blob: 4802bbbb6dc9817c9b4f49b08bcad65268f8f84a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3 *
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7 *
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25/* This driver intends to support RFC 2734, which describes a method for
26 * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27 * will ultimately support that method, but currently falls short in
28 * several areas.
29 *
30 * TODO:
31 * RFC 2734 related:
32 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 *
34 * Non-RFC 2734 related:
35 * - Handle fragmented skb's coming from the networking layer.
36 * - Move generic GASP reception to core 1394 code
37 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38 * - Stability improvements
39 * - Performance enhancements
40 * - Consider garbage collecting old partial datagrams after X amount of time
41 */
42
43
44#include <linux/module.h>
45
46#include <linux/sched.h>
47#include <linux/kernel.h>
48#include <linux/slab.h>
49#include <linux/errno.h>
50#include <linux/types.h>
51#include <linux/delay.h>
52#include <linux/init.h>
53
54#include <linux/netdevice.h>
55#include <linux/inetdevice.h>
56#include <linux/etherdevice.h>
57#include <linux/if_arp.h>
58#include <linux/if_ether.h>
59#include <linux/ip.h>
60#include <linux/in.h>
61#include <linux/tcp.h>
62#include <linux/skbuff.h>
63#include <linux/bitops.h>
64#include <linux/ethtool.h>
65#include <asm/uaccess.h>
66#include <asm/delay.h>
67#include <asm/semaphore.h>
68#include <net/arp.h>
69
70#include "csr1212.h"
71#include "ieee1394_types.h"
72#include "ieee1394_core.h"
73#include "ieee1394_transactions.h"
74#include "ieee1394.h"
75#include "highlevel.h"
76#include "iso.h"
77#include "nodemgr.h"
78#include "eth1394.h"
79#include "config_roms.h"
80
81#define ETH1394_PRINT_G(level, fmt, args...) \
82 printk(level "%s: " fmt, driver_name, ## args)
83
84#define ETH1394_PRINT(level, dev_name, fmt, args...) \
85 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87#define DEBUG(fmt, args...) \
88 printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89#define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91static char version[] __devinitdata =
Jody McIntyre3ae3d0d2005-09-30 11:59:18 -070092 "$Rev: 1312 $ Ben Collins <bcollins@debian.org>";
Linus Torvalds1da177e2005-04-16 15:20:36 -070093
94struct fragment_info {
95 struct list_head list;
96 int offset;
97 int len;
98};
99
100struct partial_datagram {
101 struct list_head list;
102 u16 dgl;
103 u16 dg_size;
104 u16 ether_type;
105 struct sk_buff *skb;
106 char *pbuf;
107 struct list_head frag_info;
108};
109
110struct pdg_list {
111 struct list_head list; /* partial datagram list per node */
112 unsigned int sz; /* partial datagram list size per node */
113 spinlock_t lock; /* partial datagram lock */
114};
115
116struct eth1394_host_info {
117 struct hpsb_host *host;
118 struct net_device *dev;
119};
120
121struct eth1394_node_ref {
122 struct unit_directory *ud;
123 struct list_head list;
124};
125
126struct eth1394_node_info {
127 u16 maxpayload; /* Max payload */
128 u8 sspd; /* Max speed */
129 u64 fifo; /* FIFO address */
130 struct pdg_list pdg; /* partial RX datagram lists */
131 int dgl; /* Outgoing datagram label */
132};
133
134/* Our ieee1394 highlevel driver */
135#define ETH1394_DRIVER_NAME "eth1394"
136static const char driver_name[] = ETH1394_DRIVER_NAME;
137
138static kmem_cache_t *packet_task_cache;
139
140static struct hpsb_highlevel eth1394_highlevel;
141
142/* Use common.lf to determine header len */
143static const int hdr_type_len[] = {
144 sizeof (struct eth1394_uf_hdr),
145 sizeof (struct eth1394_ff_hdr),
146 sizeof (struct eth1394_sf_hdr),
147 sizeof (struct eth1394_sf_hdr)
148};
149
150/* Change this to IEEE1394_SPEED_S100 to make testing easier */
151#define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
152
153/* For now, this needs to be 1500, so that XP works with us */
154#define ETH1394_DATA_LEN ETH_DATA_LEN
155
156static const u16 eth1394_speedto_maxpayload[] = {
157/* S100, S200, S400, S800, S1600, S3200 */
158 512, 1024, 2048, 4096, 4096, 4096
159};
160
161MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
162MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
163MODULE_LICENSE("GPL");
164
165/* The max_partial_datagrams parameter is the maximum number of fragmented
166 * datagrams per node that eth1394 will keep in memory. Providing an upper
167 * bound allows us to limit the amount of memory that partial datagrams
168 * consume in the event that some partial datagrams are never completed.
169 */
170static int max_partial_datagrams = 25;
171module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
172MODULE_PARM_DESC(max_partial_datagrams,
173 "Maximum number of partially received fragmented datagrams "
174 "(default = 25).");
175
176
177static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
178 unsigned short type, void *daddr, void *saddr,
179 unsigned len);
180static int ether1394_rebuild_header(struct sk_buff *skb);
181static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
182static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
183static void ether1394_header_cache_update(struct hh_cache *hh,
184 struct net_device *dev,
185 unsigned char * haddr);
186static int ether1394_mac_addr(struct net_device *dev, void *p);
187
188static void purge_partial_datagram(struct list_head *old);
189static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
190static void ether1394_iso(struct hpsb_iso *iso);
191
192static struct ethtool_ops ethtool_ops;
193
194static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
195 quadlet_t *data, u64 addr, size_t len, u16 flags);
196static void ether1394_add_host (struct hpsb_host *host);
197static void ether1394_remove_host (struct hpsb_host *host);
198static void ether1394_host_reset (struct hpsb_host *host);
199
200/* Function for incoming 1394 packets */
201static struct hpsb_address_ops addr_ops = {
202 .write = ether1394_write,
203};
204
205/* Ieee1394 highlevel driver functions */
206static struct hpsb_highlevel eth1394_highlevel = {
207 .name = driver_name,
208 .add_host = ether1394_add_host,
209 .remove_host = ether1394_remove_host,
210 .host_reset = ether1394_host_reset,
211};
212
213
214/* This is called after an "ifup" */
215static int ether1394_open (struct net_device *dev)
216{
217 struct eth1394_priv *priv = netdev_priv(dev);
218 int ret = 0;
219
220 /* Something bad happened, don't even try */
221 if (priv->bc_state == ETHER1394_BC_ERROR) {
222 /* we'll try again */
223 priv->iso = hpsb_iso_recv_init(priv->host,
Jody McIntyre3ae3d0d2005-09-30 11:59:18 -0700224 ETHER1394_ISO_BUF_SIZE,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700225 ETHER1394_GASP_BUFFERS,
226 priv->broadcast_channel,
227 HPSB_ISO_DMA_PACKET_PER_BUFFER,
228 1, ether1394_iso);
229 if (priv->iso == NULL) {
230 ETH1394_PRINT(KERN_ERR, dev->name,
231 "Could not allocate isochronous receive "
232 "context for the broadcast channel\n");
233 priv->bc_state = ETHER1394_BC_ERROR;
234 ret = -EAGAIN;
235 } else {
236 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
237 priv->bc_state = ETHER1394_BC_STOPPED;
238 else
239 priv->bc_state = ETHER1394_BC_RUNNING;
240 }
241 }
242
243 if (ret)
244 return ret;
245
246 netif_start_queue (dev);
247 return 0;
248}
249
250/* This is called after an "ifdown" */
251static int ether1394_stop (struct net_device *dev)
252{
253 netif_stop_queue (dev);
254 return 0;
255}
256
257/* Return statistics to the caller */
258static struct net_device_stats *ether1394_stats (struct net_device *dev)
259{
260 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
261}
262
263/* What to do if we timeout. I think a host reset is probably in order, so
264 * that's what we do. Should we increment the stat counters too? */
265static void ether1394_tx_timeout (struct net_device *dev)
266{
267 ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
268 ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
269
270 highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
271
272 netif_wake_queue (dev);
273}
274
275static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
276{
277 struct eth1394_priv *priv = netdev_priv(dev);
278
279 if ((new_mtu < 68) ||
280 (new_mtu > min(ETH1394_DATA_LEN,
281 (int)((1 << (priv->host->csr.max_rec + 1)) -
282 (sizeof(union eth1394_hdr) +
283 ETHER1394_GASP_OVERHEAD)))))
284 return -EINVAL;
285 dev->mtu = new_mtu;
286 return 0;
287}
288
289static void purge_partial_datagram(struct list_head *old)
290{
291 struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
292 struct list_head *lh, *n;
293
294 list_for_each_safe(lh, n, &pd->frag_info) {
295 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
296 list_del(lh);
297 kfree(fi);
298 }
299 list_del(old);
300 kfree_skb(pd->skb);
301 kfree(pd);
302}
303
304/******************************************
305 * 1394 bus activity functions
306 ******************************************/
307
308static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
309 struct unit_directory *ud)
310{
311 struct eth1394_node_ref *node;
312
313 list_for_each_entry(node, inl, list)
314 if (node->ud == ud)
315 return node;
316
317 return NULL;
318}
319
320static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
321 u64 guid)
322{
323 struct eth1394_node_ref *node;
324
325 list_for_each_entry(node, inl, list)
326 if (node->ud->ne->guid == guid)
327 return node;
328
329 return NULL;
330}
331
332static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
333 nodeid_t nodeid)
334{
335 struct eth1394_node_ref *node;
336 list_for_each_entry(node, inl, list) {
337 if (node->ud->ne->nodeid == nodeid)
338 return node;
339 }
340
341 return NULL;
342}
343
344static int eth1394_probe(struct device *dev)
345{
346 struct unit_directory *ud;
347 struct eth1394_host_info *hi;
348 struct eth1394_priv *priv;
349 struct eth1394_node_ref *new_node;
350 struct eth1394_node_info *node_info;
351
352 ud = container_of(dev, struct unit_directory, device);
353
354 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
355 if (!hi)
356 return -ENOENT;
357
358 new_node = kmalloc(sizeof(struct eth1394_node_ref),
359 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
360 if (!new_node)
361 return -ENOMEM;
362
363 node_info = kmalloc(sizeof(struct eth1394_node_info),
364 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
365 if (!node_info) {
366 kfree(new_node);
367 return -ENOMEM;
368 }
369
370 spin_lock_init(&node_info->pdg.lock);
371 INIT_LIST_HEAD(&node_info->pdg.list);
372 node_info->pdg.sz = 0;
373 node_info->fifo = ETHER1394_INVALID_ADDR;
374
375 ud->device.driver_data = node_info;
376 new_node->ud = ud;
377
378 priv = netdev_priv(hi->dev);
379 list_add_tail(&new_node->list, &priv->ip_node_list);
380
381 return 0;
382}
383
384static int eth1394_remove(struct device *dev)
385{
386 struct unit_directory *ud;
387 struct eth1394_host_info *hi;
388 struct eth1394_priv *priv;
389 struct eth1394_node_ref *old_node;
390 struct eth1394_node_info *node_info;
391 struct list_head *lh, *n;
392 unsigned long flags;
393
394 ud = container_of(dev, struct unit_directory, device);
395 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
396 if (!hi)
397 return -ENOENT;
398
399 priv = netdev_priv(hi->dev);
400
401 old_node = eth1394_find_node(&priv->ip_node_list, ud);
402
403 if (old_node) {
404 list_del(&old_node->list);
405 kfree(old_node);
406
407 node_info = (struct eth1394_node_info*)ud->device.driver_data;
408
409 spin_lock_irqsave(&node_info->pdg.lock, flags);
410 /* The partial datagram list should be empty, but we'll just
411 * make sure anyway... */
412 list_for_each_safe(lh, n, &node_info->pdg.list) {
413 purge_partial_datagram(lh);
414 }
415 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
416
417 kfree(node_info);
418 ud->device.driver_data = NULL;
419 }
420 return 0;
421}
422
423static int eth1394_update(struct unit_directory *ud)
424{
425 struct eth1394_host_info *hi;
426 struct eth1394_priv *priv;
427 struct eth1394_node_ref *node;
428 struct eth1394_node_info *node_info;
429
430 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
431 if (!hi)
432 return -ENOENT;
433
434 priv = netdev_priv(hi->dev);
435
436 node = eth1394_find_node(&priv->ip_node_list, ud);
437
438 if (!node) {
439 node = kmalloc(sizeof(struct eth1394_node_ref),
440 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
441 if (!node)
442 return -ENOMEM;
443
444 node_info = kmalloc(sizeof(struct eth1394_node_info),
445 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
446 if (!node_info) {
447 kfree(node);
448 return -ENOMEM;
449 }
450
451 spin_lock_init(&node_info->pdg.lock);
452 INIT_LIST_HEAD(&node_info->pdg.list);
453 node_info->pdg.sz = 0;
454
455 ud->device.driver_data = node_info;
456 node->ud = ud;
457
458 priv = netdev_priv(hi->dev);
459 list_add_tail(&node->list, &priv->ip_node_list);
460 }
461
462 return 0;
463}
464
465
466static struct ieee1394_device_id eth1394_id_table[] = {
467 {
468 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
469 IEEE1394_MATCH_VERSION),
470 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
471 .version = ETHER1394_GASP_VERSION,
472 },
473 {}
474};
475
476MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
477
478static struct hpsb_protocol_driver eth1394_proto_driver = {
479 .name = "IPv4 over 1394 Driver",
480 .id_table = eth1394_id_table,
481 .update = eth1394_update,
482 .driver = {
483 .name = ETH1394_DRIVER_NAME,
484 .bus = &ieee1394_bus_type,
485 .probe = eth1394_probe,
486 .remove = eth1394_remove,
487 },
488};
489
490
491static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
492{
493 unsigned long flags;
494 int i;
495 struct eth1394_priv *priv = netdev_priv(dev);
496 struct hpsb_host *host = priv->host;
497 u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
498 u16 maxpayload = 1 << (host->csr.max_rec + 1);
499 int max_speed = IEEE1394_SPEED_MAX;
500
501 spin_lock_irqsave (&priv->lock, flags);
502
503 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
504 priv->bc_maxpayload = 512;
505
506 /* Determine speed limit */
507 for (i = 0; i < host->node_count; i++)
508 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
509 64 + i])
510 max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
511 64 + i];
512 priv->bc_sspd = max_speed;
513
514 /* We'll use our maxpayload as the default mtu */
515 if (set_mtu) {
516 dev->mtu = min(ETH1394_DATA_LEN,
517 (int)(maxpayload -
518 (sizeof(union eth1394_hdr) +
519 ETHER1394_GASP_OVERHEAD)));
520
521 /* Set our hardware address while we're at it */
522 *(u64*)dev->dev_addr = guid;
523 *(u64*)dev->broadcast = ~0x0ULL;
524 }
525
526 spin_unlock_irqrestore (&priv->lock, flags);
527}
528
529/* This function is called right before register_netdev */
530static void ether1394_init_dev (struct net_device *dev)
531{
532 /* Our functions */
533 dev->open = ether1394_open;
534 dev->stop = ether1394_stop;
535 dev->hard_start_xmit = ether1394_tx;
536 dev->get_stats = ether1394_stats;
537 dev->tx_timeout = ether1394_tx_timeout;
538 dev->change_mtu = ether1394_change_mtu;
539
540 dev->hard_header = ether1394_header;
541 dev->rebuild_header = ether1394_rebuild_header;
542 dev->hard_header_cache = ether1394_header_cache;
543 dev->header_cache_update= ether1394_header_cache_update;
544 dev->hard_header_parse = ether1394_header_parse;
545 dev->set_mac_address = ether1394_mac_addr;
546 SET_ETHTOOL_OPS(dev, &ethtool_ops);
547
548 /* Some constants */
549 dev->watchdog_timeo = ETHER1394_TIMEOUT;
550 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
551 dev->features = NETIF_F_HIGHDMA;
552 dev->addr_len = ETH1394_ALEN;
553 dev->hard_header_len = ETH1394_HLEN;
554 dev->type = ARPHRD_IEEE1394;
555
556 ether1394_reset_priv (dev, 1);
557}
558
559/*
560 * This function is called every time a card is found. It is generally called
561 * when the module is installed. This is where we add all of our ethernet
562 * devices. One for each host.
563 */
564static void ether1394_add_host (struct hpsb_host *host)
565{
566 struct eth1394_host_info *hi = NULL;
567 struct net_device *dev = NULL;
568 struct eth1394_priv *priv;
569 static int version_printed = 0;
570 u64 fifo_addr;
571
572 if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
573 return;
574
575 fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
576 host,
577 &addr_ops,
578 ETHER1394_REGION_ADDR_LEN,
579 ETHER1394_REGION_ADDR_LEN,
580 -1, -1);
581 if (fifo_addr == ~0ULL)
582 goto out;
583
584 if (version_printed++ == 0)
585 ETH1394_PRINT_G (KERN_INFO, "%s\n", version);
586
587 /* We should really have our own alloc_hpsbdev() function in
588 * net_init.c instead of calling the one for ethernet then hijacking
589 * it for ourselves. That way we'd be a real networking device. */
590 dev = alloc_etherdev(sizeof (struct eth1394_priv));
591
592 if (dev == NULL) {
593 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
594 "etherdevice for IEEE 1394 device %s-%d\n",
595 host->driver->name, host->id);
596 goto out;
597 }
598
599 SET_MODULE_OWNER(dev);
600 SET_NETDEV_DEV(dev, &host->device);
601
602 priv = netdev_priv(dev);
603
604 INIT_LIST_HEAD(&priv->ip_node_list);
605
606 spin_lock_init(&priv->lock);
607 priv->host = host;
608 priv->local_fifo = fifo_addr;
609
610 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
611
612 if (hi == NULL) {
613 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
614 "hostinfo for IEEE 1394 device %s-%d\n",
615 host->driver->name, host->id);
616 goto out;
617 }
618
619 ether1394_init_dev(dev);
620
621 if (register_netdev (dev)) {
622 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
623 goto out;
624 }
625
626 ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
627 host->id);
628
629 hi->host = host;
630 hi->dev = dev;
631
632 /* Ignore validity in hopes that it will be set in the future. It'll
633 * be checked when the eth device is opened. */
634 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
635
Jody McIntyre3ae3d0d2005-09-30 11:59:18 -0700636 priv->iso = hpsb_iso_recv_init(host,
637 ETHER1394_ISO_BUF_SIZE,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 ETHER1394_GASP_BUFFERS,
639 priv->broadcast_channel,
640 HPSB_ISO_DMA_PACKET_PER_BUFFER,
641 1, ether1394_iso);
642 if (priv->iso == NULL) {
643 ETH1394_PRINT(KERN_ERR, dev->name,
644 "Could not allocate isochronous receive context "
645 "for the broadcast channel\n");
646 priv->bc_state = ETHER1394_BC_ERROR;
647 } else {
648 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
649 priv->bc_state = ETHER1394_BC_STOPPED;
650 else
651 priv->bc_state = ETHER1394_BC_RUNNING;
652 }
653
654 return;
655
656out:
657 if (dev != NULL)
658 free_netdev(dev);
659 if (hi)
660 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
661
662 return;
663}
664
665/* Remove a card from our list */
666static void ether1394_remove_host (struct hpsb_host *host)
667{
668 struct eth1394_host_info *hi;
669
670 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
671 if (hi != NULL) {
672 struct eth1394_priv *priv = netdev_priv(hi->dev);
673
674 hpsb_unregister_addrspace(&eth1394_highlevel, host,
675 priv->local_fifo);
676
677 if (priv->iso != NULL)
678 hpsb_iso_shutdown(priv->iso);
679
680 if (hi->dev) {
681 unregister_netdev (hi->dev);
682 free_netdev(hi->dev);
683 }
684 }
685
686 return;
687}
688
689/* A reset has just arisen */
690static void ether1394_host_reset (struct hpsb_host *host)
691{
692 struct eth1394_host_info *hi;
693 struct eth1394_priv *priv;
694 struct net_device *dev;
695 struct list_head *lh, *n;
696 struct eth1394_node_ref *node;
697 struct eth1394_node_info *node_info;
698 unsigned long flags;
699
700 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
701
702 /* This can happen for hosts that we don't use */
703 if (hi == NULL)
704 return;
705
706 dev = hi->dev;
Ben Collins1934b8b2005-07-09 20:01:23 -0400707 priv = (struct eth1394_priv *)netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708
709 /* Reset our private host data, but not our mtu */
710 netif_stop_queue (dev);
711 ether1394_reset_priv (dev, 0);
712
713 list_for_each_entry(node, &priv->ip_node_list, list) {
714 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
715
716 spin_lock_irqsave(&node_info->pdg.lock, flags);
717
718 list_for_each_safe(lh, n, &node_info->pdg.list) {
719 purge_partial_datagram(lh);
720 }
721
722 INIT_LIST_HEAD(&(node_info->pdg.list));
723 node_info->pdg.sz = 0;
724
725 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
726 }
727
728 netif_wake_queue (dev);
729}
730
731/******************************************
732 * HW Header net device functions
733 ******************************************/
734/* These functions have been adapted from net/ethernet/eth.c */
735
736
737/* Create a fake MAC header for an arbitrary protocol layer.
738 * saddr=NULL means use device source address
739 * daddr=NULL means leave destination address (eg unresolved arp). */
740static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
741 unsigned short type, void *daddr, void *saddr,
742 unsigned len)
743{
744 struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
745
746 eth->h_proto = htons(type);
747
748 if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
749 memset(eth->h_dest, 0, dev->addr_len);
750 return(dev->hard_header_len);
751 }
752
753 if (daddr) {
754 memcpy(eth->h_dest,daddr,dev->addr_len);
755 return dev->hard_header_len;
756 }
757
758 return -dev->hard_header_len;
759
760}
761
762
763/* Rebuild the faked MAC header. This is called after an ARP
764 * (or in future other address resolution) has completed on this
765 * sk_buff. We now let ARP fill in the other fields.
766 *
767 * This routine CANNOT use cached dst->neigh!
768 * Really, it is used only when dst->neigh is wrong.
769 */
770static int ether1394_rebuild_header(struct sk_buff *skb)
771{
772 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
773 struct net_device *dev = skb->dev;
774
775 switch (eth->h_proto) {
776
777#ifdef CONFIG_INET
778 case __constant_htons(ETH_P_IP):
779 return arp_find((unsigned char*)&eth->h_dest, skb);
780#endif
781 default:
782 ETH1394_PRINT(KERN_DEBUG, dev->name,
783 "unable to resolve type %04x addresses.\n",
784 eth->h_proto);
785 break;
786 }
787
788 return 0;
789}
790
791static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
792{
793 struct net_device *dev = skb->dev;
794 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
795 return ETH1394_ALEN;
796}
797
798
799static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
800{
801 unsigned short type = hh->hh_type;
802 struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
803 (16 - ETH1394_HLEN));
804 struct net_device *dev = neigh->dev;
805
806 if (type == __constant_htons(ETH_P_802_3)) {
807 return -1;
808 }
809
810 eth->h_proto = type;
811 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
812
813 hh->hh_len = ETH1394_HLEN;
814 return 0;
815}
816
817/* Called by Address Resolution module to notify changes in address. */
818static void ether1394_header_cache_update(struct hh_cache *hh,
819 struct net_device *dev,
820 unsigned char * haddr)
821{
822 memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
823}
824
825static int ether1394_mac_addr(struct net_device *dev, void *p)
826{
827 if (netif_running(dev))
828 return -EBUSY;
829
830 /* Not going to allow setting the MAC address, we really need to use
831 * the real one supplied by the hardware */
832 return -EINVAL;
833 }
834
835
836
837/******************************************
838 * Datagram reception code
839 ******************************************/
840
841/* Copied from net/ethernet/eth.c */
842static inline u16 ether1394_type_trans(struct sk_buff *skb,
843 struct net_device *dev)
844{
845 struct eth1394hdr *eth;
846 unsigned char *rawp;
847
848 skb->mac.raw = skb->data;
849 skb_pull (skb, ETH1394_HLEN);
850 eth = eth1394_hdr(skb);
851
852 if (*eth->h_dest & 1) {
853 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
854 skb->pkt_type = PACKET_BROADCAST;
855#if 0
856 else
857 skb->pkt_type = PACKET_MULTICAST;
858#endif
859 } else {
860 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
861 skb->pkt_type = PACKET_OTHERHOST;
862 }
863
864 if (ntohs (eth->h_proto) >= 1536)
865 return eth->h_proto;
866
867 rawp = skb->data;
868
869 if (*(unsigned short *)rawp == 0xFFFF)
870 return htons (ETH_P_802_3);
871
872 return htons (ETH_P_802_2);
873}
874
875/* Parse an encapsulated IP1394 header into an ethernet frame packet.
876 * We also perform ARP translation here, if need be. */
877static inline u16 ether1394_parse_encap(struct sk_buff *skb,
878 struct net_device *dev,
879 nodeid_t srcid, nodeid_t destid,
880 u16 ether_type)
881{
882 struct eth1394_priv *priv = netdev_priv(dev);
883 u64 dest_hw;
884 unsigned short ret = 0;
885
886 /* Setup our hw addresses. We use these to build the
887 * ethernet header. */
888 if (destid == (LOCAL_BUS | ALL_NODES))
889 dest_hw = ~0ULL; /* broadcast */
890 else
891 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
892 priv->host->csr.guid_lo);
893
894 /* If this is an ARP packet, convert it. First, we want to make
895 * use of some of the fields, since they tell us a little bit
896 * about the sending machine. */
897 if (ether_type == __constant_htons (ETH_P_ARP)) {
898 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
899 struct arphdr *arp = (struct arphdr *)skb->data;
900 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
901 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
902 ntohl(arp1394->fifo_lo);
903 u8 max_rec = min(priv->host->csr.max_rec,
904 (u8)(arp1394->max_rec));
905 int sspd = arp1394->sspd;
906 u16 maxpayload;
907 struct eth1394_node_ref *node;
908 struct eth1394_node_info *node_info;
909
910 /* Sanity check. MacOSX seems to be sending us 131 in this
911 * field (atleast on my Panther G5). Not sure why. */
912 if (sspd > 5 || sspd < 0)
913 sspd = 0;
914
915 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
916
917 node = eth1394_find_node_guid(&priv->ip_node_list,
918 be64_to_cpu(arp1394->s_uniq_id));
919 if (!node) {
920 return 0;
921 }
922
923 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
924
925 /* Update our speed/payload/fifo_offset table */
926 node_info->maxpayload = maxpayload;
927 node_info->sspd = sspd;
928 node_info->fifo = fifo_addr;
929
930 /* Now that we're done with the 1394 specific stuff, we'll
931 * need to alter some of the data. Believe it or not, all
932 * that needs to be done is sender_IP_address needs to be
933 * moved, the destination hardware address get stuffed
934 * in and the hardware address length set to 8.
935 *
936 * IMPORTANT: The code below overwrites 1394 specific data
937 * needed above so keep the munging of the data for the
938 * higher level IP stack last. */
939
940 arp->ar_hln = 8;
941 arp_ptr += arp->ar_hln; /* skip over sender unique id */
942 *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
943 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
944
945 if (arp->ar_op == 1)
946 /* just set ARP req target unique ID to 0 */
947 *((u64*)arp_ptr) = 0;
948 else
949 *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
950 }
951
952 /* Now add the ethernet header. */
953 if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
954 &dest_hw, NULL, skb->len) >= 0)
955 ret = ether1394_type_trans(skb, dev);
956
957 return ret;
958}
959
960static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
961{
962 struct fragment_info *fi;
963
964 list_for_each_entry(fi, frag_list, list) {
965 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
966 ((offset + len - 1) < fi->offset)))
967 return 1;
968 }
969 return 0;
970}
971
972static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
973{
974 struct partial_datagram *pd;
975
976 list_for_each_entry(pd, pdgl, list) {
977 if (pd->dgl == dgl)
978 return &pd->list;
979 }
980 return NULL;
981}
982
983/* Assumes that new fragment does not overlap any existing fragments */
984static inline int new_fragment(struct list_head *frag_info, int offset, int len)
985{
986 struct list_head *lh;
987 struct fragment_info *fi, *fi2, *new;
988
989 list_for_each(lh, frag_info) {
990 fi = list_entry(lh, struct fragment_info, list);
991 if ((fi->offset + fi->len) == offset) {
992 /* The new fragment can be tacked on to the end */
993 fi->len += len;
994 /* Did the new fragment plug a hole? */
995 fi2 = list_entry(lh->next, struct fragment_info, list);
996 if ((fi->offset + fi->len) == fi2->offset) {
997 /* glue fragments together */
998 fi->len += fi2->len;
999 list_del(lh->next);
1000 kfree(fi2);
1001 }
1002 return 0;
1003 } else if ((offset + len) == fi->offset) {
1004 /* The new fragment can be tacked on to the beginning */
1005 fi->offset = offset;
1006 fi->len += len;
1007 /* Did the new fragment plug a hole? */
1008 fi2 = list_entry(lh->prev, struct fragment_info, list);
1009 if ((fi2->offset + fi2->len) == fi->offset) {
1010 /* glue fragments together */
1011 fi2->len += fi->len;
1012 list_del(lh);
1013 kfree(fi);
1014 }
1015 return 0;
1016 } else if (offset > (fi->offset + fi->len)) {
1017 break;
1018 } else if ((offset + len) < fi->offset) {
1019 lh = lh->prev;
1020 break;
1021 }
1022 }
1023
1024 new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1025 if (!new)
1026 return -ENOMEM;
1027
1028 new->offset = offset;
1029 new->len = len;
1030
1031 list_add(&new->list, lh);
1032
1033 return 0;
1034}
1035
1036static inline int new_partial_datagram(struct net_device *dev,
1037 struct list_head *pdgl, int dgl,
1038 int dg_size, char *frag_buf,
1039 int frag_off, int frag_len)
1040{
1041 struct partial_datagram *new;
1042
1043 new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1044 if (!new)
1045 return -ENOMEM;
1046
1047 INIT_LIST_HEAD(&new->frag_info);
1048
1049 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1050 kfree(new);
1051 return -ENOMEM;
1052 }
1053
1054 new->dgl = dgl;
1055 new->dg_size = dg_size;
1056
1057 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1058 if (!new->skb) {
1059 struct fragment_info *fi = list_entry(new->frag_info.next,
1060 struct fragment_info,
1061 list);
1062 kfree(fi);
1063 kfree(new);
1064 return -ENOMEM;
1065 }
1066
1067 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1068 new->pbuf = skb_put(new->skb, dg_size);
1069 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1070
1071 list_add(&new->list, pdgl);
1072
1073 return 0;
1074}
1075
1076static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1077 char *frag_buf, int frag_off, int frag_len)
1078{
1079 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1080
1081 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1082 return -ENOMEM;
1083 }
1084
1085 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1086
1087 /* Move list entry to beginnig of list so that oldest partial
1088 * datagrams percolate to the end of the list */
1089 list_del(lh);
1090 list_add(lh, pdgl);
1091
1092 return 0;
1093}
1094
1095static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1096{
1097 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1098 struct fragment_info *fi = list_entry(pd->frag_info.next,
1099 struct fragment_info, list);
1100
1101 return (fi->len == dg_size);
1102}
1103
1104/* Packet reception. We convert the IP1394 encapsulation header to an
1105 * ethernet header, and fill it with some of our other fields. This is
1106 * an incoming packet from the 1394 bus. */
1107static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1108 char *buf, int len)
1109{
1110 struct sk_buff *skb;
1111 unsigned long flags;
1112 struct eth1394_priv *priv = netdev_priv(dev);
1113 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1114 u16 ether_type = 0; /* initialized to clear warning */
1115 int hdr_len;
1116 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1117 struct eth1394_node_info *node_info;
1118
1119 if (!ud) {
1120 struct eth1394_node_ref *node;
1121 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1122 if (!node) {
1123 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1124 "lookup failure: " NODE_BUS_FMT,
1125 NODE_BUS_ARGS(priv->host, srcid));
1126 priv->stats.rx_dropped++;
1127 return -1;
1128 }
1129 ud = node->ud;
1130
1131 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1132 }
1133
1134 node_info = (struct eth1394_node_info*)ud->device.driver_data;
1135
1136 /* First, did we receive a fragmented or unfragmented datagram? */
1137 hdr->words.word1 = ntohs(hdr->words.word1);
1138
1139 hdr_len = hdr_type_len[hdr->common.lf];
1140
1141 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1142 /* An unfragmented datagram has been received by the ieee1394
1143 * bus. Build an skbuff around it so we can pass it to the
1144 * high level network layer. */
1145
1146 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1147 if (!skb) {
1148 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1149 priv->stats.rx_dropped++;
1150 return -1;
1151 }
1152 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1153 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1154 ether_type = hdr->uf.ether_type;
1155 } else {
1156 /* A datagram fragment has been received, now the fun begins. */
1157
1158 struct list_head *pdgl, *lh;
1159 struct partial_datagram *pd;
1160 int fg_off;
1161 int fg_len = len - hdr_len;
1162 int dg_size;
1163 int dgl;
1164 int retval;
1165 struct pdg_list *pdg = &(node_info->pdg);
1166
1167 hdr->words.word3 = ntohs(hdr->words.word3);
1168 /* The 4th header word is reserved so no need to do ntohs() */
1169
1170 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1171 ether_type = hdr->ff.ether_type;
1172 dgl = hdr->ff.dgl;
1173 dg_size = hdr->ff.dg_size + 1;
1174 fg_off = 0;
1175 } else {
1176 hdr->words.word2 = ntohs(hdr->words.word2);
1177 dgl = hdr->sf.dgl;
1178 dg_size = hdr->sf.dg_size + 1;
1179 fg_off = hdr->sf.fg_off;
1180 }
1181 spin_lock_irqsave(&pdg->lock, flags);
1182
1183 pdgl = &(pdg->list);
1184 lh = find_partial_datagram(pdgl, dgl);
1185
1186 if (lh == NULL) {
1187 while (pdg->sz >= max_partial_datagrams) {
1188 /* remove the oldest */
1189 purge_partial_datagram(pdgl->prev);
1190 pdg->sz--;
1191 }
1192
1193 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1194 buf + hdr_len, fg_off,
1195 fg_len);
1196 if (retval < 0) {
1197 spin_unlock_irqrestore(&pdg->lock, flags);
1198 goto bad_proto;
1199 }
1200 pdg->sz++;
1201 lh = find_partial_datagram(pdgl, dgl);
1202 } else {
1203 struct partial_datagram *pd;
1204
1205 pd = list_entry(lh, struct partial_datagram, list);
1206
1207 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1208 /* Overlapping fragments, obliterate old
1209 * datagram and start new one. */
1210 purge_partial_datagram(lh);
1211 retval = new_partial_datagram(dev, pdgl, dgl,
1212 dg_size,
1213 buf + hdr_len,
1214 fg_off, fg_len);
1215 if (retval < 0) {
1216 pdg->sz--;
1217 spin_unlock_irqrestore(&pdg->lock, flags);
1218 goto bad_proto;
1219 }
1220 } else {
1221 retval = update_partial_datagram(pdgl, lh,
1222 buf + hdr_len,
1223 fg_off, fg_len);
1224 if (retval < 0) {
1225 /* Couldn't save off fragment anyway
1226 * so might as well obliterate the
1227 * datagram now. */
1228 purge_partial_datagram(lh);
1229 pdg->sz--;
1230 spin_unlock_irqrestore(&pdg->lock, flags);
1231 goto bad_proto;
1232 }
1233 } /* fragment overlap */
1234 } /* new datagram or add to existing one */
1235
1236 pd = list_entry(lh, struct partial_datagram, list);
1237
1238 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1239 pd->ether_type = ether_type;
1240 }
1241
1242 if (is_datagram_complete(lh, dg_size)) {
1243 ether_type = pd->ether_type;
1244 pdg->sz--;
1245 skb = skb_get(pd->skb);
1246 purge_partial_datagram(lh);
1247 spin_unlock_irqrestore(&pdg->lock, flags);
1248 } else {
1249 /* Datagram is not complete, we're done for the
1250 * moment. */
1251 spin_unlock_irqrestore(&pdg->lock, flags);
1252 return 0;
1253 }
1254 } /* unframgented datagram or fragmented one */
1255
1256 /* Write metadata, and then pass to the receive level */
1257 skb->dev = dev;
1258 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1259
1260 /* Parse the encapsulation header. This actually does the job of
1261 * converting to an ethernet frame header, aswell as arp
1262 * conversion if needed. ARP conversion is easier in this
1263 * direction, since we are using ethernet as our backend. */
1264 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1265 ether_type);
1266
1267
1268 spin_lock_irqsave(&priv->lock, flags);
1269 if (!skb->protocol) {
1270 priv->stats.rx_errors++;
1271 priv->stats.rx_dropped++;
1272 dev_kfree_skb_any(skb);
1273 goto bad_proto;
1274 }
1275
1276 if (netif_rx(skb) == NET_RX_DROP) {
1277 priv->stats.rx_errors++;
1278 priv->stats.rx_dropped++;
1279 goto bad_proto;
1280 }
1281
1282 /* Statistics */
1283 priv->stats.rx_packets++;
1284 priv->stats.rx_bytes += skb->len;
1285
1286bad_proto:
1287 if (netif_queue_stopped(dev))
1288 netif_wake_queue(dev);
1289 spin_unlock_irqrestore(&priv->lock, flags);
1290
1291 dev->last_rx = jiffies;
1292
1293 return 0;
1294}
1295
1296static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1297 quadlet_t *data, u64 addr, size_t len, u16 flags)
1298{
1299 struct eth1394_host_info *hi;
1300
1301 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1302 if (hi == NULL) {
1303 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1304 host->driver->name);
1305 return RCODE_ADDRESS_ERROR;
1306 }
1307
1308 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1309 return RCODE_ADDRESS_ERROR;
1310 else
1311 return RCODE_COMPLETE;
1312}
1313
1314static void ether1394_iso(struct hpsb_iso *iso)
1315{
1316 quadlet_t *data;
1317 char *buf;
1318 struct eth1394_host_info *hi;
1319 struct net_device *dev;
1320 struct eth1394_priv *priv;
1321 unsigned int len;
1322 u32 specifier_id;
1323 u16 source_id;
1324 int i;
1325 int nready;
1326
1327 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1328 if (hi == NULL) {
1329 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1330 iso->host->driver->name);
1331 return;
1332 }
1333
1334 dev = hi->dev;
1335
1336 nready = hpsb_iso_n_ready(iso);
1337 for (i = 0; i < nready; i++) {
1338 struct hpsb_iso_packet_info *info =
1339 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1340 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1341
1342 /* skip over GASP header */
1343 buf = (char *)data + 8;
1344 len = info->len - 8;
1345
1346 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1347 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1348 source_id = be32_to_cpu(data[0]) >> 16;
1349
1350 priv = netdev_priv(dev);
1351
1352 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1353 specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1354 /* This packet is not for us */
1355 continue;
1356 }
1357 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1358 buf, len);
1359 }
1360
1361 hpsb_iso_recv_release_packets(iso, i);
1362
1363 dev->last_rx = jiffies;
1364}
1365
1366/******************************************
1367 * Datagram transmission code
1368 ******************************************/
1369
1370/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1371 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1372 * needs to be munged a bit. The remainder of the arphdr is formatted based
1373 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1374 * judge.
1375 *
1376 * Now that the EUI is used for the hardware address all we need to do to make
1377 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1378 * speed, and unicast FIFO address information between the sender_unique_id
1379 * and the IP addresses.
1380 */
1381static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1382 struct net_device *dev)
1383{
1384 struct eth1394_priv *priv = netdev_priv(dev);
1385
1386 struct arphdr *arp = (struct arphdr *)skb->data;
1387 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1388 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1389
1390 /* Believe it or not, all that need to happen is sender IP get moved
1391 * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
1392 arp1394->hw_addr_len = 16;
1393 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1394 arp1394->max_rec = priv->host->csr.max_rec;
1395 arp1394->sspd = priv->host->csr.lnk_spd;
1396 arp1394->fifo_hi = htons (priv->local_fifo >> 32);
1397 arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
1398
1399 return;
1400}
1401
1402/* We need to encapsulate the standard header with our own. We use the
1403 * ethernet header's proto for our own. */
1404static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1405 int proto,
1406 union eth1394_hdr *hdr,
1407 u16 dg_size, u16 dgl)
1408{
1409 unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1410
1411 /* Does it all fit in one packet? */
1412 if (dg_size <= adj_max_payload) {
1413 hdr->uf.lf = ETH1394_HDR_LF_UF;
1414 hdr->uf.ether_type = proto;
1415 } else {
1416 hdr->ff.lf = ETH1394_HDR_LF_FF;
1417 hdr->ff.ether_type = proto;
1418 hdr->ff.dg_size = dg_size - 1;
1419 hdr->ff.dgl = dgl;
1420 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1421 }
1422 return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1423}
1424
1425static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1426 unsigned int max_payload,
1427 union eth1394_hdr *hdr)
1428{
1429 union eth1394_hdr *bufhdr;
1430 int ftype = hdr->common.lf;
1431 int hdrsz = hdr_type_len[ftype];
1432 unsigned int adj_max_payload = max_payload - hdrsz;
1433
1434 switch(ftype) {
1435 case ETH1394_HDR_LF_UF:
1436 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1437 bufhdr->words.word1 = htons(hdr->words.word1);
1438 bufhdr->words.word2 = hdr->words.word2;
1439 break;
1440
1441 case ETH1394_HDR_LF_FF:
1442 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1443 bufhdr->words.word1 = htons(hdr->words.word1);
1444 bufhdr->words.word2 = hdr->words.word2;
1445 bufhdr->words.word3 = htons(hdr->words.word3);
1446 bufhdr->words.word4 = 0;
1447
1448 /* Set frag type here for future interior fragments */
1449 hdr->common.lf = ETH1394_HDR_LF_IF;
1450 hdr->sf.fg_off = 0;
1451 break;
1452
1453 default:
1454 hdr->sf.fg_off += adj_max_payload;
1455 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1456 if (max_payload >= skb->len)
1457 hdr->common.lf = ETH1394_HDR_LF_LF;
1458 bufhdr->words.word1 = htons(hdr->words.word1);
1459 bufhdr->words.word2 = htons(hdr->words.word2);
1460 bufhdr->words.word3 = htons(hdr->words.word3);
1461 bufhdr->words.word4 = 0;
1462 }
1463
1464 return min(max_payload, skb->len);
1465}
1466
1467static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1468{
1469 struct hpsb_packet *p;
1470
1471 p = hpsb_alloc_packet(0);
1472 if (p) {
1473 p->host = host;
1474 p->generation = get_hpsb_generation(host);
1475 p->type = hpsb_async;
1476 }
1477 return p;
1478}
1479
1480static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1481 struct hpsb_host *host,
1482 nodeid_t node, u64 addr,
1483 void * data, int tx_len)
1484{
1485 p->node_id = node;
1486 p->data = NULL;
1487
1488 p->tcode = TCODE_WRITEB;
1489 p->header[1] = (host->node_id << 16) | (addr >> 32);
1490 p->header[2] = addr & 0xffffffff;
1491
1492 p->header_size = 16;
1493 p->expect_response = 1;
1494
1495 if (hpsb_get_tlabel(p)) {
1496 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1497 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1498 return -1;
1499 }
1500 p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1501 | (1 << 8) | (TCODE_WRITEB << 4);
1502
1503 p->header[3] = tx_len << 16;
1504 p->data_size = (tx_len + 3) & ~3;
1505 p->data = (quadlet_t*)data;
1506
1507 return 0;
1508}
1509
1510static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1511 struct eth1394_priv *priv,
1512 struct sk_buff *skb, int length)
1513{
1514 p->header_size = 4;
1515 p->tcode = TCODE_STREAM_DATA;
1516
1517 p->header[0] = (length << 16) | (3 << 14)
1518 | ((priv->broadcast_channel) << 8)
1519 | (TCODE_STREAM_DATA << 4);
1520 p->data_size = length;
1521 p->data = ((quadlet_t*)skb->data) - 2;
1522 p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1523 ETHER1394_GASP_SPECIFIER_ID_HI);
1524 p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1525 ETHER1394_GASP_VERSION);
1526
1527 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1528 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1529 * value based on packet->node_id if packet->node_id is not set. */
1530 p->node_id = ALL_NODES;
1531 p->speed_code = priv->bc_sspd;
1532}
1533
1534static inline void ether1394_free_packet(struct hpsb_packet *packet)
1535{
1536 if (packet->tcode != TCODE_STREAM_DATA)
1537 hpsb_free_tlabel(packet);
1538 hpsb_free_packet(packet);
1539}
1540
1541static void ether1394_complete_cb(void *__ptask);
1542
1543static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1544{
1545 struct eth1394_priv *priv = ptask->priv;
1546 struct hpsb_packet *packet = NULL;
1547
1548 packet = ether1394_alloc_common_packet(priv->host);
1549 if (!packet)
1550 return -1;
1551
1552 if (ptask->tx_type == ETH1394_GASP) {
1553 int length = tx_len + (2 * sizeof(quadlet_t));
1554
1555 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1556 } else if (ether1394_prep_write_packet(packet, priv->host,
1557 ptask->dest_node,
1558 ptask->addr, ptask->skb->data,
1559 tx_len)) {
1560 hpsb_free_packet(packet);
1561 return -1;
1562 }
1563
1564 ptask->packet = packet;
1565 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1566 ptask);
1567
1568 if (hpsb_send_packet(packet) < 0) {
1569 ether1394_free_packet(packet);
1570 return -1;
1571 }
1572
1573 return 0;
1574}
1575
1576
1577/* Task function to be run when a datagram transmission is completed */
1578static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1579{
1580 struct sk_buff *skb = ptask->skb;
1581 struct net_device *dev = skb->dev;
1582 struct eth1394_priv *priv = netdev_priv(dev);
1583 unsigned long flags;
1584
1585 /* Statistics */
1586 spin_lock_irqsave(&priv->lock, flags);
1587 if (fail) {
1588 priv->stats.tx_dropped++;
1589 priv->stats.tx_errors++;
1590 } else {
1591 priv->stats.tx_bytes += skb->len;
1592 priv->stats.tx_packets++;
1593 }
1594 spin_unlock_irqrestore(&priv->lock, flags);
1595
1596 dev_kfree_skb_any(skb);
1597 kmem_cache_free(packet_task_cache, ptask);
1598}
1599
1600
1601/* Callback for when a packet has been sent and the status of that packet is
1602 * known */
1603static void ether1394_complete_cb(void *__ptask)
1604{
1605 struct packet_task *ptask = (struct packet_task *)__ptask;
1606 struct hpsb_packet *packet = ptask->packet;
1607 int fail = 0;
1608
1609 if (packet->tcode != TCODE_STREAM_DATA)
1610 fail = hpsb_packet_success(packet);
1611
1612 ether1394_free_packet(packet);
1613
1614 ptask->outstanding_pkts--;
1615 if (ptask->outstanding_pkts > 0 && !fail) {
1616 int tx_len;
1617
1618 /* Add the encapsulation header to the fragment */
1619 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1620 &ptask->hdr);
1621 if (ether1394_send_packet(ptask, tx_len))
1622 ether1394_dg_complete(ptask, 1);
1623 } else {
1624 ether1394_dg_complete(ptask, fail);
1625 }
1626}
1627
1628
1629
1630/* Transmit a packet (called by kernel) */
1631static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1632{
1633 int kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1634 struct eth1394hdr *eth;
1635 struct eth1394_priv *priv = netdev_priv(dev);
1636 int proto;
1637 unsigned long flags;
1638 nodeid_t dest_node;
1639 eth1394_tx_type tx_type;
1640 int ret = 0;
1641 unsigned int tx_len;
1642 unsigned int max_payload;
1643 u16 dg_size;
1644 u16 dgl;
1645 struct packet_task *ptask;
1646 struct eth1394_node_ref *node;
1647 struct eth1394_node_info *node_info = NULL;
1648
1649 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1650 if (ptask == NULL) {
1651 ret = -ENOMEM;
1652 goto fail;
1653 }
1654
1655 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1656 * it does not set our validity bit. We need to compensate for
1657 * that somewhere else, but not in eth1394. */
1658#if 0
1659 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1660 ret = -EAGAIN;
1661 goto fail;
1662 }
1663#endif
1664
1665 if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1666 ret = -ENOMEM;
1667 goto fail;
1668 }
1669
1670 /* Get rid of the fake eth1394 header, but save a pointer */
1671 eth = (struct eth1394hdr*)skb->data;
1672 skb_pull(skb, ETH1394_HLEN);
1673
1674 proto = eth->h_proto;
1675 dg_size = skb->len;
1676
1677 /* Set the transmission type for the packet. ARP packets and IP
1678 * broadcast packets are sent via GASP. */
1679 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1680 proto == __constant_htons(ETH_P_ARP) ||
1681 (proto == __constant_htons(ETH_P_IP) &&
1682 IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1683 tx_type = ETH1394_GASP;
1684 dest_node = LOCAL_BUS | ALL_NODES;
1685 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1686 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1687 dgl = priv->bc_dgl;
1688 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1689 priv->bc_dgl++;
1690 } else {
1691 node = eth1394_find_node_guid(&priv->ip_node_list,
1692 be64_to_cpu(*(u64*)eth->h_dest));
1693 if (!node) {
1694 ret = -EAGAIN;
1695 goto fail;
1696 }
1697 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1698 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1699 ret = -EAGAIN;
1700 goto fail;
1701 }
1702
1703 dest_node = node->ud->ne->nodeid;
1704 max_payload = node_info->maxpayload;
1705 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1706
1707 dgl = node_info->dgl;
1708 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1709 node_info->dgl++;
1710 tx_type = ETH1394_WRREQ;
1711 }
1712
1713 /* If this is an ARP packet, convert it */
1714 if (proto == __constant_htons (ETH_P_ARP))
1715 ether1394_arp_to_1394arp (skb, dev);
1716
1717 ptask->hdr.words.word1 = 0;
1718 ptask->hdr.words.word2 = 0;
1719 ptask->hdr.words.word3 = 0;
1720 ptask->hdr.words.word4 = 0;
1721 ptask->skb = skb;
1722 ptask->priv = priv;
1723 ptask->tx_type = tx_type;
1724
1725 if (tx_type != ETH1394_GASP) {
1726 u64 addr;
1727
1728 spin_lock_irqsave(&priv->lock, flags);
1729 addr = node_info->fifo;
1730 spin_unlock_irqrestore(&priv->lock, flags);
1731
1732 ptask->addr = addr;
1733 ptask->dest_node = dest_node;
1734 }
1735
1736 ptask->tx_type = tx_type;
1737 ptask->max_payload = max_payload;
1738 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1739 &ptask->hdr, dg_size,
1740 dgl);
1741
1742 /* Add the encapsulation header to the fragment */
1743 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1744 dev->trans_start = jiffies;
1745 if (ether1394_send_packet(ptask, tx_len))
1746 goto fail;
1747
1748 netif_wake_queue(dev);
1749 return 0;
1750fail:
1751 if (ptask)
1752 kmem_cache_free(packet_task_cache, ptask);
1753
1754 if (skb != NULL)
1755 dev_kfree_skb(skb);
1756
1757 spin_lock_irqsave (&priv->lock, flags);
1758 priv->stats.tx_dropped++;
1759 priv->stats.tx_errors++;
1760 spin_unlock_irqrestore (&priv->lock, flags);
1761
1762 if (netif_queue_stopped(dev))
1763 netif_wake_queue(dev);
1764
1765 return 0; /* returning non-zero causes serious problems */
1766}
1767
1768static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1769{
1770 strcpy (info->driver, driver_name);
Jody McIntyre3ae3d0d2005-09-30 11:59:18 -07001771 strcpy (info->version, "$Rev: 1312 $");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772 /* FIXME XXX provide sane businfo */
1773 strcpy (info->bus_info, "ieee1394");
1774}
1775
1776static struct ethtool_ops ethtool_ops = {
1777 .get_drvinfo = ether1394_get_drvinfo
1778};
1779
1780static int __init ether1394_init_module (void)
1781{
1782 packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1783 0, 0, NULL, NULL);
1784
1785 /* Register ourselves as a highlevel driver */
1786 hpsb_register_highlevel(&eth1394_highlevel);
1787
1788 return hpsb_register_protocol(&eth1394_proto_driver);
1789}
1790
1791static void __exit ether1394_exit_module (void)
1792{
1793 hpsb_unregister_protocol(&eth1394_proto_driver);
1794 hpsb_unregister_highlevel(&eth1394_highlevel);
1795 kmem_cache_destroy(packet_task_cache);
1796}
1797
1798module_init(ether1394_init_module);
1799module_exit(ether1394_exit_module);