blob: ea493e6f2652bae2e5ac01c1e59de0c66e7c0aa8 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
Artem Bityutskiy1e517642008-07-14 19:08:37 +030033#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include "ubifs.h"
38
Artem Bityutskiy39ce81c2008-11-18 18:09:49 +020039/*
40 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
41 * allocating too much.
42 */
43#define UBIFS_KMALLOC_OK (128*1024)
44
Artem Bityutskiy1e517642008-07-14 19:08:37 +030045/* Slab cache for UBIFS inodes */
46struct kmem_cache *ubifs_inode_slab;
47
48/* UBIFS TNC shrinker description */
49static struct shrinker ubifs_shrinker_info = {
50 .shrink = ubifs_shrinker,
51 .seeks = DEFAULT_SEEKS,
52};
53
54/**
55 * validate_inode - validate inode.
56 * @c: UBIFS file-system description object
57 * @inode: the inode to validate
58 *
59 * This is a helper function for 'ubifs_iget()' which validates various fields
60 * of a newly built inode to make sure they contain sane values and prevent
61 * possible vulnerabilities. Returns zero if the inode is all right and
62 * a non-zero error code if not.
63 */
64static int validate_inode(struct ubifs_info *c, const struct inode *inode)
65{
66 int err;
67 const struct ubifs_inode *ui = ubifs_inode(inode);
68
69 if (inode->i_size > c->max_inode_sz) {
70 ubifs_err("inode is too large (%lld)",
71 (long long)inode->i_size);
72 return 1;
73 }
74
75 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
76 ubifs_err("unknown compression type %d", ui->compr_type);
77 return 2;
78 }
79
80 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
81 return 3;
82
83 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
84 return 4;
85
86 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
87 return 5;
88
89 if (!ubifs_compr_present(ui->compr_type)) {
90 ubifs_warn("inode %lu uses '%s' compression, but it was not "
91 "compiled in", inode->i_ino,
92 ubifs_compr_name(ui->compr_type));
93 }
94
95 err = dbg_check_dir_size(c, inode);
96 return err;
97}
98
99struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
100{
101 int err;
102 union ubifs_key key;
103 struct ubifs_ino_node *ino;
104 struct ubifs_info *c = sb->s_fs_info;
105 struct inode *inode;
106 struct ubifs_inode *ui;
107
108 dbg_gen("inode %lu", inum);
109
110 inode = iget_locked(sb, inum);
111 if (!inode)
112 return ERR_PTR(-ENOMEM);
113 if (!(inode->i_state & I_NEW))
114 return inode;
115 ui = ubifs_inode(inode);
116
117 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
118 if (!ino) {
119 err = -ENOMEM;
120 goto out;
121 }
122
123 ino_key_init(c, &key, inode->i_ino);
124
125 err = ubifs_tnc_lookup(c, &key, ino);
126 if (err)
127 goto out_ino;
128
129 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
130 inode->i_nlink = le32_to_cpu(ino->nlink);
131 inode->i_uid = le32_to_cpu(ino->uid);
132 inode->i_gid = le32_to_cpu(ino->gid);
133 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
134 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
135 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
136 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
137 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
138 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
139 inode->i_mode = le32_to_cpu(ino->mode);
140 inode->i_size = le64_to_cpu(ino->size);
141
142 ui->data_len = le32_to_cpu(ino->data_len);
143 ui->flags = le32_to_cpu(ino->flags);
144 ui->compr_type = le16_to_cpu(ino->compr_type);
145 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
146 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
147 ui->xattr_size = le32_to_cpu(ino->xattr_size);
148 ui->xattr_names = le32_to_cpu(ino->xattr_names);
149 ui->synced_i_size = ui->ui_size = inode->i_size;
150
151 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
152
153 err = validate_inode(c, inode);
154 if (err)
155 goto out_invalid;
156
Artem Bityutskiy0a883a02008-08-13 14:13:26 +0300157 /* Disable read-ahead */
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300158 inode->i_mapping->backing_dev_info = &c->bdi;
159
160 switch (inode->i_mode & S_IFMT) {
161 case S_IFREG:
162 inode->i_mapping->a_ops = &ubifs_file_address_operations;
163 inode->i_op = &ubifs_file_inode_operations;
164 inode->i_fop = &ubifs_file_operations;
165 if (ui->xattr) {
166 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
167 if (!ui->data) {
168 err = -ENOMEM;
169 goto out_ino;
170 }
171 memcpy(ui->data, ino->data, ui->data_len);
172 ((char *)ui->data)[ui->data_len] = '\0';
173 } else if (ui->data_len != 0) {
174 err = 10;
175 goto out_invalid;
176 }
177 break;
178 case S_IFDIR:
179 inode->i_op = &ubifs_dir_inode_operations;
180 inode->i_fop = &ubifs_dir_operations;
181 if (ui->data_len != 0) {
182 err = 11;
183 goto out_invalid;
184 }
185 break;
186 case S_IFLNK:
187 inode->i_op = &ubifs_symlink_inode_operations;
188 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
189 err = 12;
190 goto out_invalid;
191 }
192 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
193 if (!ui->data) {
194 err = -ENOMEM;
195 goto out_ino;
196 }
197 memcpy(ui->data, ino->data, ui->data_len);
198 ((char *)ui->data)[ui->data_len] = '\0';
199 break;
200 case S_IFBLK:
201 case S_IFCHR:
202 {
203 dev_t rdev;
204 union ubifs_dev_desc *dev;
205
206 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
207 if (!ui->data) {
208 err = -ENOMEM;
209 goto out_ino;
210 }
211
212 dev = (union ubifs_dev_desc *)ino->data;
213 if (ui->data_len == sizeof(dev->new))
214 rdev = new_decode_dev(le32_to_cpu(dev->new));
215 else if (ui->data_len == sizeof(dev->huge))
216 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
217 else {
218 err = 13;
219 goto out_invalid;
220 }
221 memcpy(ui->data, ino->data, ui->data_len);
222 inode->i_op = &ubifs_file_inode_operations;
223 init_special_inode(inode, inode->i_mode, rdev);
224 break;
225 }
226 case S_IFSOCK:
227 case S_IFIFO:
228 inode->i_op = &ubifs_file_inode_operations;
229 init_special_inode(inode, inode->i_mode, 0);
230 if (ui->data_len != 0) {
231 err = 14;
232 goto out_invalid;
233 }
234 break;
235 default:
236 err = 15;
237 goto out_invalid;
238 }
239
240 kfree(ino);
241 ubifs_set_inode_flags(inode);
242 unlock_new_inode(inode);
243 return inode;
244
245out_invalid:
246 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
247 dbg_dump_node(c, ino);
248 dbg_dump_inode(c, inode);
249 err = -EINVAL;
250out_ino:
251 kfree(ino);
252out:
253 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
254 iget_failed(inode);
255 return ERR_PTR(err);
256}
257
258static struct inode *ubifs_alloc_inode(struct super_block *sb)
259{
260 struct ubifs_inode *ui;
261
262 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
263 if (!ui)
264 return NULL;
265
266 memset((void *)ui + sizeof(struct inode), 0,
267 sizeof(struct ubifs_inode) - sizeof(struct inode));
268 mutex_init(&ui->ui_mutex);
269 spin_lock_init(&ui->ui_lock);
270 return &ui->vfs_inode;
271};
272
273static void ubifs_destroy_inode(struct inode *inode)
274{
275 struct ubifs_inode *ui = ubifs_inode(inode);
276
277 kfree(ui->data);
278 kmem_cache_free(ubifs_inode_slab, inode);
279}
280
281/*
282 * Note, Linux write-back code calls this without 'i_mutex'.
283 */
284static int ubifs_write_inode(struct inode *inode, int wait)
285{
Artem Bityutskiyfbfa6c82008-07-22 11:52:52 +0300286 int err = 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300287 struct ubifs_info *c = inode->i_sb->s_fs_info;
288 struct ubifs_inode *ui = ubifs_inode(inode);
289
290 ubifs_assert(!ui->xattr);
291 if (is_bad_inode(inode))
292 return 0;
293
294 mutex_lock(&ui->ui_mutex);
295 /*
296 * Due to races between write-back forced by budgeting
297 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
298 * have already been synchronized, do not do this again. This might
299 * also happen if it was synchronized in an VFS operation, e.g.
300 * 'ubifs_link()'.
301 */
302 if (!ui->dirty) {
303 mutex_unlock(&ui->ui_mutex);
304 return 0;
305 }
306
Artem Bityutskiyfbfa6c82008-07-22 11:52:52 +0300307 /*
308 * As an optimization, do not write orphan inodes to the media just
309 * because this is not needed.
310 */
311 dbg_gen("inode %lu, mode %#x, nlink %u",
312 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
313 if (inode->i_nlink) {
Artem Bityutskiy1f286812008-07-22 12:06:13 +0300314 err = ubifs_jnl_write_inode(c, inode);
Artem Bityutskiyfbfa6c82008-07-22 11:52:52 +0300315 if (err)
316 ubifs_err("can't write inode %lu, error %d",
317 inode->i_ino, err);
318 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300319
320 ui->dirty = 0;
321 mutex_unlock(&ui->ui_mutex);
322 ubifs_release_dirty_inode_budget(c, ui);
323 return err;
324}
325
326static void ubifs_delete_inode(struct inode *inode)
327{
328 int err;
329 struct ubifs_info *c = inode->i_sb->s_fs_info;
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300330 struct ubifs_inode *ui = ubifs_inode(inode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300331
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300332 if (ui->xattr)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300333 /*
334 * Extended attribute inode deletions are fully handled in
335 * 'ubifs_removexattr()'. These inodes are special and have
336 * limited usage, so there is nothing to do here.
337 */
338 goto out;
339
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +0300340 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300341 ubifs_assert(!atomic_read(&inode->i_count));
342 ubifs_assert(inode->i_nlink == 0);
343
344 truncate_inode_pages(&inode->i_data, 0);
345 if (is_bad_inode(inode))
346 goto out;
347
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300348 ui->ui_size = inode->i_size = 0;
Artem Bityutskiyde94eb52008-07-22 13:06:20 +0300349 err = ubifs_jnl_delete_inode(c, inode);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300350 if (err)
351 /*
352 * Worst case we have a lost orphan inode wasting space, so a
Artem Bityutskiy0a883a02008-08-13 14:13:26 +0300353 * simple error message is OK here.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300354 */
Artem Bityutskiyde94eb52008-07-22 13:06:20 +0300355 ubifs_err("can't delete inode %lu, error %d",
356 inode->i_ino, err);
357
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300358out:
Artem Bityutskiy1e0f3582008-07-21 10:59:53 +0300359 if (ui->dirty)
360 ubifs_release_dirty_inode_budget(c, ui);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300361 clear_inode(inode);
362}
363
364static void ubifs_dirty_inode(struct inode *inode)
365{
366 struct ubifs_inode *ui = ubifs_inode(inode);
367
368 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
369 if (!ui->dirty) {
370 ui->dirty = 1;
371 dbg_gen("inode %lu", inode->i_ino);
372 }
373}
374
375static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
376{
377 struct ubifs_info *c = dentry->d_sb->s_fs_info;
378 unsigned long long free;
Artem Bityutskiy7c7cbad2008-09-03 14:16:42 +0300379 __le32 *uuid = (__le32 *)c->uuid;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300380
Artem Bityutskiy7dad1812008-08-25 18:58:19 +0300381 free = ubifs_get_free_space(c);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300382 dbg_gen("free space %lld bytes (%lld blocks)",
383 free, free >> UBIFS_BLOCK_SHIFT);
384
385 buf->f_type = UBIFS_SUPER_MAGIC;
386 buf->f_bsize = UBIFS_BLOCK_SIZE;
387 buf->f_blocks = c->block_cnt;
388 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
389 if (free > c->report_rp_size)
390 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
391 else
392 buf->f_bavail = 0;
393 buf->f_files = 0;
394 buf->f_ffree = 0;
395 buf->f_namelen = UBIFS_MAX_NLEN;
Artem Bityutskiy7c7cbad2008-09-03 14:16:42 +0300396 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
397 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300398 return 0;
399}
400
401static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
402{
403 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
404
405 if (c->mount_opts.unmount_mode == 2)
406 seq_printf(s, ",fast_unmount");
407 else if (c->mount_opts.unmount_mode == 1)
408 seq_printf(s, ",norm_unmount");
409
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300410 if (c->mount_opts.bulk_read == 2)
411 seq_printf(s, ",bulk_read");
412 else if (c->mount_opts.bulk_read == 1)
413 seq_printf(s, ",no_bulk_read");
414
Adrian Hunter2953e732008-09-04 16:26:00 +0300415 if (c->mount_opts.chk_data_crc == 2)
416 seq_printf(s, ",chk_data_crc");
417 else if (c->mount_opts.chk_data_crc == 1)
418 seq_printf(s, ",no_chk_data_crc");
419
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300420 return 0;
421}
422
423static int ubifs_sync_fs(struct super_block *sb, int wait)
424{
425 struct ubifs_info *c = sb->s_fs_info;
426 int i, ret = 0, err;
Artem Bityutskiy403e12a2008-09-09 12:31:37 +0300427 long long bud_bytes;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300428
Adrian Hunterbed79932008-09-11 14:25:44 +0300429 if (c->jheads) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300430 for (i = 0; i < c->jhead_cnt; i++) {
431 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
432 if (err && !ret)
433 ret = err;
434 }
Artem Bityutskiy403e12a2008-09-09 12:31:37 +0300435
Adrian Hunterbed79932008-09-11 14:25:44 +0300436 /* Commit the journal unless it has too little data */
437 spin_lock(&c->buds_lock);
438 bud_bytes = c->bud_bytes;
439 spin_unlock(&c->buds_lock);
440 if (bud_bytes > c->leb_size) {
441 err = ubifs_run_commit(c);
442 if (err)
443 return err;
444 }
Artem Bityutskiy403e12a2008-09-09 12:31:37 +0300445 }
446
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300447 /*
448 * We ought to call sync for c->ubi but it does not have one. If it had
449 * it would in turn call mtd->sync, however mtd operations are
450 * synchronous anyway, so we don't lose any sleep here.
451 */
452 return ret;
453}
454
455/**
456 * init_constants_early - initialize UBIFS constants.
457 * @c: UBIFS file-system description object
458 *
459 * This function initialize UBIFS constants which do not need the superblock to
460 * be read. It also checks that the UBI volume satisfies basic UBIFS
461 * requirements. Returns zero in case of success and a negative error code in
462 * case of failure.
463 */
464static int init_constants_early(struct ubifs_info *c)
465{
466 if (c->vi.corrupted) {
467 ubifs_warn("UBI volume is corrupted - read-only mode");
468 c->ro_media = 1;
469 }
470
471 if (c->di.ro_mode) {
472 ubifs_msg("read-only UBI device");
473 c->ro_media = 1;
474 }
475
476 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
477 ubifs_msg("static UBI volume - read-only mode");
478 c->ro_media = 1;
479 }
480
481 c->leb_cnt = c->vi.size;
482 c->leb_size = c->vi.usable_leb_size;
483 c->half_leb_size = c->leb_size / 2;
484 c->min_io_size = c->di.min_io_size;
485 c->min_io_shift = fls(c->min_io_size) - 1;
486
487 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
488 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
489 c->leb_size, UBIFS_MIN_LEB_SZ);
490 return -EINVAL;
491 }
492
493 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
494 ubifs_err("too few LEBs (%d), min. is %d",
495 c->leb_cnt, UBIFS_MIN_LEB_CNT);
496 return -EINVAL;
497 }
498
499 if (!is_power_of_2(c->min_io_size)) {
500 ubifs_err("bad min. I/O size %d", c->min_io_size);
501 return -EINVAL;
502 }
503
504 /*
505 * UBIFS aligns all node to 8-byte boundary, so to make function in
506 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
507 * less than 8.
508 */
509 if (c->min_io_size < 8) {
510 c->min_io_size = 8;
511 c->min_io_shift = 3;
512 }
513
514 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
515 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
516
517 /*
518 * Initialize node length ranges which are mostly needed for node
519 * length validation.
520 */
521 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
522 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
523 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
524 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
525 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
526 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
527
528 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
529 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
530 c->ranges[UBIFS_ORPH_NODE].min_len =
531 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
532 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
533 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
534 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
535 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
536 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
537 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
538 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
539 /*
540 * Minimum indexing node size is amended later when superblock is
541 * read and the key length is known.
542 */
543 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
544 /*
545 * Maximum indexing node size is amended later when superblock is
546 * read and the fanout is known.
547 */
548 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
549
550 /*
551 * Initialize dead and dark LEB space watermarks.
552 *
553 * Dead space is the space which cannot be used. Its watermark is
554 * equivalent to min. I/O unit or minimum node size if it is greater
555 * then min. I/O unit.
556 *
557 * Dark space is the space which might be used, or might not, depending
558 * on which node should be written to the LEB. Its watermark is
559 * equivalent to maximum UBIFS node size.
560 */
561 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
562 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
563
Artem Bityutskiy9bbb5722008-08-22 18:23:22 +0300564 /*
565 * Calculate how many bytes would be wasted at the end of LEB if it was
566 * fully filled with data nodes of maximum size. This is used in
567 * calculations when reporting free space.
568 */
569 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
Artem Bityutskiy39ce81c2008-11-18 18:09:49 +0200570
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300571 /* Buffer size for bulk-reads */
572 c->bulk_read_buf_size = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
573 if (c->bulk_read_buf_size > c->leb_size)
574 c->bulk_read_buf_size = c->leb_size;
Artem Bityutskiy39ce81c2008-11-18 18:09:49 +0200575 if (c->bulk_read_buf_size > UBIFS_KMALLOC_OK) {
576 /* Check if we can kmalloc that much */
577 void *try = kmalloc(c->bulk_read_buf_size,
578 GFP_KERNEL | __GFP_NOWARN);
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300579 kfree(try);
580 if (!try)
Artem Bityutskiy39ce81c2008-11-18 18:09:49 +0200581 c->bulk_read_buf_size = UBIFS_KMALLOC_OK;
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300582 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300583 return 0;
584}
585
586/**
587 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
588 * @c: UBIFS file-system description object
589 * @lnum: LEB the write-buffer was synchronized to
590 * @free: how many free bytes left in this LEB
591 * @pad: how many bytes were padded
592 *
593 * This is a callback function which is called by the I/O unit when the
594 * write-buffer is synchronized. We need this to correctly maintain space
595 * accounting in bud logical eraseblocks. This function returns zero in case of
596 * success and a negative error code in case of failure.
597 *
598 * This function actually belongs to the journal, but we keep it here because
599 * we want to keep it static.
600 */
601static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
602{
603 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
604}
605
606/*
607 * init_constants_late - initialize UBIFS constants.
608 * @c: UBIFS file-system description object
609 *
610 * This is a helper function which initializes various UBIFS constants after
611 * the superblock has been read. It also checks various UBIFS parameters and
612 * makes sure they are all right. Returns zero in case of success and a
613 * negative error code in case of failure.
614 */
615static int init_constants_late(struct ubifs_info *c)
616{
617 int tmp, err;
618 uint64_t tmp64;
619
620 c->main_bytes = (long long)c->main_lebs * c->leb_size;
621 c->max_znode_sz = sizeof(struct ubifs_znode) +
622 c->fanout * sizeof(struct ubifs_zbranch);
623
624 tmp = ubifs_idx_node_sz(c, 1);
625 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
626 c->min_idx_node_sz = ALIGN(tmp, 8);
627
628 tmp = ubifs_idx_node_sz(c, c->fanout);
629 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
630 c->max_idx_node_sz = ALIGN(tmp, 8);
631
632 /* Make sure LEB size is large enough to fit full commit */
633 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
634 tmp = ALIGN(tmp, c->min_io_size);
635 if (tmp > c->leb_size) {
636 dbg_err("too small LEB size %d, at least %d needed",
637 c->leb_size, tmp);
638 return -EINVAL;
639 }
640
641 /*
642 * Make sure that the log is large enough to fit reference nodes for
643 * all buds plus one reserved LEB.
644 */
645 tmp64 = c->max_bud_bytes;
646 tmp = do_div(tmp64, c->leb_size);
647 c->max_bud_cnt = tmp64 + !!tmp;
648 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
649 tmp /= c->leb_size;
650 tmp += 1;
651 if (c->log_lebs < tmp) {
652 dbg_err("too small log %d LEBs, required min. %d LEBs",
653 c->log_lebs, tmp);
654 return -EINVAL;
655 }
656
657 /*
658 * When budgeting we assume worst-case scenarios when the pages are not
659 * be compressed and direntries are of the maximum size.
660 *
661 * Note, data, which may be stored in inodes is budgeted separately, so
662 * it is not included into 'c->inode_budget'.
663 */
664 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
665 c->inode_budget = UBIFS_INO_NODE_SZ;
666 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
667
668 /*
669 * When the amount of flash space used by buds becomes
670 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
671 * The writers are unblocked when the commit is finished. To avoid
672 * writers to be blocked UBIFS initiates background commit in advance,
673 * when number of bud bytes becomes above the limit defined below.
674 */
675 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
676
677 /*
678 * Ensure minimum journal size. All the bytes in the journal heads are
679 * considered to be used, when calculating the current journal usage.
680 * Consequently, if the journal is too small, UBIFS will treat it as
681 * always full.
682 */
683 tmp64 = (uint64_t)(c->jhead_cnt + 1) * c->leb_size + 1;
684 if (c->bg_bud_bytes < tmp64)
685 c->bg_bud_bytes = tmp64;
686 if (c->max_bud_bytes < tmp64 + c->leb_size)
687 c->max_bud_bytes = tmp64 + c->leb_size;
688
689 err = ubifs_calc_lpt_geom(c);
690 if (err)
691 return err;
692
693 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
694
695 /*
696 * Calculate total amount of FS blocks. This number is not used
697 * internally because it does not make much sense for UBIFS, but it is
698 * necessary to report something for the 'statfs()' call.
699 *
Artem Bityutskiy7dad1812008-08-25 18:58:19 +0300700 * Subtract the LEB reserved for GC, the LEB which is reserved for
701 * deletions, and assume only one journal head is available.
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300702 */
Artem Bityutskiy7dad1812008-08-25 18:58:19 +0300703 tmp64 = c->main_lebs - 2 - c->jhead_cnt + 1;
704 tmp64 *= (uint64_t)c->leb_size - c->leb_overhead;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300705 tmp64 = ubifs_reported_space(c, tmp64);
706 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
707
708 return 0;
709}
710
711/**
712 * take_gc_lnum - reserve GC LEB.
713 * @c: UBIFS file-system description object
714 *
715 * This function ensures that the LEB reserved for garbage collection is
716 * unmapped and is marked as "taken" in lprops. We also have to set free space
717 * to LEB size and dirty space to zero, because lprops may contain out-of-date
718 * information if the file-system was un-mounted before it has been committed.
719 * This function returns zero in case of success and a negative error code in
720 * case of failure.
721 */
722static int take_gc_lnum(struct ubifs_info *c)
723{
724 int err;
725
726 if (c->gc_lnum == -1) {
727 ubifs_err("no LEB for GC");
728 return -EINVAL;
729 }
730
731 err = ubifs_leb_unmap(c, c->gc_lnum);
732 if (err)
733 return err;
734
735 /* And we have to tell lprops that this LEB is taken */
736 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
737 LPROPS_TAKEN, 0, 0);
738 return err;
739}
740
741/**
742 * alloc_wbufs - allocate write-buffers.
743 * @c: UBIFS file-system description object
744 *
745 * This helper function allocates and initializes UBIFS write-buffers. Returns
746 * zero in case of success and %-ENOMEM in case of failure.
747 */
748static int alloc_wbufs(struct ubifs_info *c)
749{
750 int i, err;
751
752 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
753 GFP_KERNEL);
754 if (!c->jheads)
755 return -ENOMEM;
756
757 /* Initialize journal heads */
758 for (i = 0; i < c->jhead_cnt; i++) {
759 INIT_LIST_HEAD(&c->jheads[i].buds_list);
760 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
761 if (err)
762 return err;
763
764 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
765 c->jheads[i].wbuf.jhead = i;
766 }
767
768 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
769 /*
770 * Garbage Collector head likely contains long-term data and
771 * does not need to be synchronized by timer.
772 */
773 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
774 c->jheads[GCHD].wbuf.timeout = 0;
775
776 return 0;
777}
778
779/**
780 * free_wbufs - free write-buffers.
781 * @c: UBIFS file-system description object
782 */
783static void free_wbufs(struct ubifs_info *c)
784{
785 int i;
786
787 if (c->jheads) {
788 for (i = 0; i < c->jhead_cnt; i++) {
789 kfree(c->jheads[i].wbuf.buf);
790 kfree(c->jheads[i].wbuf.inodes);
791 }
792 kfree(c->jheads);
793 c->jheads = NULL;
794 }
795}
796
797/**
798 * free_orphans - free orphans.
799 * @c: UBIFS file-system description object
800 */
801static void free_orphans(struct ubifs_info *c)
802{
803 struct ubifs_orphan *orph;
804
805 while (c->orph_dnext) {
806 orph = c->orph_dnext;
807 c->orph_dnext = orph->dnext;
808 list_del(&orph->list);
809 kfree(orph);
810 }
811
812 while (!list_empty(&c->orph_list)) {
813 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
814 list_del(&orph->list);
815 kfree(orph);
816 dbg_err("orphan list not empty at unmount");
817 }
818
819 vfree(c->orph_buf);
820 c->orph_buf = NULL;
821}
822
823/**
824 * free_buds - free per-bud objects.
825 * @c: UBIFS file-system description object
826 */
827static void free_buds(struct ubifs_info *c)
828{
829 struct rb_node *this = c->buds.rb_node;
830 struct ubifs_bud *bud;
831
832 while (this) {
833 if (this->rb_left)
834 this = this->rb_left;
835 else if (this->rb_right)
836 this = this->rb_right;
837 else {
838 bud = rb_entry(this, struct ubifs_bud, rb);
839 this = rb_parent(this);
840 if (this) {
841 if (this->rb_left == &bud->rb)
842 this->rb_left = NULL;
843 else
844 this->rb_right = NULL;
845 }
846 kfree(bud);
847 }
848 }
849}
850
851/**
852 * check_volume_empty - check if the UBI volume is empty.
853 * @c: UBIFS file-system description object
854 *
855 * This function checks if the UBIFS volume is empty by looking if its LEBs are
856 * mapped or not. The result of checking is stored in the @c->empty variable.
857 * Returns zero in case of success and a negative error code in case of
858 * failure.
859 */
860static int check_volume_empty(struct ubifs_info *c)
861{
862 int lnum, err;
863
864 c->empty = 1;
865 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
866 err = ubi_is_mapped(c->ubi, lnum);
867 if (unlikely(err < 0))
868 return err;
869 if (err == 1) {
870 c->empty = 0;
871 break;
872 }
873
874 cond_resched();
875 }
876
877 return 0;
878}
879
880/*
881 * UBIFS mount options.
882 *
883 * Opt_fast_unmount: do not run a journal commit before un-mounting
884 * Opt_norm_unmount: run a journal commit before un-mounting
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300885 * Opt_bulk_read: enable bulk-reads
886 * Opt_no_bulk_read: disable bulk-reads
Adrian Hunter2953e732008-09-04 16:26:00 +0300887 * Opt_chk_data_crc: check CRCs when reading data nodes
888 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300889 * Opt_err: just end of array marker
890 */
891enum {
892 Opt_fast_unmount,
893 Opt_norm_unmount,
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300894 Opt_bulk_read,
895 Opt_no_bulk_read,
Adrian Hunter2953e732008-09-04 16:26:00 +0300896 Opt_chk_data_crc,
897 Opt_no_chk_data_crc,
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300898 Opt_err,
899};
900
Steven Whitehousea447c092008-10-13 10:46:57 +0100901static const match_table_t tokens = {
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300902 {Opt_fast_unmount, "fast_unmount"},
903 {Opt_norm_unmount, "norm_unmount"},
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300904 {Opt_bulk_read, "bulk_read"},
905 {Opt_no_bulk_read, "no_bulk_read"},
Adrian Hunter2953e732008-09-04 16:26:00 +0300906 {Opt_chk_data_crc, "chk_data_crc"},
907 {Opt_no_chk_data_crc, "no_chk_data_crc"},
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300908 {Opt_err, NULL},
909};
910
911/**
912 * ubifs_parse_options - parse mount parameters.
913 * @c: UBIFS file-system description object
914 * @options: parameters to parse
915 * @is_remount: non-zero if this is FS re-mount
916 *
917 * This function parses UBIFS mount options and returns zero in case success
918 * and a negative error code in case of failure.
919 */
920static int ubifs_parse_options(struct ubifs_info *c, char *options,
921 int is_remount)
922{
923 char *p;
924 substring_t args[MAX_OPT_ARGS];
925
926 if (!options)
927 return 0;
928
929 while ((p = strsep(&options, ","))) {
930 int token;
931
932 if (!*p)
933 continue;
934
935 token = match_token(p, tokens, args);
936 switch (token) {
937 case Opt_fast_unmount:
938 c->mount_opts.unmount_mode = 2;
939 c->fast_unmount = 1;
940 break;
941 case Opt_norm_unmount:
942 c->mount_opts.unmount_mode = 1;
943 c->fast_unmount = 0;
944 break;
Adrian Hunter4793e7c2008-09-02 16:29:46 +0300945 case Opt_bulk_read:
946 c->mount_opts.bulk_read = 2;
947 c->bulk_read = 1;
948 break;
949 case Opt_no_bulk_read:
950 c->mount_opts.bulk_read = 1;
951 c->bulk_read = 0;
952 break;
Adrian Hunter2953e732008-09-04 16:26:00 +0300953 case Opt_chk_data_crc:
954 c->mount_opts.chk_data_crc = 2;
955 c->no_chk_data_crc = 0;
956 break;
957 case Opt_no_chk_data_crc:
958 c->mount_opts.chk_data_crc = 1;
959 c->no_chk_data_crc = 1;
960 break;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300961 default:
962 ubifs_err("unrecognized mount option \"%s\" "
963 "or missing value", p);
964 return -EINVAL;
965 }
966 }
967
968 return 0;
969}
970
971/**
972 * destroy_journal - destroy journal data structures.
973 * @c: UBIFS file-system description object
974 *
975 * This function destroys journal data structures including those that may have
976 * been created by recovery functions.
977 */
978static void destroy_journal(struct ubifs_info *c)
979{
980 while (!list_empty(&c->unclean_leb_list)) {
981 struct ubifs_unclean_leb *ucleb;
982
983 ucleb = list_entry(c->unclean_leb_list.next,
984 struct ubifs_unclean_leb, list);
985 list_del(&ucleb->list);
986 kfree(ucleb);
987 }
988 while (!list_empty(&c->old_buds)) {
989 struct ubifs_bud *bud;
990
991 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
992 list_del(&bud->list);
993 kfree(bud);
994 }
995 ubifs_destroy_idx_gc(c);
996 ubifs_destroy_size_tree(c);
997 ubifs_tnc_close(c);
998 free_buds(c);
999}
1000
1001/**
1002 * mount_ubifs - mount UBIFS file-system.
1003 * @c: UBIFS file-system description object
1004 *
1005 * This function mounts UBIFS file system. Returns zero in case of success and
1006 * a negative error code in case of failure.
1007 *
1008 * Note, the function does not de-allocate resources it it fails half way
1009 * through, and the caller has to do this instead.
1010 */
1011static int mount_ubifs(struct ubifs_info *c)
1012{
1013 struct super_block *sb = c->vfs_sb;
1014 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1015 long long x;
1016 size_t sz;
1017
1018 err = init_constants_early(c);
1019 if (err)
1020 return err;
1021
1022#ifdef CONFIG_UBIFS_FS_DEBUG
1023 c->dbg_buf = vmalloc(c->leb_size);
1024 if (!c->dbg_buf)
1025 return -ENOMEM;
1026#endif
1027
1028 err = check_volume_empty(c);
1029 if (err)
1030 goto out_free;
1031
1032 if (c->empty && (mounted_read_only || c->ro_media)) {
1033 /*
1034 * This UBI volume is empty, and read-only, or the file system
1035 * is mounted read-only - we cannot format it.
1036 */
1037 ubifs_err("can't format empty UBI volume: read-only %s",
1038 c->ro_media ? "UBI volume" : "mount");
1039 err = -EROFS;
1040 goto out_free;
1041 }
1042
1043 if (c->ro_media && !mounted_read_only) {
1044 ubifs_err("cannot mount read-write - read-only media");
1045 err = -EROFS;
1046 goto out_free;
1047 }
1048
1049 /*
1050 * The requirement for the buffer is that it should fit indexing B-tree
1051 * height amount of integers. We assume the height if the TNC tree will
1052 * never exceed 64.
1053 */
1054 err = -ENOMEM;
1055 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1056 if (!c->bottom_up_buf)
1057 goto out_free;
1058
1059 c->sbuf = vmalloc(c->leb_size);
1060 if (!c->sbuf)
1061 goto out_free;
1062
1063 if (!mounted_read_only) {
1064 c->ileb_buf = vmalloc(c->leb_size);
1065 if (!c->ileb_buf)
1066 goto out_free;
1067 }
1068
Adrian Hunter2953e732008-09-04 16:26:00 +03001069 c->always_chk_crc = 1;
1070
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001071 err = ubifs_read_superblock(c);
1072 if (err)
1073 goto out_free;
1074
1075 /*
1076 * Make sure the compressor which is set as the default on in the
1077 * superblock was actually compiled in.
1078 */
1079 if (!ubifs_compr_present(c->default_compr)) {
1080 ubifs_warn("'%s' compressor is set by superblock, but not "
1081 "compiled in", ubifs_compr_name(c->default_compr));
1082 c->default_compr = UBIFS_COMPR_NONE;
1083 }
1084
1085 dbg_failure_mode_registration(c);
1086
1087 err = init_constants_late(c);
1088 if (err)
1089 goto out_dereg;
1090
1091 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1092 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1093 c->cbuf = kmalloc(sz, GFP_NOFS);
1094 if (!c->cbuf) {
1095 err = -ENOMEM;
1096 goto out_dereg;
1097 }
1098
Sebastian Siewior0855f312008-09-09 11:17:29 +02001099 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001100 if (!mounted_read_only) {
1101 err = alloc_wbufs(c);
1102 if (err)
1103 goto out_cbuf;
1104
1105 /* Create background thread */
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001106 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001107 if (IS_ERR(c->bgt)) {
1108 err = PTR_ERR(c->bgt);
1109 c->bgt = NULL;
1110 ubifs_err("cannot spawn \"%s\", error %d",
1111 c->bgt_name, err);
1112 goto out_wbufs;
1113 }
1114 wake_up_process(c->bgt);
1115 }
1116
1117 err = ubifs_read_master(c);
1118 if (err)
1119 goto out_master;
1120
1121 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1122 ubifs_msg("recovery needed");
1123 c->need_recovery = 1;
1124 if (!mounted_read_only) {
1125 err = ubifs_recover_inl_heads(c, c->sbuf);
1126 if (err)
1127 goto out_master;
1128 }
1129 } else if (!mounted_read_only) {
1130 /*
1131 * Set the "dirty" flag so that if we reboot uncleanly we
1132 * will notice this immediately on the next mount.
1133 */
1134 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1135 err = ubifs_write_master(c);
1136 if (err)
1137 goto out_master;
1138 }
1139
1140 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1141 if (err)
1142 goto out_lpt;
1143
1144 err = dbg_check_idx_size(c, c->old_idx_sz);
1145 if (err)
1146 goto out_lpt;
1147
1148 err = ubifs_replay_journal(c);
1149 if (err)
1150 goto out_journal;
1151
1152 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1153 if (err)
1154 goto out_orphans;
1155
1156 if (!mounted_read_only) {
1157 int lnum;
1158
1159 /* Check for enough free space */
1160 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1161 ubifs_err("insufficient available space");
1162 err = -EINVAL;
1163 goto out_orphans;
1164 }
1165
1166 /* Check for enough log space */
1167 lnum = c->lhead_lnum + 1;
1168 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1169 lnum = UBIFS_LOG_LNUM;
1170 if (lnum == c->ltail_lnum) {
1171 err = ubifs_consolidate_log(c);
1172 if (err)
1173 goto out_orphans;
1174 }
1175
1176 if (c->need_recovery) {
1177 err = ubifs_recover_size(c);
1178 if (err)
1179 goto out_orphans;
1180 err = ubifs_rcvry_gc_commit(c);
1181 } else
1182 err = take_gc_lnum(c);
1183 if (err)
1184 goto out_orphans;
1185
1186 err = dbg_check_lprops(c);
1187 if (err)
1188 goto out_orphans;
1189 } else if (c->need_recovery) {
1190 err = ubifs_recover_size(c);
1191 if (err)
1192 goto out_orphans;
1193 }
1194
1195 spin_lock(&ubifs_infos_lock);
1196 list_add_tail(&c->infos_list, &ubifs_infos);
1197 spin_unlock(&ubifs_infos_lock);
1198
1199 if (c->need_recovery) {
1200 if (mounted_read_only)
1201 ubifs_msg("recovery deferred");
1202 else {
1203 c->need_recovery = 0;
1204 ubifs_msg("recovery completed");
1205 }
1206 }
1207
1208 err = dbg_check_filesystem(c);
1209 if (err)
1210 goto out_infos;
1211
Adrian Hunter2953e732008-09-04 16:26:00 +03001212 c->always_chk_crc = 0;
1213
Artem Bityutskiyce769ca2008-07-18 12:54:21 +03001214 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1215 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001216 if (mounted_read_only)
1217 ubifs_msg("mounted read-only");
1218 x = (long long)c->main_lebs * c->leb_size;
Artem Bityutskiy948cfb22008-08-20 11:56:33 +03001219 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1220 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001221 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
Artem Bityutskiy948cfb22008-08-20 11:56:33 +03001222 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1223 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1224 ubifs_msg("media format: %d (latest is %d)",
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001225 c->fmt_version, UBIFS_FORMAT_VERSION);
Artem Bityutskiy948cfb22008-08-20 11:56:33 +03001226 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
Artem Bityutskiyfae7fb22008-10-17 18:49:23 +03001227 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
Artem Bityutskiy948cfb22008-08-20 11:56:33 +03001228 c->report_rp_size, c->report_rp_size >> 10);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001229
1230 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1231 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1232 dbg_msg("LEB size: %d bytes (%d KiB)",
Artem Bityutskiy948cfb22008-08-20 11:56:33 +03001233 c->leb_size, c->leb_size >> 10);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001234 dbg_msg("data journal heads: %d",
1235 c->jhead_cnt - NONDATA_JHEADS_CNT);
1236 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1237 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1238 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1239 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1240 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1241 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1242 dbg_msg("fast unmount: %d", c->fast_unmount);
1243 dbg_msg("big_lpt %d", c->big_lpt);
1244 dbg_msg("log LEBs: %d (%d - %d)",
1245 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1246 dbg_msg("LPT area LEBs: %d (%d - %d)",
1247 c->lpt_lebs, c->lpt_first, c->lpt_last);
1248 dbg_msg("orphan area LEBs: %d (%d - %d)",
1249 c->orph_lebs, c->orph_first, c->orph_last);
1250 dbg_msg("main area LEBs: %d (%d - %d)",
1251 c->main_lebs, c->main_first, c->leb_cnt - 1);
1252 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1253 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1254 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1255 dbg_msg("key hash type: %d", c->key_hash_type);
1256 dbg_msg("tree fanout: %d", c->fanout);
1257 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1258 dbg_msg("first main LEB: %d", c->main_first);
1259 dbg_msg("dead watermark: %d", c->dead_wm);
1260 dbg_msg("dark watermark: %d", c->dark_wm);
1261 x = (long long)c->main_lebs * c->dark_wm;
1262 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1263 x, x >> 10, x >> 20);
1264 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1265 c->max_bud_bytes, c->max_bud_bytes >> 10,
1266 c->max_bud_bytes >> 20);
1267 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1268 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1269 c->bg_bud_bytes >> 20);
1270 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1271 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1272 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1273 dbg_msg("commit number: %llu", c->cmt_no);
1274
1275 return 0;
1276
1277out_infos:
1278 spin_lock(&ubifs_infos_lock);
1279 list_del(&c->infos_list);
1280 spin_unlock(&ubifs_infos_lock);
1281out_orphans:
1282 free_orphans(c);
1283out_journal:
1284 destroy_journal(c);
1285out_lpt:
1286 ubifs_lpt_free(c, 0);
1287out_master:
1288 kfree(c->mst_node);
1289 kfree(c->rcvrd_mst_node);
1290 if (c->bgt)
1291 kthread_stop(c->bgt);
1292out_wbufs:
1293 free_wbufs(c);
1294out_cbuf:
1295 kfree(c->cbuf);
1296out_dereg:
1297 dbg_failure_mode_deregistration(c);
1298out_free:
1299 vfree(c->ileb_buf);
1300 vfree(c->sbuf);
1301 kfree(c->bottom_up_buf);
1302 UBIFS_DBG(vfree(c->dbg_buf));
1303 return err;
1304}
1305
1306/**
1307 * ubifs_umount - un-mount UBIFS file-system.
1308 * @c: UBIFS file-system description object
1309 *
1310 * Note, this function is called to free allocated resourced when un-mounting,
1311 * as well as free resources when an error occurred while we were half way
1312 * through mounting (error path cleanup function). So it has to make sure the
1313 * resource was actually allocated before freeing it.
1314 */
1315static void ubifs_umount(struct ubifs_info *c)
1316{
1317 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1318 c->vi.vol_id);
1319
1320 spin_lock(&ubifs_infos_lock);
1321 list_del(&c->infos_list);
1322 spin_unlock(&ubifs_infos_lock);
1323
1324 if (c->bgt)
1325 kthread_stop(c->bgt);
1326
1327 destroy_journal(c);
1328 free_wbufs(c);
1329 free_orphans(c);
1330 ubifs_lpt_free(c, 0);
1331
1332 kfree(c->cbuf);
1333 kfree(c->rcvrd_mst_node);
1334 kfree(c->mst_node);
1335 vfree(c->sbuf);
1336 kfree(c->bottom_up_buf);
1337 UBIFS_DBG(vfree(c->dbg_buf));
1338 vfree(c->ileb_buf);
1339 dbg_failure_mode_deregistration(c);
1340}
1341
1342/**
1343 * ubifs_remount_rw - re-mount in read-write mode.
1344 * @c: UBIFS file-system description object
1345 *
1346 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1347 * mode. This function allocates the needed resources and re-mounts UBIFS in
1348 * read-write mode.
1349 */
1350static int ubifs_remount_rw(struct ubifs_info *c)
1351{
1352 int err, lnum;
1353
1354 if (c->ro_media)
1355 return -EINVAL;
1356
1357 mutex_lock(&c->umount_mutex);
1358 c->remounting_rw = 1;
Adrian Hunter2953e732008-09-04 16:26:00 +03001359 c->always_chk_crc = 1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001360
1361 /* Check for enough free space */
1362 if (ubifs_calc_available(c, c->min_idx_lebs) <= 0) {
1363 ubifs_err("insufficient available space");
1364 err = -EINVAL;
1365 goto out;
1366 }
1367
1368 if (c->old_leb_cnt != c->leb_cnt) {
1369 struct ubifs_sb_node *sup;
1370
1371 sup = ubifs_read_sb_node(c);
1372 if (IS_ERR(sup)) {
1373 err = PTR_ERR(sup);
1374 goto out;
1375 }
1376 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1377 err = ubifs_write_sb_node(c, sup);
1378 if (err)
1379 goto out;
1380 }
1381
1382 if (c->need_recovery) {
1383 ubifs_msg("completing deferred recovery");
1384 err = ubifs_write_rcvrd_mst_node(c);
1385 if (err)
1386 goto out;
1387 err = ubifs_recover_size(c);
1388 if (err)
1389 goto out;
1390 err = ubifs_clean_lebs(c, c->sbuf);
1391 if (err)
1392 goto out;
1393 err = ubifs_recover_inl_heads(c, c->sbuf);
1394 if (err)
1395 goto out;
1396 }
1397
1398 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1399 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1400 err = ubifs_write_master(c);
1401 if (err)
1402 goto out;
1403 }
1404
1405 c->ileb_buf = vmalloc(c->leb_size);
1406 if (!c->ileb_buf) {
1407 err = -ENOMEM;
1408 goto out;
1409 }
1410
1411 err = ubifs_lpt_init(c, 0, 1);
1412 if (err)
1413 goto out;
1414
1415 err = alloc_wbufs(c);
1416 if (err)
1417 goto out;
1418
1419 ubifs_create_buds_lists(c);
1420
1421 /* Create background thread */
1422 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001423 if (IS_ERR(c->bgt)) {
1424 err = PTR_ERR(c->bgt);
1425 c->bgt = NULL;
1426 ubifs_err("cannot spawn \"%s\", error %d",
1427 c->bgt_name, err);
Adrian Hunter2953e732008-09-04 16:26:00 +03001428 goto out;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001429 }
1430 wake_up_process(c->bgt);
1431
1432 c->orph_buf = vmalloc(c->leb_size);
Adrian Hunter2953e732008-09-04 16:26:00 +03001433 if (!c->orph_buf) {
1434 err = -ENOMEM;
1435 goto out;
1436 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001437
1438 /* Check for enough log space */
1439 lnum = c->lhead_lnum + 1;
1440 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1441 lnum = UBIFS_LOG_LNUM;
1442 if (lnum == c->ltail_lnum) {
1443 err = ubifs_consolidate_log(c);
1444 if (err)
1445 goto out;
1446 }
1447
1448 if (c->need_recovery)
1449 err = ubifs_rcvry_gc_commit(c);
1450 else
1451 err = take_gc_lnum(c);
1452 if (err)
1453 goto out;
1454
1455 if (c->need_recovery) {
1456 c->need_recovery = 0;
1457 ubifs_msg("deferred recovery completed");
1458 }
1459
1460 dbg_gen("re-mounted read-write");
1461 c->vfs_sb->s_flags &= ~MS_RDONLY;
1462 c->remounting_rw = 0;
Adrian Hunter2953e732008-09-04 16:26:00 +03001463 c->always_chk_crc = 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001464 mutex_unlock(&c->umount_mutex);
1465 return 0;
1466
1467out:
1468 vfree(c->orph_buf);
1469 c->orph_buf = NULL;
1470 if (c->bgt) {
1471 kthread_stop(c->bgt);
1472 c->bgt = NULL;
1473 }
1474 free_wbufs(c);
1475 vfree(c->ileb_buf);
1476 c->ileb_buf = NULL;
1477 ubifs_lpt_free(c, 1);
1478 c->remounting_rw = 0;
Adrian Hunter2953e732008-09-04 16:26:00 +03001479 c->always_chk_crc = 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001480 mutex_unlock(&c->umount_mutex);
1481 return err;
1482}
1483
1484/**
1485 * commit_on_unmount - commit the journal when un-mounting.
1486 * @c: UBIFS file-system description object
1487 *
Artem Bityutskiyaf2eb562008-09-09 12:23:50 +03001488 * This function is called during un-mounting and re-mounting, and it commits
1489 * the journal unless the "fast unmount" mode is enabled. It also avoids
1490 * committing the journal if it contains too few data.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001491 */
1492static void commit_on_unmount(struct ubifs_info *c)
1493{
1494 if (!c->fast_unmount) {
1495 long long bud_bytes;
1496
1497 spin_lock(&c->buds_lock);
1498 bud_bytes = c->bud_bytes;
1499 spin_unlock(&c->buds_lock);
1500 if (bud_bytes > c->leb_size)
1501 ubifs_run_commit(c);
1502 }
1503}
1504
1505/**
1506 * ubifs_remount_ro - re-mount in read-only mode.
1507 * @c: UBIFS file-system description object
1508 *
1509 * We rely on VFS to have stopped writing. Possibly the background thread could
1510 * be running a commit, however kthread_stop will wait in that case.
1511 */
1512static void ubifs_remount_ro(struct ubifs_info *c)
1513{
1514 int i, err;
1515
1516 ubifs_assert(!c->need_recovery);
1517 commit_on_unmount(c);
1518
1519 mutex_lock(&c->umount_mutex);
1520 if (c->bgt) {
1521 kthread_stop(c->bgt);
1522 c->bgt = NULL;
1523 }
1524
1525 for (i = 0; i < c->jhead_cnt; i++) {
1526 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1527 del_timer_sync(&c->jheads[i].wbuf.timer);
1528 }
1529
1530 if (!c->ro_media) {
1531 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1532 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1533 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1534 err = ubifs_write_master(c);
1535 if (err)
1536 ubifs_ro_mode(c, err);
1537 }
1538
1539 ubifs_destroy_idx_gc(c);
1540 free_wbufs(c);
1541 vfree(c->orph_buf);
1542 c->orph_buf = NULL;
1543 vfree(c->ileb_buf);
1544 c->ileb_buf = NULL;
1545 ubifs_lpt_free(c, 1);
1546 mutex_unlock(&c->umount_mutex);
1547}
1548
1549static void ubifs_put_super(struct super_block *sb)
1550{
1551 int i;
1552 struct ubifs_info *c = sb->s_fs_info;
1553
1554 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1555 c->vi.vol_id);
1556 /*
1557 * The following asserts are only valid if there has not been a failure
1558 * of the media. For example, there will be dirty inodes if we failed
1559 * to write them back because of I/O errors.
1560 */
1561 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1562 ubifs_assert(c->budg_idx_growth == 0);
Artem Bityutskiy7d32c2b2008-07-18 18:54:29 +03001563 ubifs_assert(c->budg_dd_growth == 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001564 ubifs_assert(c->budg_data_growth == 0);
1565
1566 /*
1567 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1568 * and file system un-mount. Namely, it prevents the shrinker from
1569 * picking this superblock for shrinking - it will be just skipped if
1570 * the mutex is locked.
1571 */
1572 mutex_lock(&c->umount_mutex);
1573 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1574 /*
1575 * First of all kill the background thread to make sure it does
1576 * not interfere with un-mounting and freeing resources.
1577 */
1578 if (c->bgt) {
1579 kthread_stop(c->bgt);
1580 c->bgt = NULL;
1581 }
1582
1583 /* Synchronize write-buffers */
1584 if (c->jheads)
1585 for (i = 0; i < c->jhead_cnt; i++) {
1586 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1587 del_timer_sync(&c->jheads[i].wbuf.timer);
1588 }
1589
1590 /*
1591 * On fatal errors c->ro_media is set to 1, in which case we do
1592 * not write the master node.
1593 */
1594 if (!c->ro_media) {
1595 /*
1596 * We are being cleanly unmounted which means the
1597 * orphans were killed - indicate this in the master
1598 * node. Also save the reserved GC LEB number.
1599 */
1600 int err;
1601
1602 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1603 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1604 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1605 err = ubifs_write_master(c);
1606 if (err)
1607 /*
1608 * Recovery will attempt to fix the master area
1609 * next mount, so we just print a message and
1610 * continue to unmount normally.
1611 */
1612 ubifs_err("failed to write master node, "
1613 "error %d", err);
1614 }
1615 }
1616
1617 ubifs_umount(c);
1618 bdi_destroy(&c->bdi);
1619 ubi_close_volume(c->ubi);
1620 mutex_unlock(&c->umount_mutex);
1621 kfree(c);
1622}
1623
1624static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1625{
1626 int err;
1627 struct ubifs_info *c = sb->s_fs_info;
1628
1629 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1630
1631 err = ubifs_parse_options(c, data, 1);
1632 if (err) {
1633 ubifs_err("invalid or unknown remount parameter");
1634 return err;
1635 }
1636 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1637 err = ubifs_remount_rw(c);
1638 if (err)
1639 return err;
1640 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1641 ubifs_remount_ro(c);
1642
1643 return 0;
1644}
1645
1646struct super_operations ubifs_super_operations = {
1647 .alloc_inode = ubifs_alloc_inode,
1648 .destroy_inode = ubifs_destroy_inode,
1649 .put_super = ubifs_put_super,
1650 .write_inode = ubifs_write_inode,
1651 .delete_inode = ubifs_delete_inode,
1652 .statfs = ubifs_statfs,
1653 .dirty_inode = ubifs_dirty_inode,
1654 .remount_fs = ubifs_remount_fs,
1655 .show_options = ubifs_show_options,
1656 .sync_fs = ubifs_sync_fs,
1657};
1658
1659/**
1660 * open_ubi - parse UBI device name string and open the UBI device.
1661 * @name: UBI volume name
1662 * @mode: UBI volume open mode
1663 *
1664 * There are several ways to specify UBI volumes when mounting UBIFS:
1665 * o ubiX_Y - UBI device number X, volume Y;
1666 * o ubiY - UBI device number 0, volume Y;
1667 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1668 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1669 *
1670 * Alternative '!' separator may be used instead of ':' (because some shells
1671 * like busybox may interpret ':' as an NFS host name separator). This function
1672 * returns ubi volume object in case of success and a negative error code in
1673 * case of failure.
1674 */
1675static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1676{
1677 int dev, vol;
1678 char *endptr;
1679
1680 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1681 return ERR_PTR(-EINVAL);
1682
1683 /* ubi:NAME method */
1684 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1685 return ubi_open_volume_nm(0, name + 4, mode);
1686
1687 if (!isdigit(name[3]))
1688 return ERR_PTR(-EINVAL);
1689
1690 dev = simple_strtoul(name + 3, &endptr, 0);
1691
1692 /* ubiY method */
1693 if (*endptr == '\0')
1694 return ubi_open_volume(0, dev, mode);
1695
1696 /* ubiX_Y method */
1697 if (*endptr == '_' && isdigit(endptr[1])) {
1698 vol = simple_strtoul(endptr + 1, &endptr, 0);
1699 if (*endptr != '\0')
1700 return ERR_PTR(-EINVAL);
1701 return ubi_open_volume(dev, vol, mode);
1702 }
1703
1704 /* ubiX:NAME method */
1705 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1706 return ubi_open_volume_nm(dev, ++endptr, mode);
1707
1708 return ERR_PTR(-EINVAL);
1709}
1710
1711static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1712{
1713 struct ubi_volume_desc *ubi = sb->s_fs_info;
1714 struct ubifs_info *c;
1715 struct inode *root;
1716 int err;
1717
1718 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1719 if (!c)
1720 return -ENOMEM;
1721
1722 spin_lock_init(&c->cnt_lock);
1723 spin_lock_init(&c->cs_lock);
1724 spin_lock_init(&c->buds_lock);
1725 spin_lock_init(&c->space_lock);
1726 spin_lock_init(&c->orphan_lock);
1727 init_rwsem(&c->commit_sem);
1728 mutex_init(&c->lp_mutex);
1729 mutex_init(&c->tnc_mutex);
1730 mutex_init(&c->log_mutex);
1731 mutex_init(&c->mst_mutex);
1732 mutex_init(&c->umount_mutex);
1733 init_waitqueue_head(&c->cmt_wq);
1734 c->buds = RB_ROOT;
1735 c->old_idx = RB_ROOT;
1736 c->size_tree = RB_ROOT;
1737 c->orph_tree = RB_ROOT;
1738 INIT_LIST_HEAD(&c->infos_list);
1739 INIT_LIST_HEAD(&c->idx_gc);
1740 INIT_LIST_HEAD(&c->replay_list);
1741 INIT_LIST_HEAD(&c->replay_buds);
1742 INIT_LIST_HEAD(&c->uncat_list);
1743 INIT_LIST_HEAD(&c->empty_list);
1744 INIT_LIST_HEAD(&c->freeable_list);
1745 INIT_LIST_HEAD(&c->frdi_idx_list);
1746 INIT_LIST_HEAD(&c->unclean_leb_list);
1747 INIT_LIST_HEAD(&c->old_buds);
1748 INIT_LIST_HEAD(&c->orph_list);
1749 INIT_LIST_HEAD(&c->orph_new);
1750
1751 c->highest_inum = UBIFS_FIRST_INO;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001752 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1753
1754 ubi_get_volume_info(ubi, &c->vi);
1755 ubi_get_device_info(c->vi.ubi_num, &c->di);
1756
1757 /* Re-open the UBI device in read-write mode */
1758 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1759 if (IS_ERR(c->ubi)) {
1760 err = PTR_ERR(c->ubi);
1761 goto out_free;
1762 }
1763
1764 /*
Artem Bityutskiy0a883a02008-08-13 14:13:26 +03001765 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001766 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1767 * which means the user would have to wait not just for their own I/O
Artem Bityutskiy0a883a02008-08-13 14:13:26 +03001768 * but the read-ahead I/O as well i.e. completely pointless.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001769 *
1770 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1771 */
1772 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1773 c->bdi.unplug_io_fn = default_unplug_io_fn;
1774 err = bdi_init(&c->bdi);
1775 if (err)
1776 goto out_close;
1777
1778 err = ubifs_parse_options(c, data, 0);
1779 if (err)
1780 goto out_bdi;
1781
1782 c->vfs_sb = sb;
1783
1784 sb->s_fs_info = c;
1785 sb->s_magic = UBIFS_SUPER_MAGIC;
1786 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1787 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1788 sb->s_dev = c->vi.cdev;
1789 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1790 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1791 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1792 sb->s_op = &ubifs_super_operations;
1793
1794 mutex_lock(&c->umount_mutex);
1795 err = mount_ubifs(c);
1796 if (err) {
1797 ubifs_assert(err < 0);
1798 goto out_unlock;
1799 }
1800
1801 /* Read the root inode */
1802 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1803 if (IS_ERR(root)) {
1804 err = PTR_ERR(root);
1805 goto out_umount;
1806 }
1807
1808 sb->s_root = d_alloc_root(root);
1809 if (!sb->s_root)
1810 goto out_iput;
1811
1812 mutex_unlock(&c->umount_mutex);
1813
1814 return 0;
1815
1816out_iput:
1817 iput(root);
1818out_umount:
1819 ubifs_umount(c);
1820out_unlock:
1821 mutex_unlock(&c->umount_mutex);
1822out_bdi:
1823 bdi_destroy(&c->bdi);
1824out_close:
1825 ubi_close_volume(c->ubi);
1826out_free:
1827 kfree(c);
1828 return err;
1829}
1830
1831static int sb_test(struct super_block *sb, void *data)
1832{
1833 dev_t *dev = data;
1834
1835 return sb->s_dev == *dev;
1836}
1837
1838static int sb_set(struct super_block *sb, void *data)
1839{
1840 dev_t *dev = data;
1841
1842 sb->s_dev = *dev;
1843 return 0;
1844}
1845
1846static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1847 const char *name, void *data, struct vfsmount *mnt)
1848{
1849 struct ubi_volume_desc *ubi;
1850 struct ubi_volume_info vi;
1851 struct super_block *sb;
1852 int err;
1853
1854 dbg_gen("name %s, flags %#x", name, flags);
1855
1856 /*
1857 * Get UBI device number and volume ID. Mount it read-only so far
1858 * because this might be a new mount point, and UBI allows only one
1859 * read-write user at a time.
1860 */
1861 ubi = open_ubi(name, UBI_READONLY);
1862 if (IS_ERR(ubi)) {
1863 ubifs_err("cannot open \"%s\", error %d",
1864 name, (int)PTR_ERR(ubi));
1865 return PTR_ERR(ubi);
1866 }
1867 ubi_get_volume_info(ubi, &vi);
1868
1869 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1870
1871 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
1872 if (IS_ERR(sb)) {
1873 err = PTR_ERR(sb);
1874 goto out_close;
1875 }
1876
1877 if (sb->s_root) {
1878 /* A new mount point for already mounted UBIFS */
1879 dbg_gen("this ubi volume is already mounted");
1880 if ((flags ^ sb->s_flags) & MS_RDONLY) {
1881 err = -EBUSY;
1882 goto out_deact;
1883 }
1884 } else {
1885 sb->s_flags = flags;
1886 /*
1887 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
1888 * replaced by 'c'.
1889 */
1890 sb->s_fs_info = ubi;
1891 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1892 if (err)
1893 goto out_deact;
1894 /* We do not support atime */
1895 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
1896 }
1897
1898 /* 'fill_super()' opens ubi again so we must close it here */
1899 ubi_close_volume(ubi);
1900
1901 return simple_set_mnt(mnt, sb);
1902
1903out_deact:
1904 up_write(&sb->s_umount);
1905 deactivate_super(sb);
1906out_close:
1907 ubi_close_volume(ubi);
1908 return err;
1909}
1910
1911static void ubifs_kill_sb(struct super_block *sb)
1912{
1913 struct ubifs_info *c = sb->s_fs_info;
1914
1915 /*
1916 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
1917 * in order to be outside BKL.
1918 */
1919 if (sb->s_root && !(sb->s_flags & MS_RDONLY))
1920 commit_on_unmount(c);
1921 /* The un-mount routine is actually done in put_super() */
1922 generic_shutdown_super(sb);
1923}
1924
1925static struct file_system_type ubifs_fs_type = {
1926 .name = "ubifs",
1927 .owner = THIS_MODULE,
1928 .get_sb = ubifs_get_sb,
1929 .kill_sb = ubifs_kill_sb
1930};
1931
1932/*
1933 * Inode slab cache constructor.
1934 */
Alexey Dobriyan51cc5062008-07-25 19:45:34 -07001935static void inode_slab_ctor(void *obj)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001936{
1937 struct ubifs_inode *ui = obj;
1938 inode_init_once(&ui->vfs_inode);
1939}
1940
1941static int __init ubifs_init(void)
1942{
1943 int err;
1944
1945 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
1946
1947 /* Make sure node sizes are 8-byte aligned */
1948 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
1949 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
1950 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
1951 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
1952 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
1953 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
1954 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
1955 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
1956 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
1957 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
1958 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
1959
1960 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
1961 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
1962 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
1963 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
1964 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
1965 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
1966
1967 /* Check min. node size */
1968 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
1969 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
1970 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
1971 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
1972
1973 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1974 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
1975 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
1976 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
1977
1978 /* Defined node sizes */
1979 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
1980 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
1981 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
1982 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
1983
1984 /*
1985 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
1986 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
1987 */
1988 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
1989 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
1990 " at least 4096 bytes",
1991 (unsigned int)PAGE_CACHE_SIZE);
1992 return -EINVAL;
1993 }
1994
1995 err = register_filesystem(&ubifs_fs_type);
1996 if (err) {
1997 ubifs_err("cannot register file system, error %d", err);
1998 return err;
1999 }
2000
2001 err = -ENOMEM;
2002 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2003 sizeof(struct ubifs_inode), 0,
2004 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2005 &inode_slab_ctor);
2006 if (!ubifs_inode_slab)
2007 goto out_reg;
2008
2009 register_shrinker(&ubifs_shrinker_info);
2010
2011 err = ubifs_compressors_init();
2012 if (err)
2013 goto out_compr;
2014
2015 return 0;
2016
2017out_compr:
2018 unregister_shrinker(&ubifs_shrinker_info);
2019 kmem_cache_destroy(ubifs_inode_slab);
2020out_reg:
2021 unregister_filesystem(&ubifs_fs_type);
2022 return err;
2023}
2024/* late_initcall to let compressors initialize first */
2025late_initcall(ubifs_init);
2026
2027static void __exit ubifs_exit(void)
2028{
2029 ubifs_assert(list_empty(&ubifs_infos));
2030 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2031
2032 ubifs_compressors_exit();
2033 unregister_shrinker(&ubifs_shrinker_info);
2034 kmem_cache_destroy(ubifs_inode_slab);
2035 unregister_filesystem(&ubifs_fs_type);
2036}
2037module_exit(ubifs_exit);
2038
2039MODULE_LICENSE("GPL");
2040MODULE_VERSION(__stringify(UBIFS_VERSION));
2041MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2042MODULE_DESCRIPTION("UBIFS - UBI File System");