTION("UniPhier external DMA controller driver"); |
| 609 | MODULE_LICENSE("GPL v2"); |