Jaegeuk Kim | 0a8165d | 2012-11-29 13:28:09 +0900 | [diff] [blame] | 1 | /* |
Jaegeuk Kim | 39a53e0 | 2012-11-28 13:37:31 +0900 | [diff] [blame] | 2 | * fs/f2fs/segment.h |
| 3 | * |
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 5 | * http://www.samsung.com/ |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | /* constant macro */ |
| 12 | #define NULL_SEGNO ((unsigned int)(~0)) |
| 13 | |
| 14 | /* V: Logical segment # in volume, R: Relative segment # in main area */ |
| 15 | #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) |
| 16 | #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) |
| 17 | |
| 18 | #define IS_DATASEG(t) \ |
| 19 | ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ |
| 20 | (t == CURSEG_WARM_DATA)) |
| 21 | |
| 22 | #define IS_NODESEG(t) \ |
| 23 | ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ |
| 24 | (t == CURSEG_WARM_NODE)) |
| 25 | |
| 26 | #define IS_CURSEG(sbi, segno) \ |
| 27 | ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ |
| 28 | (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ |
| 29 | (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ |
| 30 | (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ |
| 31 | (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ |
| 32 | (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) |
| 33 | |
| 34 | #define IS_CURSEC(sbi, secno) \ |
| 35 | ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ |
| 36 | sbi->segs_per_sec) || \ |
| 37 | (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ |
| 38 | sbi->segs_per_sec) || \ |
| 39 | (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ |
| 40 | sbi->segs_per_sec) || \ |
| 41 | (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ |
| 42 | sbi->segs_per_sec) || \ |
| 43 | (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ |
| 44 | sbi->segs_per_sec) || \ |
| 45 | (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ |
| 46 | sbi->segs_per_sec)) \ |
| 47 | |
| 48 | #define START_BLOCK(sbi, segno) \ |
| 49 | (SM_I(sbi)->seg0_blkaddr + \ |
| 50 | (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) |
| 51 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ |
| 52 | (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) |
| 53 | |
| 54 | #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) |
| 55 | |
| 56 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ |
| 57 | ((blk_addr) - SM_I(sbi)->seg0_blkaddr) |
| 58 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ |
| 59 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) |
| 60 | #define GET_SEGNO(sbi, blk_addr) \ |
| 61 | (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ |
| 62 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ |
| 63 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) |
| 64 | #define GET_SECNO(sbi, segno) \ |
| 65 | ((segno) / sbi->segs_per_sec) |
| 66 | #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ |
| 67 | ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) |
| 68 | |
| 69 | #define GET_SUM_BLOCK(sbi, segno) \ |
| 70 | ((sbi->sm_info->ssa_blkaddr) + segno) |
| 71 | |
| 72 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) |
| 73 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) |
| 74 | |
| 75 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ |
| 76 | (segno % sit_i->sents_per_block) |
| 77 | #define SIT_BLOCK_OFFSET(sit_i, segno) \ |
| 78 | (segno / SIT_ENTRY_PER_BLOCK) |
| 79 | #define START_SEGNO(sit_i, segno) \ |
| 80 | (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) |
| 81 | #define f2fs_bitmap_size(nr) \ |
| 82 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) |
| 83 | #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) |
| 84 | |
Jaegeuk Kim | 3cd8a23 | 2012-12-10 09:26:05 +0900 | [diff] [blame^] | 85 | #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ |
| 86 | (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) |
| 87 | |
Jaegeuk Kim | 39a53e0 | 2012-11-28 13:37:31 +0900 | [diff] [blame] | 88 | /* during checkpoint, bio_private is used to synchronize the last bio */ |
| 89 | struct bio_private { |
| 90 | struct f2fs_sb_info *sbi; |
| 91 | bool is_sync; |
| 92 | void *wait; |
| 93 | }; |
| 94 | |
| 95 | /* |
| 96 | * indicate a block allocation direction: RIGHT and LEFT. |
| 97 | * RIGHT means allocating new sections towards the end of volume. |
| 98 | * LEFT means the opposite direction. |
| 99 | */ |
| 100 | enum { |
| 101 | ALLOC_RIGHT = 0, |
| 102 | ALLOC_LEFT |
| 103 | }; |
| 104 | |
| 105 | /* |
| 106 | * In the victim_sel_policy->alloc_mode, there are two block allocation modes. |
| 107 | * LFS writes data sequentially with cleaning operations. |
| 108 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. |
| 109 | */ |
| 110 | enum { |
| 111 | LFS = 0, |
| 112 | SSR |
| 113 | }; |
| 114 | |
| 115 | /* |
| 116 | * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. |
| 117 | * GC_CB is based on cost-benefit algorithm. |
| 118 | * GC_GREEDY is based on greedy algorithm. |
| 119 | */ |
| 120 | enum { |
| 121 | GC_CB = 0, |
| 122 | GC_GREEDY |
| 123 | }; |
| 124 | |
| 125 | /* |
| 126 | * BG_GC means the background cleaning job. |
| 127 | * FG_GC means the on-demand cleaning job. |
| 128 | */ |
| 129 | enum { |
| 130 | BG_GC = 0, |
| 131 | FG_GC |
| 132 | }; |
| 133 | |
| 134 | /* for a function parameter to select a victim segment */ |
| 135 | struct victim_sel_policy { |
| 136 | int alloc_mode; /* LFS or SSR */ |
| 137 | int gc_mode; /* GC_CB or GC_GREEDY */ |
| 138 | unsigned long *dirty_segmap; /* dirty segment bitmap */ |
| 139 | unsigned int offset; /* last scanned bitmap offset */ |
| 140 | unsigned int ofs_unit; /* bitmap search unit */ |
| 141 | unsigned int min_cost; /* minimum cost */ |
| 142 | unsigned int min_segno; /* segment # having min. cost */ |
| 143 | }; |
| 144 | |
| 145 | struct seg_entry { |
| 146 | unsigned short valid_blocks; /* # of valid blocks */ |
| 147 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ |
| 148 | /* |
| 149 | * # of valid blocks and the validity bitmap stored in the the last |
| 150 | * checkpoint pack. This information is used by the SSR mode. |
| 151 | */ |
| 152 | unsigned short ckpt_valid_blocks; |
| 153 | unsigned char *ckpt_valid_map; |
| 154 | unsigned char type; /* segment type like CURSEG_XXX_TYPE */ |
| 155 | unsigned long long mtime; /* modification time of the segment */ |
| 156 | }; |
| 157 | |
| 158 | struct sec_entry { |
| 159 | unsigned int valid_blocks; /* # of valid blocks in a section */ |
| 160 | }; |
| 161 | |
| 162 | struct segment_allocation { |
| 163 | void (*allocate_segment)(struct f2fs_sb_info *, int, bool); |
| 164 | }; |
| 165 | |
| 166 | struct sit_info { |
| 167 | const struct segment_allocation *s_ops; |
| 168 | |
| 169 | block_t sit_base_addr; /* start block address of SIT area */ |
| 170 | block_t sit_blocks; /* # of blocks used by SIT area */ |
| 171 | block_t written_valid_blocks; /* # of valid blocks in main area */ |
| 172 | char *sit_bitmap; /* SIT bitmap pointer */ |
| 173 | unsigned int bitmap_size; /* SIT bitmap size */ |
| 174 | |
| 175 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ |
| 176 | unsigned int dirty_sentries; /* # of dirty sentries */ |
| 177 | unsigned int sents_per_block; /* # of SIT entries per block */ |
| 178 | struct mutex sentry_lock; /* to protect SIT cache */ |
| 179 | struct seg_entry *sentries; /* SIT segment-level cache */ |
| 180 | struct sec_entry *sec_entries; /* SIT section-level cache */ |
| 181 | |
| 182 | /* for cost-benefit algorithm in cleaning procedure */ |
| 183 | unsigned long long elapsed_time; /* elapsed time after mount */ |
| 184 | unsigned long long mounted_time; /* mount time */ |
| 185 | unsigned long long min_mtime; /* min. modification time */ |
| 186 | unsigned long long max_mtime; /* max. modification time */ |
| 187 | }; |
| 188 | |
| 189 | struct free_segmap_info { |
| 190 | unsigned int start_segno; /* start segment number logically */ |
| 191 | unsigned int free_segments; /* # of free segments */ |
| 192 | unsigned int free_sections; /* # of free sections */ |
| 193 | rwlock_t segmap_lock; /* free segmap lock */ |
| 194 | unsigned long *free_segmap; /* free segment bitmap */ |
| 195 | unsigned long *free_secmap; /* free section bitmap */ |
| 196 | }; |
| 197 | |
| 198 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ |
| 199 | enum dirty_type { |
| 200 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ |
| 201 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ |
| 202 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ |
| 203 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ |
| 204 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ |
| 205 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ |
| 206 | DIRTY, /* to count # of dirty segments */ |
| 207 | PRE, /* to count # of entirely obsolete segments */ |
| 208 | NR_DIRTY_TYPE |
| 209 | }; |
| 210 | |
| 211 | struct dirty_seglist_info { |
| 212 | const struct victim_selection *v_ops; /* victim selction operation */ |
| 213 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; |
| 214 | struct mutex seglist_lock; /* lock for segment bitmaps */ |
| 215 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ |
| 216 | unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */ |
| 217 | }; |
| 218 | |
| 219 | /* victim selection function for cleaning and SSR */ |
| 220 | struct victim_selection { |
| 221 | int (*get_victim)(struct f2fs_sb_info *, unsigned int *, |
| 222 | int, int, char); |
| 223 | }; |
| 224 | |
| 225 | /* for active log information */ |
| 226 | struct curseg_info { |
| 227 | struct mutex curseg_mutex; /* lock for consistency */ |
| 228 | struct f2fs_summary_block *sum_blk; /* cached summary block */ |
| 229 | unsigned char alloc_type; /* current allocation type */ |
| 230 | unsigned int segno; /* current segment number */ |
| 231 | unsigned short next_blkoff; /* next block offset to write */ |
| 232 | unsigned int zone; /* current zone number */ |
| 233 | unsigned int next_segno; /* preallocated segment */ |
| 234 | }; |
| 235 | |
| 236 | /* |
| 237 | * inline functions |
| 238 | */ |
| 239 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) |
| 240 | { |
| 241 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); |
| 242 | } |
| 243 | |
| 244 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, |
| 245 | unsigned int segno) |
| 246 | { |
| 247 | struct sit_info *sit_i = SIT_I(sbi); |
| 248 | return &sit_i->sentries[segno]; |
| 249 | } |
| 250 | |
| 251 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, |
| 252 | unsigned int segno) |
| 253 | { |
| 254 | struct sit_info *sit_i = SIT_I(sbi); |
| 255 | return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; |
| 256 | } |
| 257 | |
| 258 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, |
| 259 | unsigned int segno, int section) |
| 260 | { |
| 261 | /* |
| 262 | * In order to get # of valid blocks in a section instantly from many |
| 263 | * segments, f2fs manages two counting structures separately. |
| 264 | */ |
| 265 | if (section > 1) |
| 266 | return get_sec_entry(sbi, segno)->valid_blocks; |
| 267 | else |
| 268 | return get_seg_entry(sbi, segno)->valid_blocks; |
| 269 | } |
| 270 | |
| 271 | static inline void seg_info_from_raw_sit(struct seg_entry *se, |
| 272 | struct f2fs_sit_entry *rs) |
| 273 | { |
| 274 | se->valid_blocks = GET_SIT_VBLOCKS(rs); |
| 275 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); |
| 276 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 277 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 278 | se->type = GET_SIT_TYPE(rs); |
| 279 | se->mtime = le64_to_cpu(rs->mtime); |
| 280 | } |
| 281 | |
| 282 | static inline void seg_info_to_raw_sit(struct seg_entry *se, |
| 283 | struct f2fs_sit_entry *rs) |
| 284 | { |
| 285 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | |
| 286 | se->valid_blocks; |
| 287 | rs->vblocks = cpu_to_le16(raw_vblocks); |
| 288 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); |
| 289 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
| 290 | se->ckpt_valid_blocks = se->valid_blocks; |
| 291 | rs->mtime = cpu_to_le64(se->mtime); |
| 292 | } |
| 293 | |
| 294 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, |
| 295 | unsigned int max, unsigned int segno) |
| 296 | { |
| 297 | unsigned int ret; |
| 298 | read_lock(&free_i->segmap_lock); |
| 299 | ret = find_next_bit(free_i->free_segmap, max, segno); |
| 300 | read_unlock(&free_i->segmap_lock); |
| 301 | return ret; |
| 302 | } |
| 303 | |
| 304 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) |
| 305 | { |
| 306 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 307 | unsigned int secno = segno / sbi->segs_per_sec; |
| 308 | unsigned int start_segno = secno * sbi->segs_per_sec; |
| 309 | unsigned int next; |
| 310 | |
| 311 | write_lock(&free_i->segmap_lock); |
| 312 | clear_bit(segno, free_i->free_segmap); |
| 313 | free_i->free_segments++; |
| 314 | |
| 315 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); |
| 316 | if (next >= start_segno + sbi->segs_per_sec) { |
| 317 | clear_bit(secno, free_i->free_secmap); |
| 318 | free_i->free_sections++; |
| 319 | } |
| 320 | write_unlock(&free_i->segmap_lock); |
| 321 | } |
| 322 | |
| 323 | static inline void __set_inuse(struct f2fs_sb_info *sbi, |
| 324 | unsigned int segno) |
| 325 | { |
| 326 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 327 | unsigned int secno = segno / sbi->segs_per_sec; |
| 328 | set_bit(segno, free_i->free_segmap); |
| 329 | free_i->free_segments--; |
| 330 | if (!test_and_set_bit(secno, free_i->free_secmap)) |
| 331 | free_i->free_sections--; |
| 332 | } |
| 333 | |
| 334 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, |
| 335 | unsigned int segno) |
| 336 | { |
| 337 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 338 | unsigned int secno = segno / sbi->segs_per_sec; |
| 339 | unsigned int start_segno = secno * sbi->segs_per_sec; |
| 340 | unsigned int next; |
| 341 | |
| 342 | write_lock(&free_i->segmap_lock); |
| 343 | if (test_and_clear_bit(segno, free_i->free_segmap)) { |
| 344 | free_i->free_segments++; |
| 345 | |
| 346 | next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), |
| 347 | start_segno); |
| 348 | if (next >= start_segno + sbi->segs_per_sec) { |
| 349 | if (test_and_clear_bit(secno, free_i->free_secmap)) |
| 350 | free_i->free_sections++; |
| 351 | } |
| 352 | } |
| 353 | write_unlock(&free_i->segmap_lock); |
| 354 | } |
| 355 | |
| 356 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, |
| 357 | unsigned int segno) |
| 358 | { |
| 359 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 360 | unsigned int secno = segno / sbi->segs_per_sec; |
| 361 | write_lock(&free_i->segmap_lock); |
| 362 | if (!test_and_set_bit(segno, free_i->free_segmap)) { |
| 363 | free_i->free_segments--; |
| 364 | if (!test_and_set_bit(secno, free_i->free_secmap)) |
| 365 | free_i->free_sections--; |
| 366 | } |
| 367 | write_unlock(&free_i->segmap_lock); |
| 368 | } |
| 369 | |
| 370 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, |
| 371 | void *dst_addr) |
| 372 | { |
| 373 | struct sit_info *sit_i = SIT_I(sbi); |
| 374 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); |
| 375 | } |
| 376 | |
| 377 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) |
| 378 | { |
| 379 | struct sit_info *sit_i = SIT_I(sbi); |
| 380 | block_t vblocks; |
| 381 | |
| 382 | mutex_lock(&sit_i->sentry_lock); |
| 383 | vblocks = sit_i->written_valid_blocks; |
| 384 | mutex_unlock(&sit_i->sentry_lock); |
| 385 | |
| 386 | return vblocks; |
| 387 | } |
| 388 | |
| 389 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) |
| 390 | { |
| 391 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 392 | unsigned int free_segs; |
| 393 | |
| 394 | read_lock(&free_i->segmap_lock); |
| 395 | free_segs = free_i->free_segments; |
| 396 | read_unlock(&free_i->segmap_lock); |
| 397 | |
| 398 | return free_segs; |
| 399 | } |
| 400 | |
| 401 | static inline int reserved_segments(struct f2fs_sb_info *sbi) |
| 402 | { |
| 403 | return SM_I(sbi)->reserved_segments; |
| 404 | } |
| 405 | |
| 406 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) |
| 407 | { |
| 408 | struct free_segmap_info *free_i = FREE_I(sbi); |
| 409 | unsigned int free_secs; |
| 410 | |
| 411 | read_lock(&free_i->segmap_lock); |
| 412 | free_secs = free_i->free_sections; |
| 413 | read_unlock(&free_i->segmap_lock); |
| 414 | |
| 415 | return free_secs; |
| 416 | } |
| 417 | |
| 418 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) |
| 419 | { |
| 420 | return DIRTY_I(sbi)->nr_dirty[PRE]; |
| 421 | } |
| 422 | |
| 423 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) |
| 424 | { |
| 425 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + |
| 426 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + |
| 427 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + |
| 428 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + |
| 429 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + |
| 430 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; |
| 431 | } |
| 432 | |
| 433 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) |
| 434 | { |
| 435 | return SM_I(sbi)->ovp_segments; |
| 436 | } |
| 437 | |
| 438 | static inline int overprovision_sections(struct f2fs_sb_info *sbi) |
| 439 | { |
| 440 | return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; |
| 441 | } |
| 442 | |
| 443 | static inline int reserved_sections(struct f2fs_sb_info *sbi) |
| 444 | { |
| 445 | return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; |
| 446 | } |
| 447 | |
| 448 | static inline bool need_SSR(struct f2fs_sb_info *sbi) |
| 449 | { |
| 450 | return (free_sections(sbi) < overprovision_sections(sbi)); |
| 451 | } |
| 452 | |
| 453 | static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type) |
| 454 | { |
| 455 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
| 456 | return DIRTY_I(sbi)->v_ops->get_victim(sbi, |
| 457 | &(curseg)->next_segno, BG_GC, type, SSR); |
| 458 | } |
| 459 | |
| 460 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi) |
| 461 | { |
| 462 | return free_sections(sbi) <= reserved_sections(sbi); |
| 463 | } |
| 464 | |
| 465 | static inline int utilization(struct f2fs_sb_info *sbi) |
| 466 | { |
| 467 | return (long int)valid_user_blocks(sbi) * 100 / |
| 468 | (long int)sbi->user_block_count; |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * Sometimes f2fs may be better to drop out-of-place update policy. |
| 473 | * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write |
| 474 | * data in the original place likewise other traditional file systems. |
| 475 | * But, currently set 100 in percentage, which means it is disabled. |
| 476 | * See below need_inplace_update(). |
| 477 | */ |
| 478 | #define MIN_IPU_UTIL 100 |
| 479 | static inline bool need_inplace_update(struct inode *inode) |
| 480 | { |
| 481 | struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| 482 | if (S_ISDIR(inode->i_mode)) |
| 483 | return false; |
| 484 | if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) |
| 485 | return true; |
| 486 | return false; |
| 487 | } |
| 488 | |
| 489 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, |
| 490 | int type) |
| 491 | { |
| 492 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
| 493 | return curseg->segno; |
| 494 | } |
| 495 | |
| 496 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, |
| 497 | int type) |
| 498 | { |
| 499 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
| 500 | return curseg->alloc_type; |
| 501 | } |
| 502 | |
| 503 | static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) |
| 504 | { |
| 505 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
| 506 | return curseg->next_blkoff; |
| 507 | } |
| 508 | |
| 509 | static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) |
| 510 | { |
| 511 | unsigned int end_segno = SM_I(sbi)->segment_count - 1; |
| 512 | BUG_ON(segno > end_segno); |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * This function is used for only debugging. |
| 517 | * NOTE: In future, we have to remove this function. |
| 518 | */ |
| 519 | static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) |
| 520 | { |
| 521 | struct f2fs_sm_info *sm_info = SM_I(sbi); |
| 522 | block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; |
| 523 | block_t start_addr = sm_info->seg0_blkaddr; |
| 524 | block_t end_addr = start_addr + total_blks - 1; |
| 525 | BUG_ON(blk_addr < start_addr); |
| 526 | BUG_ON(blk_addr > end_addr); |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * Summary block is always treated as invalid block |
| 531 | */ |
| 532 | static inline void check_block_count(struct f2fs_sb_info *sbi, |
| 533 | int segno, struct f2fs_sit_entry *raw_sit) |
| 534 | { |
| 535 | struct f2fs_sm_info *sm_info = SM_I(sbi); |
| 536 | unsigned int end_segno = sm_info->segment_count - 1; |
| 537 | int valid_blocks = 0; |
| 538 | int i; |
| 539 | |
| 540 | /* check segment usage */ |
| 541 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); |
| 542 | |
| 543 | /* check boundary of a given segment number */ |
| 544 | BUG_ON(segno > end_segno); |
| 545 | |
| 546 | /* check bitmap with valid block count */ |
| 547 | for (i = 0; i < sbi->blocks_per_seg; i++) |
| 548 | if (f2fs_test_bit(i, raw_sit->valid_map)) |
| 549 | valid_blocks++; |
| 550 | BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); |
| 551 | } |
| 552 | |
| 553 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, |
| 554 | unsigned int start) |
| 555 | { |
| 556 | struct sit_info *sit_i = SIT_I(sbi); |
| 557 | unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); |
| 558 | block_t blk_addr = sit_i->sit_base_addr + offset; |
| 559 | |
| 560 | check_seg_range(sbi, start); |
| 561 | |
| 562 | /* calculate sit block address */ |
| 563 | if (f2fs_test_bit(offset, sit_i->sit_bitmap)) |
| 564 | blk_addr += sit_i->sit_blocks; |
| 565 | |
| 566 | return blk_addr; |
| 567 | } |
| 568 | |
| 569 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, |
| 570 | pgoff_t block_addr) |
| 571 | { |
| 572 | struct sit_info *sit_i = SIT_I(sbi); |
| 573 | block_addr -= sit_i->sit_base_addr; |
| 574 | if (block_addr < sit_i->sit_blocks) |
| 575 | block_addr += sit_i->sit_blocks; |
| 576 | else |
| 577 | block_addr -= sit_i->sit_blocks; |
| 578 | |
| 579 | return block_addr + sit_i->sit_base_addr; |
| 580 | } |
| 581 | |
| 582 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) |
| 583 | { |
| 584 | unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); |
| 585 | |
| 586 | if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) |
| 587 | f2fs_clear_bit(block_off, sit_i->sit_bitmap); |
| 588 | else |
| 589 | f2fs_set_bit(block_off, sit_i->sit_bitmap); |
| 590 | } |
| 591 | |
| 592 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) |
| 593 | { |
| 594 | struct sit_info *sit_i = SIT_I(sbi); |
| 595 | return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - |
| 596 | sit_i->mounted_time; |
| 597 | } |
| 598 | |
| 599 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, |
| 600 | unsigned int ofs_in_node, unsigned char version) |
| 601 | { |
| 602 | sum->nid = cpu_to_le32(nid); |
| 603 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); |
| 604 | sum->version = version; |
| 605 | } |
| 606 | |
| 607 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) |
| 608 | { |
| 609 | return __start_cp_addr(sbi) + |
| 610 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); |
| 611 | } |
| 612 | |
| 613 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) |
| 614 | { |
| 615 | return __start_cp_addr(sbi) + |
| 616 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) |
| 617 | - (base + 1) + type; |
| 618 | } |