blob: de3672188b15143e03cc37767434c98b78079fe7 [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Andreas Herrmann23ac4ae2010-09-17 18:03:43 +02002#include <asm/amd_nb.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
Tejun Heoa29d8b82010-02-02 14:39:15 +090016static struct msr __percpu *msrs;
Borislav Petkov50542252009-12-11 18:14:40 +010017
Doug Thompson2bc65412009-05-04 20:11:14 +020018/* Lookup table for all possible MC control instances */
19struct amd64_pvt;
Borislav Petkov3011b202009-09-21 13:23:34 +020020static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
Doug Thompson2bc65412009-05-04 20:11:14 +020022
23/*
Borislav Petkov1433eb92009-10-21 13:44:36 +020024 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
Borislav Petkovb70ef012009-06-25 19:32:38 +020026 */
Borislav Petkov1433eb92009-10-21 13:44:36 +020027static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35};
36
37static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47};
48
49static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56};
57
58static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
Borislav Petkovb70ef012009-06-25 19:32:38 +020066};
67
68/*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100};
101
102/*
Doug Thompson2bc65412009-05-04 20:11:14 +0200103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116/*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200120static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200121{
122 u32 scrubval;
123 int i;
124
125 /*
126 * map the configured rate (new_bw) to a value specific to the AMD64
127 * memory controller and apply to register. Search for the first
128 * bandwidth entry that is greater or equal than the setting requested
129 * and program that. If at last entry, turn off DRAM scrubbing.
130 */
131 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
132 /*
133 * skip scrub rates which aren't recommended
134 * (see F10 BKDG, F3x58)
135 */
Borislav Petkov395ae782010-10-01 18:38:19 +0200136 if (scrubrates[i].scrubval < min_rate)
Doug Thompson2bc65412009-05-04 20:11:14 +0200137 continue;
138
139 if (scrubrates[i].bandwidth <= new_bw)
140 break;
141
142 /*
143 * if no suitable bandwidth found, turn off DRAM scrubbing
144 * entirely by falling back to the last element in the
145 * scrubrates array.
146 */
147 }
148
149 scrubval = scrubrates[i].scrubval;
150 if (scrubval)
151 edac_printk(KERN_DEBUG, EDAC_MC,
152 "Setting scrub rate bandwidth: %u\n",
153 scrubrates[i].bandwidth);
154 else
155 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
156
157 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
158
159 return 0;
160}
161
Borislav Petkov395ae782010-10-01 18:38:19 +0200162static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
Doug Thompson2bc65412009-05-04 20:11:14 +0200163{
164 struct amd64_pvt *pvt = mci->pvt_info;
Doug Thompson2bc65412009-05-04 20:11:14 +0200165
Borislav Petkov395ae782010-10-01 18:38:19 +0200166 return __amd64_set_scrub_rate(pvt->misc_f3_ctl, bw, pvt->min_scrubrate);
Doug Thompson2bc65412009-05-04 20:11:14 +0200167}
168
169static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
170{
171 struct amd64_pvt *pvt = mci->pvt_info;
172 u32 scrubval = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200173 int status = -1, i;
Doug Thompson2bc65412009-05-04 20:11:14 +0200174
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200175 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200176
177 scrubval = scrubval & 0x001F;
178
179 edac_printk(KERN_DEBUG, EDAC_MC,
180 "pci-read, sdram scrub control value: %d \n", scrubval);
181
Roel Kluin926311f2010-01-11 20:58:21 +0100182 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
Doug Thompson2bc65412009-05-04 20:11:14 +0200183 if (scrubrates[i].scrubval == scrubval) {
184 *bw = scrubrates[i].bandwidth;
185 status = 0;
186 break;
187 }
188 }
189
190 return status;
191}
192
Doug Thompson67757632009-04-27 15:53:22 +0200193/* Map from a CSROW entry to the mask entry that operates on it */
194static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
195{
Borislav Petkov1433eb92009-10-21 13:44:36 +0200196 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200197 return csrow;
198 else
199 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200200}
201
202/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
203static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
204{
205 if (dct == 0)
206 return pvt->dcsb0[csrow];
207 else
208 return pvt->dcsb1[csrow];
209}
210
211/*
212 * Return the 'mask' address the i'th CS entry. This function is needed because
213 * there number of DCSM registers on Rev E and prior vs Rev F and later is
214 * different.
215 */
216static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
217{
218 if (dct == 0)
219 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
220 else
221 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
222}
223
224
225/*
226 * In *base and *limit, pass back the full 40-bit base and limit physical
227 * addresses for the node given by node_id. This information is obtained from
228 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
229 * base and limit addresses are of type SysAddr, as defined at the start of
230 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
231 * in the address range they represent.
232 */
233static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
234 u64 *base, u64 *limit)
235{
236 *base = pvt->dram_base[node_id];
237 *limit = pvt->dram_limit[node_id];
238}
239
240/*
241 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
242 * with node_id
243 */
244static int amd64_base_limit_match(struct amd64_pvt *pvt,
245 u64 sys_addr, int node_id)
246{
247 u64 base, limit, addr;
248
249 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
250
251 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
252 * all ones if the most significant implemented address bit is 1.
253 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
254 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
255 * Application Programming.
256 */
257 addr = sys_addr & 0x000000ffffffffffull;
258
259 return (addr >= base) && (addr <= limit);
260}
261
262/*
263 * Attempt to map a SysAddr to a node. On success, return a pointer to the
264 * mem_ctl_info structure for the node that the SysAddr maps to.
265 *
266 * On failure, return NULL.
267 */
268static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
269 u64 sys_addr)
270{
271 struct amd64_pvt *pvt;
272 int node_id;
273 u32 intlv_en, bits;
274
275 /*
276 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
277 * 3.4.4.2) registers to map the SysAddr to a node ID.
278 */
279 pvt = mci->pvt_info;
280
281 /*
282 * The value of this field should be the same for all DRAM Base
283 * registers. Therefore we arbitrarily choose to read it from the
284 * register for node 0.
285 */
286 intlv_en = pvt->dram_IntlvEn[0];
287
288 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200289 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200290 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200291 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200292 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200293 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200294 }
295
Borislav Petkov72f158f2009-09-18 12:27:27 +0200296 if (unlikely((intlv_en != 0x01) &&
297 (intlv_en != 0x03) &&
298 (intlv_en != 0x07))) {
Doug Thompson67757632009-04-27 15:53:22 +0200299 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
300 "IntlvEn field of DRAM Base Register for node 0: "
Borislav Petkov72f158f2009-09-18 12:27:27 +0200301 "this probably indicates a BIOS bug.\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200302 return NULL;
303 }
304
305 bits = (((u32) sys_addr) >> 12) & intlv_en;
306
307 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200309 break; /* intlv_sel field matches */
310
311 if (++node_id >= DRAM_REG_COUNT)
312 goto err_no_match;
313 }
314
315 /* sanity test for sys_addr */
316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
317 amd64_printk(KERN_WARNING,
Borislav Petkov8edc5442009-09-18 12:39:19 +0200318 "%s(): sys_addr 0x%llx falls outside base/limit "
319 "address range for node %d with node interleaving "
320 "enabled.\n",
321 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200322 return NULL;
323 }
324
325found:
326 return edac_mc_find(node_id);
327
328err_no_match:
329 debugf2("sys_addr 0x%lx doesn't match any node\n",
330 (unsigned long)sys_addr);
331
332 return NULL;
333}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200334
335/*
336 * Extract the DRAM CS base address from selected csrow register.
337 */
338static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
339{
340 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
341 pvt->dcs_shift;
342}
343
344/*
345 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
346 */
347static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
348{
349 u64 dcsm_bits, other_bits;
350 u64 mask;
351
352 /* Extract bits from DRAM CS Mask. */
353 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
354
355 other_bits = pvt->dcsm_mask;
356 other_bits = ~(other_bits << pvt->dcs_shift);
357
358 /*
359 * The extracted bits from DCSM belong in the spaces represented by
360 * the cleared bits in other_bits.
361 */
362 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
363
364 return mask;
365}
366
367/*
368 * @input_addr is an InputAddr associated with the node given by mci. Return the
369 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
370 */
371static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
372{
373 struct amd64_pvt *pvt;
374 int csrow;
375 u64 base, mask;
376
377 pvt = mci->pvt_info;
378
379 /*
380 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
381 * base/mask register pair, test the condition shown near the start of
382 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
383 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200384 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200385
386 /* This DRAM chip select is disabled on this node */
387 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
388 continue;
389
390 base = base_from_dct_base(pvt, csrow);
391 mask = ~mask_from_dct_mask(pvt, csrow);
392
393 if ((input_addr & mask) == (base & mask)) {
394 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
395 (unsigned long)input_addr, csrow,
396 pvt->mc_node_id);
397
398 return csrow;
399 }
400 }
401
402 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
403 (unsigned long)input_addr, pvt->mc_node_id);
404
405 return -1;
406}
407
408/*
409 * Return the base value defined by the DRAM Base register for the node
410 * represented by mci. This function returns the full 40-bit value despite the
411 * fact that the register only stores bits 39-24 of the value. See section
412 * 3.4.4.1 (BKDG #26094, K8, revA-E)
413 */
414static inline u64 get_dram_base(struct mem_ctl_info *mci)
415{
416 struct amd64_pvt *pvt = mci->pvt_info;
417
418 return pvt->dram_base[pvt->mc_node_id];
419}
420
421/*
422 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
423 * for the node represented by mci. Info is passed back in *hole_base,
424 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
425 * info is invalid. Info may be invalid for either of the following reasons:
426 *
427 * - The revision of the node is not E or greater. In this case, the DRAM Hole
428 * Address Register does not exist.
429 *
430 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
431 * indicating that its contents are not valid.
432 *
433 * The values passed back in *hole_base, *hole_offset, and *hole_size are
434 * complete 32-bit values despite the fact that the bitfields in the DHAR
435 * only represent bits 31-24 of the base and offset values.
436 */
437int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
438 u64 *hole_offset, u64 *hole_size)
439{
440 struct amd64_pvt *pvt = mci->pvt_info;
441 u64 base;
442
443 /* only revE and later have the DRAM Hole Address Register */
Borislav Petkov1433eb92009-10-21 13:44:36 +0200444 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200445 debugf1(" revision %d for node %d does not support DHAR\n",
446 pvt->ext_model, pvt->mc_node_id);
447 return 1;
448 }
449
450 /* only valid for Fam10h */
451 if (boot_cpu_data.x86 == 0x10 &&
452 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
453 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
454 return 1;
455 }
456
457 if ((pvt->dhar & DHAR_VALID) == 0) {
458 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
459 pvt->mc_node_id);
460 return 1;
461 }
462
463 /* This node has Memory Hoisting */
464
465 /* +------------------+--------------------+--------------------+-----
466 * | memory | DRAM hole | relocated |
467 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
468 * | | | DRAM hole |
469 * | | | [0x100000000, |
470 * | | | (0x100000000+ |
471 * | | | (0xffffffff-x))] |
472 * +------------------+--------------------+--------------------+-----
473 *
474 * Above is a diagram of physical memory showing the DRAM hole and the
475 * relocated addresses from the DRAM hole. As shown, the DRAM hole
476 * starts at address x (the base address) and extends through address
477 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
478 * addresses in the hole so that they start at 0x100000000.
479 */
480
481 base = dhar_base(pvt->dhar);
482
483 *hole_base = base;
484 *hole_size = (0x1ull << 32) - base;
485
486 if (boot_cpu_data.x86 > 0xf)
487 *hole_offset = f10_dhar_offset(pvt->dhar);
488 else
489 *hole_offset = k8_dhar_offset(pvt->dhar);
490
491 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
492 pvt->mc_node_id, (unsigned long)*hole_base,
493 (unsigned long)*hole_offset, (unsigned long)*hole_size);
494
495 return 0;
496}
497EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
498
Doug Thompson93c2df52009-05-04 20:46:50 +0200499/*
500 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
501 * assumed that sys_addr maps to the node given by mci.
502 *
503 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
504 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
505 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
506 * then it is also involved in translating a SysAddr to a DramAddr. Sections
507 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
508 * These parts of the documentation are unclear. I interpret them as follows:
509 *
510 * When node n receives a SysAddr, it processes the SysAddr as follows:
511 *
512 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
513 * Limit registers for node n. If the SysAddr is not within the range
514 * specified by the base and limit values, then node n ignores the Sysaddr
515 * (since it does not map to node n). Otherwise continue to step 2 below.
516 *
517 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
518 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
519 * the range of relocated addresses (starting at 0x100000000) from the DRAM
520 * hole. If not, skip to step 3 below. Else get the value of the
521 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
522 * offset defined by this value from the SysAddr.
523 *
524 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
525 * Base register for node n. To obtain the DramAddr, subtract the base
526 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
527 */
528static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
529{
530 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
531 int ret = 0;
532
533 dram_base = get_dram_base(mci);
534
535 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
536 &hole_size);
537 if (!ret) {
538 if ((sys_addr >= (1ull << 32)) &&
539 (sys_addr < ((1ull << 32) + hole_size))) {
540 /* use DHAR to translate SysAddr to DramAddr */
541 dram_addr = sys_addr - hole_offset;
542
543 debugf2("using DHAR to translate SysAddr 0x%lx to "
544 "DramAddr 0x%lx\n",
545 (unsigned long)sys_addr,
546 (unsigned long)dram_addr);
547
548 return dram_addr;
549 }
550 }
551
552 /*
553 * Translate the SysAddr to a DramAddr as shown near the start of
554 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
555 * only deals with 40-bit values. Therefore we discard bits 63-40 of
556 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
557 * discard are all 1s. Otherwise the bits we discard are all 0s. See
558 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
559 * Programmer's Manual Volume 1 Application Programming.
560 */
561 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
562
563 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
564 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
565 (unsigned long)dram_addr);
566 return dram_addr;
567}
568
569/*
570 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
571 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
572 * for node interleaving.
573 */
574static int num_node_interleave_bits(unsigned intlv_en)
575{
576 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
577 int n;
578
579 BUG_ON(intlv_en > 7);
580 n = intlv_shift_table[intlv_en];
581 return n;
582}
583
584/* Translate the DramAddr given by @dram_addr to an InputAddr. */
585static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
586{
587 struct amd64_pvt *pvt;
588 int intlv_shift;
589 u64 input_addr;
590
591 pvt = mci->pvt_info;
592
593 /*
594 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
595 * concerning translating a DramAddr to an InputAddr.
596 */
597 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
598 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
599 (dram_addr & 0xfff);
600
601 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
602 intlv_shift, (unsigned long)dram_addr,
603 (unsigned long)input_addr);
604
605 return input_addr;
606}
607
608/*
609 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
610 * assumed that @sys_addr maps to the node given by mci.
611 */
612static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
613{
614 u64 input_addr;
615
616 input_addr =
617 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
618
619 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
620 (unsigned long)sys_addr, (unsigned long)input_addr);
621
622 return input_addr;
623}
624
625
626/*
627 * @input_addr is an InputAddr associated with the node represented by mci.
628 * Translate @input_addr to a DramAddr and return the result.
629 */
630static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
631{
632 struct amd64_pvt *pvt;
633 int node_id, intlv_shift;
634 u64 bits, dram_addr;
635 u32 intlv_sel;
636
637 /*
638 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
639 * shows how to translate a DramAddr to an InputAddr. Here we reverse
640 * this procedure. When translating from a DramAddr to an InputAddr, the
641 * bits used for node interleaving are discarded. Here we recover these
642 * bits from the IntlvSel field of the DRAM Limit register (section
643 * 3.4.4.2) for the node that input_addr is associated with.
644 */
645 pvt = mci->pvt_info;
646 node_id = pvt->mc_node_id;
647 BUG_ON((node_id < 0) || (node_id > 7));
648
649 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
650
651 if (intlv_shift == 0) {
652 debugf1(" InputAddr 0x%lx translates to DramAddr of "
653 "same value\n", (unsigned long)input_addr);
654
655 return input_addr;
656 }
657
658 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
659 (input_addr & 0xfff);
660
661 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
662 dram_addr = bits + (intlv_sel << 12);
663
664 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
665 "(%d node interleave bits)\n", (unsigned long)input_addr,
666 (unsigned long)dram_addr, intlv_shift);
667
668 return dram_addr;
669}
670
671/*
672 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
673 * @dram_addr to a SysAddr.
674 */
675static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
676{
677 struct amd64_pvt *pvt = mci->pvt_info;
678 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
679 int ret = 0;
680
681 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
682 &hole_size);
683 if (!ret) {
684 if ((dram_addr >= hole_base) &&
685 (dram_addr < (hole_base + hole_size))) {
686 sys_addr = dram_addr + hole_offset;
687
688 debugf1("using DHAR to translate DramAddr 0x%lx to "
689 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
690 (unsigned long)sys_addr);
691
692 return sys_addr;
693 }
694 }
695
696 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
697 sys_addr = dram_addr + base;
698
699 /*
700 * The sys_addr we have computed up to this point is a 40-bit value
701 * because the k8 deals with 40-bit values. However, the value we are
702 * supposed to return is a full 64-bit physical address. The AMD
703 * x86-64 architecture specifies that the most significant implemented
704 * address bit through bit 63 of a physical address must be either all
705 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
706 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
707 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
708 * Programming.
709 */
710 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
711
712 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
713 pvt->mc_node_id, (unsigned long)dram_addr,
714 (unsigned long)sys_addr);
715
716 return sys_addr;
717}
718
719/*
720 * @input_addr is an InputAddr associated with the node given by mci. Translate
721 * @input_addr to a SysAddr.
722 */
723static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
724 u64 input_addr)
725{
726 return dram_addr_to_sys_addr(mci,
727 input_addr_to_dram_addr(mci, input_addr));
728}
729
730/*
731 * Find the minimum and maximum InputAddr values that map to the given @csrow.
732 * Pass back these values in *input_addr_min and *input_addr_max.
733 */
734static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
735 u64 *input_addr_min, u64 *input_addr_max)
736{
737 struct amd64_pvt *pvt;
738 u64 base, mask;
739
740 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200741 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200742
743 base = base_from_dct_base(pvt, csrow);
744 mask = mask_from_dct_mask(pvt, csrow);
745
746 *input_addr_min = base & ~mask;
747 *input_addr_max = base | mask | pvt->dcs_mask_notused;
748}
749
Doug Thompson93c2df52009-05-04 20:46:50 +0200750/* Map the Error address to a PAGE and PAGE OFFSET. */
751static inline void error_address_to_page_and_offset(u64 error_address,
752 u32 *page, u32 *offset)
753{
754 *page = (u32) (error_address >> PAGE_SHIFT);
755 *offset = ((u32) error_address) & ~PAGE_MASK;
756}
757
758/*
759 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
760 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
761 * of a node that detected an ECC memory error. mci represents the node that
762 * the error address maps to (possibly different from the node that detected
763 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
764 * error.
765 */
766static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
767{
768 int csrow;
769
770 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
771
772 if (csrow == -1)
773 amd64_mc_printk(mci, KERN_ERR,
774 "Failed to translate InputAddr to csrow for "
775 "address 0x%lx\n", (unsigned long)sys_addr);
776 return csrow;
777}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200778
Borislav Petkovbfc04ae2009-11-12 19:05:07 +0100779static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
Doug Thompson2da11652009-04-27 16:09:09 +0200780
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100781static u16 extract_syndrome(struct err_regs *err)
782{
783 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
784}
785
Doug Thompson2da11652009-04-27 16:09:09 +0200786static void amd64_cpu_display_info(struct amd64_pvt *pvt)
787{
Borislav Petkov3ab0e7d2010-10-01 18:19:06 +0200788 if (boot_cpu_data.x86 == 0x10)
Doug Thompson2da11652009-04-27 16:09:09 +0200789 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
790 else if (boot_cpu_data.x86 == 0xf)
791 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
Borislav Petkov1433eb92009-10-21 13:44:36 +0200792 (pvt->ext_model >= K8_REV_F) ?
Doug Thompson2da11652009-04-27 16:09:09 +0200793 "Rev F or later" : "Rev E or earlier");
794 else
795 /* we'll hardly ever ever get here */
796 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
797}
798
799/*
800 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
801 * are ECC capable.
802 */
803static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
804{
805 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200806 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200807
Borislav Petkov1433eb92009-10-21 13:44:36 +0200808 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
Doug Thompson2da11652009-04-27 16:09:09 +0200809 ? 19
810 : 17;
811
Borislav Petkov584fcff2009-06-10 18:29:54 +0200812 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200813 edac_cap = EDAC_FLAG_SECDED;
814
815 return edac_cap;
816}
817
818
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200819static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200820
Borislav Petkov68798e12009-11-03 16:18:33 +0100821static void amd64_dump_dramcfg_low(u32 dclr, int chan)
822{
823 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
824
825 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
826 (dclr & BIT(16)) ? "un" : "",
827 (dclr & BIT(19)) ? "yes" : "no");
828
829 debugf1(" PAR/ERR parity: %s\n",
830 (dclr & BIT(8)) ? "enabled" : "disabled");
831
832 debugf1(" DCT 128bit mode width: %s\n",
833 (dclr & BIT(11)) ? "128b" : "64b");
834
835 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
836 (dclr & BIT(12)) ? "yes" : "no",
837 (dclr & BIT(13)) ? "yes" : "no",
838 (dclr & BIT(14)) ? "yes" : "no",
839 (dclr & BIT(15)) ? "yes" : "no");
840}
841
Doug Thompson2da11652009-04-27 16:09:09 +0200842/* Display and decode various NB registers for debug purposes. */
843static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
844{
845 int ganged;
846
Borislav Petkov68798e12009-11-03 16:18:33 +0100847 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
Doug Thompson2da11652009-04-27 16:09:09 +0200848
Borislav Petkov68798e12009-11-03 16:18:33 +0100849 debugf1(" NB two channel DRAM capable: %s\n",
850 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
851
852 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
853 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
854 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
855
856 amd64_dump_dramcfg_low(pvt->dclr0, 0);
Doug Thompson2da11652009-04-27 16:09:09 +0200857
Borislav Petkov8de1d912009-10-16 13:39:30 +0200858 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
Doug Thompson2da11652009-04-27 16:09:09 +0200859
Borislav Petkov8de1d912009-10-16 13:39:30 +0200860 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
861 "offset: 0x%08x\n",
862 pvt->dhar,
863 dhar_base(pvt->dhar),
864 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
865 : f10_dhar_offset(pvt->dhar));
Doug Thompson2da11652009-04-27 16:09:09 +0200866
Borislav Petkov8de1d912009-10-16 13:39:30 +0200867 debugf1(" DramHoleValid: %s\n",
868 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
Doug Thompson2da11652009-04-27 16:09:09 +0200869
Borislav Petkov8de1d912009-10-16 13:39:30 +0200870 /* everything below this point is Fam10h and above */
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200871 if (boot_cpu_data.x86 == 0xf) {
872 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200873 return;
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200874 }
Doug Thompson2da11652009-04-27 16:09:09 +0200875
Borislav Petkovad6a32e2010-03-09 12:46:00 +0100876 amd64_printk(KERN_INFO, "using %s syndromes.\n",
877 ((pvt->syn_type == 8) ? "x8" : "x4"));
878
Borislav Petkov8de1d912009-10-16 13:39:30 +0200879 /* Only if NOT ganged does dclr1 have valid info */
Borislav Petkov68798e12009-11-03 16:18:33 +0100880 if (!dct_ganging_enabled(pvt))
881 amd64_dump_dramcfg_low(pvt->dclr1, 1);
Doug Thompson2da11652009-04-27 16:09:09 +0200882
883 /*
884 * Determine if ganged and then dump memory sizes for first controller,
885 * and if NOT ganged dump info for 2nd controller.
886 */
887 ganged = dct_ganging_enabled(pvt);
888
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200889 amd64_debug_display_dimm_sizes(0, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200890
891 if (!ganged)
Borislav Petkov8566c4d2009-10-16 13:48:28 +0200892 amd64_debug_display_dimm_sizes(1, pvt);
Doug Thompson2da11652009-04-27 16:09:09 +0200893}
894
895/* Read in both of DBAM registers */
896static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
897{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200898 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
Doug Thompson2da11652009-04-27 16:09:09 +0200899
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200900 if (boot_cpu_data.x86 >= 0x10)
901 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200902}
903
Doug Thompson94be4bf2009-04-27 16:12:00 +0200904/*
905 * NOTE: CPU Revision Dependent code: Rev E and Rev F
906 *
907 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
908 * set the shift factor for the DCSB and DCSM values.
909 *
910 * ->dcs_mask_notused, RevE:
911 *
912 * To find the max InputAddr for the csrow, start with the base address and set
913 * all bits that are "don't care" bits in the test at the start of section
914 * 3.5.4 (p. 84).
915 *
916 * The "don't care" bits are all set bits in the mask and all bits in the gaps
917 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
918 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
919 * gaps.
920 *
921 * ->dcs_mask_notused, RevF and later:
922 *
923 * To find the max InputAddr for the csrow, start with the base address and set
924 * all bits that are "don't care" bits in the test at the start of NPT section
925 * 4.5.4 (p. 87).
926 *
927 * The "don't care" bits are all set bits in the mask and all bits in the gaps
928 * between bit ranges [36:27] and [21:13].
929 *
930 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
931 * which are all bits in the above-mentioned gaps.
932 */
933static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
934{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200935
Borislav Petkov1433eb92009-10-21 13:44:36 +0200936 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200937 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
938 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
939 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
940 pvt->dcs_shift = REV_E_DCS_SHIFT;
941 pvt->cs_count = 8;
942 pvt->num_dcsm = 8;
943 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200944 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
945 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
946 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
947 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
Borislav Petkov3ab0e7d2010-10-01 18:19:06 +0200948 pvt->cs_count = 8;
949 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200950 }
951}
952
953/*
954 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
955 */
956static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
957{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200958 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200959
960 amd64_set_dct_base_and_mask(pvt);
961
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200962 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200963 reg = K8_DCSB0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200964 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200965 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
966 cs, pvt->dcsb0[cs], reg);
967
968 /* If DCT are NOT ganged, then read in DCT1's base */
969 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
970 reg = F10_DCSB1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200971 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
972 &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200973 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
974 cs, pvt->dcsb1[cs], reg);
975 } else {
976 pvt->dcsb1[cs] = 0;
977 }
978 }
979
980 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +0200981 reg = K8_DCSM0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200982 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200983 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
984 cs, pvt->dcsm0[cs], reg);
985
986 /* If DCT are NOT ganged, then read in DCT1's mask */
987 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
988 reg = F10_DCSM1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200989 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
990 &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200991 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200993 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200994 pvt->dcsm1[cs] = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200995 }
Doug Thompson94be4bf2009-04-27 16:12:00 +0200996 }
997}
998
999static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1000{
1001 enum mem_type type;
1002
Borislav Petkov1433eb92009-10-21 13:44:36 +02001003 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
Borislav Petkov6b4c0bd2009-11-12 15:37:57 +01001004 if (pvt->dchr0 & DDR3_MODE)
1005 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1006 else
1007 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
Doug Thompson94be4bf2009-04-27 16:12:00 +02001008 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001009 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1010 }
1011
Borislav Petkov239642f2009-11-12 15:33:16 +01001012 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
Doug Thompson94be4bf2009-04-27 16:12:00 +02001013
1014 return type;
1015}
1016
Doug Thompsonddff8762009-04-27 16:14:52 +02001017/*
1018 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1019 * and the later RevF memory controllers (DDR vs DDR2)
1020 *
1021 * Return:
1022 * number of memory channels in operation
1023 * Pass back:
1024 * contents of the DCL0_LOW register
1025 */
1026static int k8_early_channel_count(struct amd64_pvt *pvt)
1027{
1028 int flag, err = 0;
1029
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001030 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001031 if (err)
1032 return err;
1033
Borislav Petkov9f56da02010-10-01 19:44:53 +02001034 if (pvt->ext_model >= K8_REV_F)
Doug Thompsonddff8762009-04-27 16:14:52 +02001035 /* RevF (NPT) and later */
1036 flag = pvt->dclr0 & F10_WIDTH_128;
Borislav Petkov9f56da02010-10-01 19:44:53 +02001037 else
Doug Thompsonddff8762009-04-27 16:14:52 +02001038 /* RevE and earlier */
1039 flag = pvt->dclr0 & REVE_WIDTH_128;
Doug Thompsonddff8762009-04-27 16:14:52 +02001040
1041 /* not used */
1042 pvt->dclr1 = 0;
1043
1044 return (flag) ? 2 : 1;
1045}
1046
1047/* extract the ERROR ADDRESS for the K8 CPUs */
1048static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001049 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001050{
1051 return (((u64) (info->nbeah & 0xff)) << 32) +
1052 (info->nbeal & ~0x03);
1053}
1054
1055/*
1056 * Read the Base and Limit registers for K8 based Memory controllers; extract
1057 * fields from the 'raw' reg into separate data fields
1058 *
1059 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1060 */
1061static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1062{
1063 u32 low;
1064 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001065
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001066 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001067
1068 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001069 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001070 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1071 pvt->dram_rw_en[dram] = (low & 0x3);
1072
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001073 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001074
1075 /*
1076 * Extract parts into separate data entries. Limit is the HIGHEST memory
1077 * location of the region, so lower 24 bits need to be all ones
1078 */
Borislav Petkov49978112009-10-12 17:23:03 +02001079 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001080 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1081 pvt->dram_DstNode[dram] = (low & 0x7);
1082}
1083
1084static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001085 struct err_regs *err_info, u64 sys_addr)
Doug Thompsonddff8762009-04-27 16:14:52 +02001086{
1087 struct mem_ctl_info *src_mci;
Doug Thompsonddff8762009-04-27 16:14:52 +02001088 int channel, csrow;
1089 u32 page, offset;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001090 u16 syndrome;
Doug Thompsonddff8762009-04-27 16:14:52 +02001091
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001092 syndrome = extract_syndrome(err_info);
Doug Thompsonddff8762009-04-27 16:14:52 +02001093
1094 /* CHIPKILL enabled */
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001095 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001096 channel = get_channel_from_ecc_syndrome(mci, syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001097 if (channel < 0) {
1098 /*
1099 * Syndrome didn't map, so we don't know which of the
1100 * 2 DIMMs is in error. So we need to ID 'both' of them
1101 * as suspect.
1102 */
1103 amd64_mc_printk(mci, KERN_WARNING,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001104 "unknown syndrome 0x%04x - possible "
1105 "error reporting race\n", syndrome);
Doug Thompsonddff8762009-04-27 16:14:52 +02001106 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1107 return;
1108 }
1109 } else {
1110 /*
1111 * non-chipkill ecc mode
1112 *
1113 * The k8 documentation is unclear about how to determine the
1114 * channel number when using non-chipkill memory. This method
1115 * was obtained from email communication with someone at AMD.
1116 * (Wish the email was placed in this comment - norsk)
1117 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001118 channel = ((sys_addr & BIT(3)) != 0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001119 }
1120
1121 /*
1122 * Find out which node the error address belongs to. This may be
1123 * different from the node that detected the error.
1124 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001125 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001126 if (!src_mci) {
Doug Thompsonddff8762009-04-27 16:14:52 +02001127 amd64_mc_printk(mci, KERN_ERR,
1128 "failed to map error address 0x%lx to a node\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001129 (unsigned long)sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001130 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1131 return;
1132 }
1133
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001134 /* Now map the sys_addr to a CSROW */
1135 csrow = sys_addr_to_csrow(src_mci, sys_addr);
Doug Thompsonddff8762009-04-27 16:14:52 +02001136 if (csrow < 0) {
1137 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1138 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001139 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsonddff8762009-04-27 16:14:52 +02001140
1141 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1142 channel, EDAC_MOD_STR);
1143 }
1144}
1145
Borislav Petkov1433eb92009-10-21 13:44:36 +02001146static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompsonddff8762009-04-27 16:14:52 +02001147{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001148 int *dbam_map;
Doug Thompsonddff8762009-04-27 16:14:52 +02001149
Borislav Petkov1433eb92009-10-21 13:44:36 +02001150 if (pvt->ext_model >= K8_REV_F)
1151 dbam_map = ddr2_dbam;
1152 else if (pvt->ext_model >= K8_REV_D)
1153 dbam_map = ddr2_dbam_revD;
1154 else
1155 dbam_map = ddr2_dbam_revCG;
Doug Thompsonddff8762009-04-27 16:14:52 +02001156
Borislav Petkov1433eb92009-10-21 13:44:36 +02001157 return dbam_map[cs_mode];
Doug Thompsonddff8762009-04-27 16:14:52 +02001158}
1159
Doug Thompson1afd3c92009-04-27 16:16:50 +02001160/*
1161 * Get the number of DCT channels in use.
1162 *
1163 * Return:
1164 * number of Memory Channels in operation
1165 * Pass back:
1166 * contents of the DCL0_LOW register
1167 */
1168static int f10_early_channel_count(struct amd64_pvt *pvt)
1169{
Wan Wei57a30852009-08-07 17:04:49 +02001170 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001171 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001172 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001173
Doug Thompson1afd3c92009-04-27 16:16:50 +02001174 /* If we are in 128 bit mode, then we are using 2 channels */
1175 if (pvt->dclr0 & F10_WIDTH_128) {
Doug Thompson1afd3c92009-04-27 16:16:50 +02001176 channels = 2;
1177 return channels;
1178 }
1179
1180 /*
Borislav Petkovd16149e2009-10-16 19:55:49 +02001181 * Need to check if in unganged mode: In such, there are 2 channels,
1182 * but they are not in 128 bit mode and thus the above 'dclr0' status
1183 * bit will be OFF.
Doug Thompson1afd3c92009-04-27 16:16:50 +02001184 *
1185 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1186 * their CSEnable bit on. If so, then SINGLE DIMM case.
1187 */
Borislav Petkovd16149e2009-10-16 19:55:49 +02001188 debugf0("Data width is not 128 bits - need more decoding\n");
Doug Thompson1afd3c92009-04-27 16:16:50 +02001189
1190 /*
1191 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1192 * is more than just one DIMM present in unganged mode. Need to check
1193 * both controllers since DIMMs can be placed in either one.
1194 */
Wan Wei57a30852009-08-07 17:04:49 +02001195 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001196 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001197 goto err_reg;
1198
Wan Wei57a30852009-08-07 17:04:49 +02001199 for (j = 0; j < 4; j++) {
1200 if (DBAM_DIMM(j, dbam) > 0) {
1201 channels++;
1202 break;
1203 }
1204 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001205 }
1206
Borislav Petkovd16149e2009-10-16 19:55:49 +02001207 if (channels > 2)
1208 channels = 2;
1209
Borislav Petkov37da0452009-06-10 17:36:57 +02001210 debugf0("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001211
1212 return channels;
1213
1214err_reg:
1215 return -1;
1216
1217}
1218
Borislav Petkov1433eb92009-10-21 13:44:36 +02001219static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001220{
Borislav Petkov1433eb92009-10-21 13:44:36 +02001221 int *dbam_map;
1222
1223 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1224 dbam_map = ddr3_dbam;
1225 else
1226 dbam_map = ddr2_dbam;
1227
1228 return dbam_map[cs_mode];
Doug Thompson1afd3c92009-04-27 16:16:50 +02001229}
1230
1231/* Enable extended configuration access via 0xCF8 feature */
1232static void amd64_setup(struct amd64_pvt *pvt)
1233{
1234 u32 reg;
1235
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001236 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001237
1238 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1239 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1240 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1241}
1242
1243/* Restore the extended configuration access via 0xCF8 feature */
1244static void amd64_teardown(struct amd64_pvt *pvt)
1245{
1246 u32 reg;
1247
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001248 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001249
1250 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1251 if (pvt->flags.cf8_extcfg)
1252 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1253 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1254}
1255
1256static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001257 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001258{
1259 return (((u64) (info->nbeah & 0xffff)) << 32) +
1260 (info->nbeal & ~0x01);
1261}
1262
1263/*
1264 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1265 * fields from the 'raw' reg into separate data fields.
1266 *
1267 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1268 */
1269static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1270{
1271 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1272
1273 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1274 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1275
1276 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001277 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001278
1279 /* Read from the ECS data register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001280 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001281
1282 /* Extract parts into separate data entries */
1283 pvt->dram_rw_en[dram] = (low_base & 0x3);
1284
1285 if (pvt->dram_rw_en[dram] == 0)
1286 return;
1287
1288 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1289
Borislav Petkov66216a72009-09-22 16:48:37 +02001290 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001291 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001292
1293 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1294 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1295
1296 /* read the 'raw' LIMIT registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001297 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001298
1299 /* Read from the ECS data register for the HIGH portion */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001300 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001301
Doug Thompson1afd3c92009-04-27 16:16:50 +02001302 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1303 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1304
1305 /*
1306 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1307 * memory location of the region, so low 24 bits need to be all ones.
1308 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001309 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001310 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001311 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001312}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001313
1314static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1315{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001316
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001317 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1318 &pvt->dram_ctl_select_low)) {
Borislav Petkov72381bd2009-10-09 19:14:43 +02001319 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1320 "High range addresses at: 0x%x\n",
1321 pvt->dram_ctl_select_low,
1322 dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001323
Borislav Petkov72381bd2009-10-09 19:14:43 +02001324 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1325 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1326 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001327
Borislav Petkov72381bd2009-10-09 19:14:43 +02001328 if (!dct_ganging_enabled(pvt))
1329 debugf0(" Address range split per DCT: %s\n",
1330 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1331
1332 debugf0(" DCT data interleave for ECC: %s, "
1333 "DRAM cleared since last warm reset: %s\n",
1334 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1335 (dct_memory_cleared(pvt) ? "yes" : "no"));
1336
1337 debugf0(" DCT channel interleave: %s, "
1338 "DCT interleave bits selector: 0x%x\n",
1339 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001340 dct_sel_interleave_addr(pvt));
1341 }
1342
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001343 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1344 &pvt->dram_ctl_select_high);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001345}
1346
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001347/*
1348 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1349 * Interleaving Modes.
1350 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001351static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1352 int hi_range_sel, u32 intlv_en)
1353{
1354 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1355
1356 if (dct_ganging_enabled(pvt))
1357 cs = 0;
1358 else if (hi_range_sel)
1359 cs = dct_sel_high;
1360 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001361 /*
1362 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1363 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001364 if (dct_sel_interleave_addr(pvt) == 0)
1365 cs = sys_addr >> 6 & 1;
1366 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1367 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1368
1369 if (dct_sel_interleave_addr(pvt) & 1)
1370 cs = (sys_addr >> 9 & 1) ^ temp;
1371 else
1372 cs = (sys_addr >> 6 & 1) ^ temp;
1373 } else if (intlv_en & 4)
1374 cs = sys_addr >> 15 & 1;
1375 else if (intlv_en & 2)
1376 cs = sys_addr >> 14 & 1;
1377 else if (intlv_en & 1)
1378 cs = sys_addr >> 13 & 1;
1379 else
1380 cs = sys_addr >> 12 & 1;
1381 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1382 cs = ~dct_sel_high & 1;
1383 else
1384 cs = 0;
1385
1386 return cs;
1387}
1388
1389static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1390{
1391 if (intlv_en == 1)
1392 return 1;
1393 else if (intlv_en == 3)
1394 return 2;
1395 else if (intlv_en == 7)
1396 return 3;
1397
1398 return 0;
1399}
1400
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001401/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1402static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001403 u32 dct_sel_base_addr,
1404 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001405 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001406 u64 dram_base)
1407{
1408 u64 chan_off;
1409
1410 if (hi_range_sel) {
Borislav Petkov9975a5f2010-03-08 18:29:35 +01001411 if (!(dct_sel_base_addr & 0xFFFF0000) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001412 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001413 chan_off = hole_off << 16;
1414 else
1415 chan_off = dct_sel_base_off;
1416 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001417 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001418 chan_off = hole_off << 16;
1419 else
1420 chan_off = dram_base & 0xFFFFF8000000ULL;
1421 }
1422
1423 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1424 (chan_off & 0x0000FFFFFF800000ULL);
1425}
1426
1427/* Hack for the time being - Can we get this from BIOS?? */
1428#define CH0SPARE_RANK 0
1429#define CH1SPARE_RANK 1
1430
1431/*
1432 * checks if the csrow passed in is marked as SPARED, if so returns the new
1433 * spare row
1434 */
1435static inline int f10_process_possible_spare(int csrow,
1436 u32 cs, struct amd64_pvt *pvt)
1437{
1438 u32 swap_done;
1439 u32 bad_dram_cs;
1440
1441 /* Depending on channel, isolate respective SPARING info */
1442 if (cs) {
1443 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1444 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1445 if (swap_done && (csrow == bad_dram_cs))
1446 csrow = CH1SPARE_RANK;
1447 } else {
1448 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1449 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1450 if (swap_done && (csrow == bad_dram_cs))
1451 csrow = CH0SPARE_RANK;
1452 }
1453 return csrow;
1454}
1455
1456/*
1457 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1458 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1459 *
1460 * Return:
1461 * -EINVAL: NOT FOUND
1462 * 0..csrow = Chip-Select Row
1463 */
1464static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1465{
1466 struct mem_ctl_info *mci;
1467 struct amd64_pvt *pvt;
1468 u32 cs_base, cs_mask;
1469 int cs_found = -EINVAL;
1470 int csrow;
1471
1472 mci = mci_lookup[nid];
1473 if (!mci)
1474 return cs_found;
1475
1476 pvt = mci->pvt_info;
1477
1478 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1479
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001480 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001481
1482 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1483 if (!(cs_base & K8_DCSB_CS_ENABLE))
1484 continue;
1485
1486 /*
1487 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1488 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1489 * of the actual address.
1490 */
1491 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1492
1493 /*
1494 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1495 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1496 */
1497 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1498
1499 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1500 csrow, cs_base, cs_mask);
1501
1502 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1503
1504 debugf1(" Final CSMask=0x%x\n", cs_mask);
1505 debugf1(" (InputAddr & ~CSMask)=0x%x "
1506 "(CSBase & ~CSMask)=0x%x\n",
1507 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1508
1509 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1510 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1511
1512 debugf1(" MATCH csrow=%d\n", cs_found);
1513 break;
1514 }
1515 }
1516 return cs_found;
1517}
1518
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001519/* For a given @dram_range, check if @sys_addr falls within it. */
1520static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1521 u64 sys_addr, int *nid, int *chan_sel)
1522{
1523 int node_id, cs_found = -EINVAL, high_range = 0;
1524 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1525 u32 hole_valid, tmp, dct_sel_base, channel;
1526 u64 dram_base, chan_addr, dct_sel_base_off;
1527
1528 dram_base = pvt->dram_base[dram_range];
1529 intlv_en = pvt->dram_IntlvEn[dram_range];
1530
1531 node_id = pvt->dram_DstNode[dram_range];
1532 intlv_sel = pvt->dram_IntlvSel[dram_range];
1533
1534 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1535 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1536
1537 /*
1538 * This assumes that one node's DHAR is the same as all the other
1539 * nodes' DHAR.
1540 */
1541 hole_off = (pvt->dhar & 0x0000FF80);
1542 hole_valid = (pvt->dhar & 0x1);
1543 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1544
1545 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1546 hole_off, hole_valid, intlv_sel);
1547
Borislav Petkove726f3c2010-12-06 16:20:25 +01001548 if (intlv_en &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001549 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1550 return -EINVAL;
1551
1552 dct_sel_base = dct_sel_baseaddr(pvt);
1553
1554 /*
1555 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1556 * select between DCT0 and DCT1.
1557 */
1558 if (dct_high_range_enabled(pvt) &&
1559 !dct_ganging_enabled(pvt) &&
1560 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1561 high_range = 1;
1562
1563 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1564
1565 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1566 dct_sel_base_off, hole_valid,
1567 hole_off, dram_base);
1568
1569 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1570
1571 /* remove Node ID (in case of memory interleaving) */
1572 tmp = chan_addr & 0xFC0;
1573
1574 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1575
1576 /* remove channel interleave and hash */
1577 if (dct_interleave_enabled(pvt) &&
1578 !dct_high_range_enabled(pvt) &&
1579 !dct_ganging_enabled(pvt)) {
1580 if (dct_sel_interleave_addr(pvt) != 1)
1581 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1582 else {
1583 tmp = chan_addr & 0xFC0;
1584 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1585 | tmp;
1586 }
1587 }
1588
1589 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1590 chan_addr, (u32)(chan_addr >> 8));
1591
1592 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1593
1594 if (cs_found >= 0) {
1595 *nid = node_id;
1596 *chan_sel = channel;
1597 }
1598 return cs_found;
1599}
1600
1601static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1602 int *node, int *chan_sel)
1603{
1604 int dram_range, cs_found = -EINVAL;
1605 u64 dram_base, dram_limit;
1606
1607 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1608
1609 if (!pvt->dram_rw_en[dram_range])
1610 continue;
1611
1612 dram_base = pvt->dram_base[dram_range];
1613 dram_limit = pvt->dram_limit[dram_range];
1614
1615 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1616
1617 cs_found = f10_match_to_this_node(pvt, dram_range,
1618 sys_addr, node,
1619 chan_sel);
1620 if (cs_found >= 0)
1621 break;
1622 }
1623 }
1624 return cs_found;
1625}
1626
1627/*
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001628 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1629 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001630 *
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001631 * The @sys_addr is usually an error address received from the hardware
1632 * (MCX_ADDR).
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001633 */
1634static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001635 struct err_regs *err_info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001636 u64 sys_addr)
1637{
1638 struct amd64_pvt *pvt = mci->pvt_info;
1639 u32 page, offset;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001640 int nid, csrow, chan = 0;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001641 u16 syndrome;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001642
1643 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1644
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001645 if (csrow < 0) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001646 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001647 return;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001648 }
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001649
1650 error_address_to_page_and_offset(sys_addr, &page, &offset);
1651
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001652 syndrome = extract_syndrome(err_info);
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001653
1654 /*
1655 * We need the syndromes for channel detection only when we're
1656 * ganged. Otherwise @chan should already contain the channel at
1657 * this point.
1658 */
Borislav Petkov962b70a2010-08-03 16:51:28 +02001659 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
Borislav Petkovbdc30a02009-11-13 15:10:43 +01001660 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1661
1662 if (chan >= 0)
1663 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1664 EDAC_MOD_STR);
1665 else
1666 /*
1667 * Channel unknown, report all channels on this CSROW as failed.
1668 */
1669 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1670 edac_mc_handle_ce(mci, page, offset, syndrome,
1671 csrow, chan, EDAC_MOD_STR);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001672}
1673
1674/*
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001675 * debug routine to display the memory sizes of all logical DIMMs and its
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001676 * CSROWs as well
1677 */
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001678static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001679{
Borislav Petkov603adaf2009-12-21 14:52:53 +01001680 int dimm, size0, size1, factor = 0;
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001681 u32 dbam;
1682 u32 *dcsb;
1683
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001684 if (boot_cpu_data.x86 == 0xf) {
Borislav Petkov603adaf2009-12-21 14:52:53 +01001685 if (pvt->dclr0 & F10_WIDTH_128)
1686 factor = 1;
1687
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001688 /* K8 families < revF not supported yet */
Borislav Petkov1433eb92009-10-21 13:44:36 +02001689 if (pvt->ext_model < K8_REV_F)
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001690 return;
1691 else
1692 WARN_ON(ctrl != 0);
1693 }
1694
1695 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1696 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001697
1698 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1699 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1700
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001701 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1702
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001703 /* Dump memory sizes for DIMM and its CSROWs */
1704 for (dimm = 0; dimm < 4; dimm++) {
1705
1706 size0 = 0;
1707 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001708 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001709
1710 size1 = 0;
1711 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
Borislav Petkov1433eb92009-10-21 13:44:36 +02001712 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001713
Borislav Petkov8566c4d2009-10-16 13:48:28 +02001714 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
Borislav Petkov603adaf2009-12-21 14:52:53 +01001715 dimm * 2, size0 << factor,
1716 dimm * 2 + 1, size1 << factor);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001717 }
1718}
1719
Doug Thompson4d376072009-04-27 16:25:05 +02001720static struct amd64_family_type amd64_family_types[] = {
1721 [K8_CPUS] = {
1722 .ctl_name = "RevF",
1723 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1724 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1725 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001726 .early_channel_count = k8_early_channel_count,
1727 .get_error_address = k8_get_error_address,
1728 .read_dram_base_limit = k8_read_dram_base_limit,
1729 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1730 .dbam_to_cs = k8_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001731 }
1732 },
1733 [F10_CPUS] = {
1734 .ctl_name = "Family 10h",
1735 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1736 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1737 .ops = {
Borislav Petkov1433eb92009-10-21 13:44:36 +02001738 .early_channel_count = f10_early_channel_count,
1739 .get_error_address = f10_get_error_address,
1740 .read_dram_base_limit = f10_read_dram_base_limit,
1741 .read_dram_ctl_register = f10_read_dram_ctl_register,
1742 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1743 .dbam_to_cs = f10_dbam_to_chip_select,
Doug Thompson4d376072009-04-27 16:25:05 +02001744 }
1745 },
Doug Thompson4d376072009-04-27 16:25:05 +02001746};
1747
1748static struct pci_dev *pci_get_related_function(unsigned int vendor,
1749 unsigned int device,
1750 struct pci_dev *related)
1751{
1752 struct pci_dev *dev = NULL;
1753
1754 dev = pci_get_device(vendor, device, dev);
1755 while (dev) {
1756 if ((dev->bus->number == related->bus->number) &&
1757 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1758 break;
1759 dev = pci_get_device(vendor, device, dev);
1760 }
1761
1762 return dev;
1763}
1764
Doug Thompsonb1289d62009-04-27 16:37:05 +02001765/*
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001766 * These are tables of eigenvectors (one per line) which can be used for the
1767 * construction of the syndrome tables. The modified syndrome search algorithm
1768 * uses those to find the symbol in error and thus the DIMM.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001769 *
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001770 * Algorithm courtesy of Ross LaFetra from AMD.
Doug Thompsonb1289d62009-04-27 16:37:05 +02001771 */
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001772static u16 x4_vectors[] = {
1773 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1774 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1775 0x0001, 0x0002, 0x0004, 0x0008,
1776 0x1013, 0x3032, 0x4044, 0x8088,
1777 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1778 0x4857, 0xc4fe, 0x13cc, 0x3288,
1779 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1780 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1781 0x15c1, 0x2a42, 0x89ac, 0x4758,
1782 0x2b03, 0x1602, 0x4f0c, 0xca08,
1783 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1784 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1785 0x2b87, 0x164e, 0x642c, 0xdc18,
1786 0x40b9, 0x80de, 0x1094, 0x20e8,
1787 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1788 0x11c1, 0x2242, 0x84ac, 0x4c58,
1789 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1790 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1791 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1792 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1793 0x16b3, 0x3d62, 0x4f34, 0x8518,
1794 0x1e2f, 0x391a, 0x5cac, 0xf858,
1795 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1796 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1797 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1798 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1799 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1800 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1801 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1802 0x185d, 0x2ca6, 0x7914, 0x9e28,
1803 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1804 0x4199, 0x82ee, 0x19f4, 0x2e58,
1805 0x4807, 0xc40e, 0x130c, 0x3208,
1806 0x1905, 0x2e0a, 0x5804, 0xac08,
1807 0x213f, 0x132a, 0xadfc, 0x5ba8,
1808 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
Doug Thompsonb1289d62009-04-27 16:37:05 +02001809};
1810
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001811static u16 x8_vectors[] = {
1812 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1813 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1814 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1815 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1816 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1817 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1818 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1819 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1820 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1821 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1822 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1823 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1824 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1825 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1826 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1827 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1828 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1829 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1830 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1831};
1832
1833static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001834 int v_dim)
Doug Thompsonb1289d62009-04-27 16:37:05 +02001835{
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001836 unsigned int i, err_sym;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001837
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001838 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1839 u16 s = syndrome;
1840 int v_idx = err_sym * v_dim;
1841 int v_end = (err_sym + 1) * v_dim;
Doug Thompsonb1289d62009-04-27 16:37:05 +02001842
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001843 /* walk over all 16 bits of the syndrome */
1844 for (i = 1; i < (1U << 16); i <<= 1) {
1845
1846 /* if bit is set in that eigenvector... */
1847 if (v_idx < v_end && vectors[v_idx] & i) {
1848 u16 ev_comp = vectors[v_idx++];
1849
1850 /* ... and bit set in the modified syndrome, */
1851 if (s & i) {
1852 /* remove it. */
1853 s ^= ev_comp;
1854
1855 if (!s)
1856 return err_sym;
1857 }
1858
1859 } else if (s & i)
1860 /* can't get to zero, move to next symbol */
1861 break;
1862 }
Doug Thompsonb1289d62009-04-27 16:37:05 +02001863 }
1864
1865 debugf0("syndrome(%x) not found\n", syndrome);
1866 return -1;
1867}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001868
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001869static int map_err_sym_to_channel(int err_sym, int sym_size)
1870{
1871 if (sym_size == 4)
1872 switch (err_sym) {
1873 case 0x20:
1874 case 0x21:
1875 return 0;
1876 break;
1877 case 0x22:
1878 case 0x23:
1879 return 1;
1880 break;
1881 default:
1882 return err_sym >> 4;
1883 break;
1884 }
1885 /* x8 symbols */
1886 else
1887 switch (err_sym) {
1888 /* imaginary bits not in a DIMM */
1889 case 0x10:
1890 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1891 err_sym);
1892 return -1;
1893 break;
1894
1895 case 0x11:
1896 return 0;
1897 break;
1898 case 0x12:
1899 return 1;
1900 break;
1901 default:
1902 return err_sym >> 3;
1903 break;
1904 }
1905 return -1;
1906}
1907
1908static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1909{
1910 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001911 int err_sym = -1;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001912
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001913 if (pvt->syn_type == 8)
1914 err_sym = decode_syndrome(syndrome, x8_vectors,
1915 ARRAY_SIZE(x8_vectors),
1916 pvt->syn_type);
1917 else if (pvt->syn_type == 4)
1918 err_sym = decode_syndrome(syndrome, x4_vectors,
1919 ARRAY_SIZE(x4_vectors),
1920 pvt->syn_type);
1921 else {
1922 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1923 __func__, pvt->syn_type);
1924 return err_sym;
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001925 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01001926
1927 return map_err_sym_to_channel(err_sym, pvt->syn_type);
Borislav Petkovbfc04ae2009-11-12 19:05:07 +01001928}
1929
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001930/*
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001931 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1932 * ADDRESS and process.
1933 */
1934static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001935 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001936{
1937 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001938 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001939
1940 /* Ensure that the Error Address is VALID */
1941 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1942 amd64_mc_printk(mci, KERN_ERR,
1943 "HW has no ERROR_ADDRESS available\n");
1944 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1945 return;
1946 }
1947
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001948 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001949
1950 amd64_mc_printk(mci, KERN_ERR,
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001951 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001952
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001953 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001954}
1955
1956/* Handle any Un-correctable Errors (UEs) */
1957static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001958 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001959{
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001960 struct amd64_pvt *pvt = mci->pvt_info;
1961 struct mem_ctl_info *log_mci, *src_mci = NULL;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001962 int csrow;
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001963 u64 sys_addr;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001964 u32 page, offset;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001965
1966 log_mci = mci;
1967
1968 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1969 amd64_mc_printk(mci, KERN_CRIT,
1970 "HW has no ERROR_ADDRESS available\n");
1971 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1972 return;
1973 }
1974
Borislav Petkov1f6bcee2009-11-13 14:02:57 +01001975 sys_addr = pvt->ops->get_error_address(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001976
1977 /*
1978 * Find out which node the error address belongs to. This may be
1979 * different from the node that detected the error.
1980 */
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001981 src_mci = find_mc_by_sys_addr(mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001982 if (!src_mci) {
1983 amd64_mc_printk(mci, KERN_CRIT,
1984 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001985 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001986 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1987 return;
1988 }
1989
1990 log_mci = src_mci;
1991
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001992 csrow = sys_addr_to_csrow(log_mci, sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001993 if (csrow < 0) {
1994 amd64_mc_printk(mci, KERN_CRIT,
1995 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001996 (unsigned long)sys_addr);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02001997 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1998 } else {
Borislav Petkov44e9e2e2009-10-26 15:00:19 +01001999 error_address_to_page_and_offset(sys_addr, &page, &offset);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002000 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2001 }
2002}
2003
Borislav Petkov549d0422009-07-24 13:51:42 +02002004static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002005 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002006{
Borislav Petkovb70ef012009-06-25 19:32:38 +02002007 u32 ec = ERROR_CODE(info->nbsl);
2008 u32 xec = EXT_ERROR_CODE(info->nbsl);
Borislav Petkov17adea02009-11-04 14:04:06 +01002009 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002010
Borislav Petkovb70ef012009-06-25 19:32:38 +02002011 /* Bail early out if this was an 'observed' error */
2012 if (PP(ec) == K8_NBSL_PP_OBS)
2013 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002014
Borislav Petkovecaf5602009-07-23 16:32:01 +02002015 /* Do only ECC errors */
2016 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002017 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002018
Borislav Petkovecaf5602009-07-23 16:32:01 +02002019 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002020 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02002021 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002022 amd64_handle_ue(mci, info);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002023}
2024
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002025void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002026{
Borislav Petkov549d0422009-07-24 13:51:42 +02002027 struct mem_ctl_info *mci = mci_lookup[node_id];
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002028 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002029
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002030 regs.nbsl = (u32) m->status;
2031 regs.nbsh = (u32)(m->status >> 32);
2032 regs.nbeal = (u32) m->addr;
2033 regs.nbeah = (u32)(m->addr >> 32);
2034 regs.nbcfg = nbcfg;
2035
2036 __amd64_decode_bus_error(mci, &regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002037
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002038 /*
2039 * Check the UE bit of the NB status high register, if set generate some
2040 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2041 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02002042 *
2043 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002044 */
Borislav Petkov7cfd4a82010-09-01 14:45:20 +02002045 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
Borislav Petkov5110dbd2009-06-25 19:51:04 +02002046 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02002047
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002048}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002049
Doug Thompson0ec449e2009-04-27 19:41:25 +02002050/*
Doug Thompson0ec449e2009-04-27 19:41:25 +02002051 * Input:
2052 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2053 * 2) AMD Family index value
2054 *
2055 * Ouput:
2056 * Upon return of 0, the following filled in:
2057 *
2058 * struct pvt->addr_f1_ctl
2059 * struct pvt->misc_f3_ctl
2060 *
2061 * Filled in with related device funcitions of 'dram_f2_ctl'
2062 * These devices are "reserved" via the pci_get_device()
2063 *
2064 * Upon return of 1 (error status):
2065 *
2066 * Nothing reserved
2067 */
2068static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2069{
2070 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2071
2072 /* Reserve the ADDRESS MAP Device */
2073 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2074 amd64_dev->addr_f1_ctl,
2075 pvt->dram_f2_ctl);
2076
2077 if (!pvt->addr_f1_ctl) {
2078 amd64_printk(KERN_ERR, "error address map device not found: "
2079 "vendor %x device 0x%x (broken BIOS?)\n",
2080 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2081 return 1;
2082 }
2083
2084 /* Reserve the MISC Device */
2085 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2086 amd64_dev->misc_f3_ctl,
2087 pvt->dram_f2_ctl);
2088
2089 if (!pvt->misc_f3_ctl) {
2090 pci_dev_put(pvt->addr_f1_ctl);
2091 pvt->addr_f1_ctl = NULL;
2092
2093 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2094 "vendor %x device 0x%x (broken BIOS?)\n",
2095 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2096 return 1;
2097 }
2098
2099 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2100 pci_name(pvt->addr_f1_ctl));
2101 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2102 pci_name(pvt->dram_f2_ctl));
2103 debugf1(" Misc device PCI Bus ID:\t%s\n",
2104 pci_name(pvt->misc_f3_ctl));
2105
2106 return 0;
2107}
2108
2109static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2110{
2111 pci_dev_put(pvt->addr_f1_ctl);
2112 pci_dev_put(pvt->misc_f3_ctl);
2113}
2114
2115/*
2116 * Retrieve the hardware registers of the memory controller (this includes the
2117 * 'Address Map' and 'Misc' device regs)
2118 */
2119static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2120{
2121 u64 msr_val;
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002122 u32 tmp;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002123 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002124
2125 /*
2126 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2127 * those are Read-As-Zero
2128 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002129 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2130 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002131
2132 /* check first whether TOP_MEM2 is enabled */
2133 rdmsrl(MSR_K8_SYSCFG, msr_val);
2134 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002135 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2136 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002137 } else
2138 debugf0(" TOP_MEM2 disabled.\n");
2139
2140 amd64_cpu_display_info(pvt);
2141
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002142 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002143
2144 if (pvt->ops->read_dram_ctl_register)
2145 pvt->ops->read_dram_ctl_register(pvt);
2146
2147 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2148 /*
2149 * Call CPU specific READ function to get the DRAM Base and
2150 * Limit values from the DCT.
2151 */
2152 pvt->ops->read_dram_base_limit(pvt, dram);
2153
2154 /*
2155 * Only print out debug info on rows with both R and W Enabled.
2156 * Normal processing, compiler should optimize this whole 'if'
2157 * debug output block away.
2158 */
2159 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002160 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2161 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002162 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002163 pvt->dram_base[dram],
2164 pvt->dram_limit[dram]);
2165
Doug Thompson0ec449e2009-04-27 19:41:25 +02002166 debugf1(" IntlvEn=%s %s %s "
2167 "IntlvSel=%d DstNode=%d\n",
2168 pvt->dram_IntlvEn[dram] ?
2169 "Enabled" : "Disabled",
2170 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2171 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2172 pvt->dram_IntlvSel[dram],
2173 pvt->dram_DstNode[dram]);
2174 }
2175 }
2176
2177 amd64_read_dct_base_mask(pvt);
2178
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002179 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002180 amd64_read_dbam_reg(pvt);
2181
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002182 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2183 F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002184
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002185 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2186 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002187
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002188 if (boot_cpu_data.x86 >= 0x10) {
2189 if (!dct_ganging_enabled(pvt)) {
2190 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2191 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2192 }
2193 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002194 }
Borislav Petkovad6a32e2010-03-09 12:46:00 +01002195
2196 if (boot_cpu_data.x86 == 0x10 &&
2197 boot_cpu_data.x86_model > 7 &&
2198 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2199 tmp & BIT(25))
2200 pvt->syn_type = 8;
2201 else
2202 pvt->syn_type = 4;
2203
Doug Thompson0ec449e2009-04-27 19:41:25 +02002204 amd64_dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002205}
2206
2207/*
2208 * NOTE: CPU Revision Dependent code
2209 *
2210 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002211 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002212 * k8 private pointer to -->
2213 * DRAM Bank Address mapping register
2214 * node_id
2215 * DCL register where dual_channel_active is
2216 *
2217 * The DBAM register consists of 4 sets of 4 bits each definitions:
2218 *
2219 * Bits: CSROWs
2220 * 0-3 CSROWs 0 and 1
2221 * 4-7 CSROWs 2 and 3
2222 * 8-11 CSROWs 4 and 5
2223 * 12-15 CSROWs 6 and 7
2224 *
2225 * Values range from: 0 to 15
2226 * The meaning of the values depends on CPU revision and dual-channel state,
2227 * see relevant BKDG more info.
2228 *
2229 * The memory controller provides for total of only 8 CSROWs in its current
2230 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2231 * single channel or two (2) DIMMs in dual channel mode.
2232 *
2233 * The following code logic collapses the various tables for CSROW based on CPU
2234 * revision.
2235 *
2236 * Returns:
2237 * The number of PAGE_SIZE pages on the specified CSROW number it
2238 * encompasses
2239 *
2240 */
2241static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2242{
Borislav Petkov1433eb92009-10-21 13:44:36 +02002243 u32 cs_mode, nr_pages;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002244
2245 /*
2246 * The math on this doesn't look right on the surface because x/2*4 can
2247 * be simplified to x*2 but this expression makes use of the fact that
2248 * it is integral math where 1/2=0. This intermediate value becomes the
2249 * number of bits to shift the DBAM register to extract the proper CSROW
2250 * field.
2251 */
Borislav Petkov1433eb92009-10-21 13:44:36 +02002252 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002253
Borislav Petkov1433eb92009-10-21 13:44:36 +02002254 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002255
2256 /*
2257 * If dual channel then double the memory size of single channel.
2258 * Channel count is 1 or 2
2259 */
2260 nr_pages <<= (pvt->channel_count - 1);
2261
Borislav Petkov1433eb92009-10-21 13:44:36 +02002262 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002263 debugf0(" nr_pages= %u channel-count = %d\n",
2264 nr_pages, pvt->channel_count);
2265
2266 return nr_pages;
2267}
2268
2269/*
2270 * Initialize the array of csrow attribute instances, based on the values
2271 * from pci config hardware registers.
2272 */
2273static int amd64_init_csrows(struct mem_ctl_info *mci)
2274{
2275 struct csrow_info *csrow;
2276 struct amd64_pvt *pvt;
2277 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002278 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002279
2280 pvt = mci->pvt_info;
2281
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002282 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002283
2284 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2285 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2286 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2287 );
2288
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002289 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002290 csrow = &mci->csrows[i];
2291
2292 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2293 debugf1("----CSROW %d EMPTY for node %d\n", i,
2294 pvt->mc_node_id);
2295 continue;
2296 }
2297
2298 debugf1("----CSROW %d VALID for MC node %d\n",
2299 i, pvt->mc_node_id);
2300
2301 empty = 0;
2302 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2303 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2304 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2305 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2306 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2307 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2308 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2309 /* 8 bytes of resolution */
2310
2311 csrow->mtype = amd64_determine_memory_type(pvt);
2312
2313 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2314 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2315 (unsigned long)input_addr_min,
2316 (unsigned long)input_addr_max);
2317 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2318 (unsigned long)sys_addr, csrow->page_mask);
2319 debugf1(" nr_pages: %u first_page: 0x%lx "
2320 "last_page: 0x%lx\n",
2321 (unsigned)csrow->nr_pages,
2322 csrow->first_page, csrow->last_page);
2323
2324 /*
2325 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2326 */
2327 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2328 csrow->edac_mode =
2329 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2330 EDAC_S4ECD4ED : EDAC_SECDED;
2331 else
2332 csrow->edac_mode = EDAC_NONE;
2333 }
2334
2335 return empty;
2336}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002337
Borislav Petkov06724532009-09-16 13:05:46 +02002338/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302339static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002340{
Borislav Petkov06724532009-09-16 13:05:46 +02002341 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002342
Borislav Petkov06724532009-09-16 13:05:46 +02002343 for_each_online_cpu(cpu)
2344 if (amd_get_nb_id(cpu) == nid)
2345 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002346}
2347
2348/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002349static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002350{
Rusty Russellba578cb2009-11-03 14:56:35 +10302351 cpumask_var_t mask;
Borislav Petkov50542252009-12-11 18:14:40 +01002352 int cpu, nbe;
Borislav Petkov06724532009-09-16 13:05:46 +02002353 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002354
Rusty Russellba578cb2009-11-03 14:56:35 +10302355 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2356 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2357 __func__);
2358 return false;
2359 }
Borislav Petkov06724532009-09-16 13:05:46 +02002360
Rusty Russellba578cb2009-11-03 14:56:35 +10302361 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002362
Rusty Russellba578cb2009-11-03 14:56:35 +10302363 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002364
Rusty Russellba578cb2009-11-03 14:56:35 +10302365 for_each_cpu(cpu, mask) {
Borislav Petkov50542252009-12-11 18:14:40 +01002366 struct msr *reg = per_cpu_ptr(msrs, cpu);
2367 nbe = reg->l & K8_MSR_MCGCTL_NBE;
Borislav Petkov06724532009-09-16 13:05:46 +02002368
2369 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
Borislav Petkov50542252009-12-11 18:14:40 +01002370 cpu, reg->q,
Borislav Petkov06724532009-09-16 13:05:46 +02002371 (nbe ? "enabled" : "disabled"));
2372
2373 if (!nbe)
2374 goto out;
Borislav Petkov06724532009-09-16 13:05:46 +02002375 }
2376 ret = true;
2377
2378out:
Rusty Russellba578cb2009-11-03 14:56:35 +10302379 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002380 return ret;
2381}
2382
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002383static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2384{
2385 cpumask_var_t cmask;
Borislav Petkov50542252009-12-11 18:14:40 +01002386 int cpu;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002387
2388 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2389 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2390 __func__);
2391 return false;
2392 }
2393
2394 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2395
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002396 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2397
2398 for_each_cpu(cpu, cmask) {
2399
Borislav Petkov50542252009-12-11 18:14:40 +01002400 struct msr *reg = per_cpu_ptr(msrs, cpu);
2401
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002402 if (on) {
Borislav Petkov50542252009-12-11 18:14:40 +01002403 if (reg->l & K8_MSR_MCGCTL_NBE)
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002404 pvt->flags.nb_mce_enable = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002405
Borislav Petkov50542252009-12-11 18:14:40 +01002406 reg->l |= K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002407 } else {
2408 /*
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002409 * Turn off NB MCE reporting only when it was off before
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002410 */
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002411 if (!pvt->flags.nb_mce_enable)
Borislav Petkov50542252009-12-11 18:14:40 +01002412 reg->l &= ~K8_MSR_MCGCTL_NBE;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002413 }
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002414 }
2415 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2416
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002417 free_cpumask_var(cmask);
2418
2419 return 0;
2420}
2421
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002422static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2423{
2424 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002425 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2426
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002427 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002428
2429 /* turn on UECCn and CECCEn bits */
2430 pvt->old_nbctl = value & mask;
2431 pvt->nbctl_mcgctl_saved = 1;
2432
2433 value |= mask;
2434 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2435
2436 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2437 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2438 "MCGCTL!\n");
2439
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002440 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002441
2442 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2443 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2444 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2445
2446 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2447 amd64_printk(KERN_WARNING,
2448 "This node reports that DRAM ECC is "
2449 "currently Disabled; ENABLING now\n");
2450
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002451 pvt->flags.nb_ecc_prev = 0;
2452
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002453 /* Attempt to turn on DRAM ECC Enable */
2454 value |= K8_NBCFG_ECC_ENABLE;
2455 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2456
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002457 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002458
2459 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2460 amd64_printk(KERN_WARNING,
2461 "Hardware rejects Enabling DRAM ECC checking\n"
2462 "Check memory DIMM configuration\n");
2463 } else {
2464 amd64_printk(KERN_DEBUG,
2465 "Hardware accepted DRAM ECC Enable\n");
2466 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002467 } else {
2468 pvt->flags.nb_ecc_prev = 1;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002469 }
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002470
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002471 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2472 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2473 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2474
2475 pvt->ctl_error_info.nbcfg = value;
2476}
2477
2478static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2479{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002480 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2481
2482 if (!pvt->nbctl_mcgctl_saved)
2483 return;
2484
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002485 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002486 value &= ~mask;
2487 value |= pvt->old_nbctl;
2488
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002489 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2490
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002491 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2492 if (!pvt->flags.nb_ecc_prev) {
2493 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2494 value &= ~K8_NBCFG_ECC_ENABLE;
2495 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2496 }
2497
2498 /* restore the NB Enable MCGCTL bit */
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002499 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002500 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002501}
2502
Doug Thompsonf9431992009-04-27 19:46:08 +02002503/*
2504 * EDAC requires that the BIOS have ECC enabled before taking over the
2505 * processing of ECC errors. This is because the BIOS can properly initialize
2506 * the memory system completely. A command line option allows to force-enable
2507 * hardware ECC later in amd64_enable_ecc_error_reporting().
2508 */
Borislav Petkovcab4d272010-02-11 17:15:57 +01002509static const char *ecc_msg =
2510 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2511 " Either enable ECC checking or force module loading by setting "
2512 "'ecc_enable_override'.\n"
2513 " (Note that use of the override may cause unknown side effects.)\n";
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002514
Doug Thompsonf9431992009-04-27 19:46:08 +02002515static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2516{
2517 u32 value;
Borislav Petkov06724532009-09-16 13:05:46 +02002518 u8 ecc_enabled = 0;
2519 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002520
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002521 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002522
2523 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002524 if (!ecc_enabled)
Borislav Petkovcab4d272010-02-11 17:15:57 +01002525 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002526 "is currently disabled, set F3x%x[22] (%s).\n",
2527 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2528 else
2529 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
Doug Thompsonf9431992009-04-27 19:46:08 +02002530
Borislav Petkov06724532009-09-16 13:05:46 +02002531 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2532 if (!nb_mce_en)
Borislav Petkovcab4d272010-02-11 17:15:57 +01002533 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002534 "0x%08x[4] on node %d to enable.\n",
2535 MSR_IA32_MCG_CTL, pvt->mc_node_id);
Doug Thompsonf9431992009-04-27 19:46:08 +02002536
Borislav Petkov06724532009-09-16 13:05:46 +02002537 if (!ecc_enabled || !nb_mce_en) {
Doug Thompsonf9431992009-04-27 19:46:08 +02002538 if (!ecc_enable_override) {
Borislav Petkovcab4d272010-02-11 17:15:57 +01002539 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002540 return -ENODEV;
Borislav Petkovd95cf4d2010-02-24 14:49:47 +01002541 } else {
2542 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002543 }
Borislav Petkov43f5e682009-12-21 18:55:18 +01002544 }
Doug Thompsonf9431992009-04-27 19:46:08 +02002545
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002546 return 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002547}
2548
Doug Thompson7d6034d2009-04-27 20:01:01 +02002549struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2550 ARRAY_SIZE(amd64_inj_attrs) +
2551 1];
2552
2553struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2554
2555static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2556{
2557 unsigned int i = 0, j = 0;
2558
2559 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2560 sysfs_attrs[i] = amd64_dbg_attrs[i];
2561
2562 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2563 sysfs_attrs[i] = amd64_inj_attrs[j];
2564
2565 sysfs_attrs[i] = terminator;
2566
2567 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2568}
2569
2570static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2571{
2572 struct amd64_pvt *pvt = mci->pvt_info;
2573
2574 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2575 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002576
2577 if (pvt->nbcap & K8_NBCAP_SECDED)
2578 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2579
2580 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2581 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2582
2583 mci->edac_cap = amd64_determine_edac_cap(pvt);
2584 mci->mod_name = EDAC_MOD_STR;
2585 mci->mod_ver = EDAC_AMD64_VERSION;
2586 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2587 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2588 mci->ctl_page_to_phys = NULL;
2589
Doug Thompson7d6034d2009-04-27 20:01:01 +02002590 /* memory scrubber interface */
2591 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2592 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2593}
2594
Borislav Petkov395ae782010-10-01 18:38:19 +02002595static int amd64_per_family_init(struct amd64_pvt *pvt)
2596{
2597 switch (boot_cpu_data.x86) {
2598 case 0xf:
2599 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
2600 break;
2601 case 0x10:
2602 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
2603 break;
2604
2605 default:
2606 amd64_printk(KERN_ERR, "Unsupported family!\n");
2607 return -EINVAL;
2608 }
2609 return 0;
2610}
2611
Doug Thompson7d6034d2009-04-27 20:01:01 +02002612/*
2613 * Init stuff for this DRAM Controller device.
2614 *
2615 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2616 * Space feature MUST be enabled on ALL Processors prior to actually reading
2617 * from the ECS registers. Since the loading of the module can occur on any
2618 * 'core', and cores don't 'see' all the other processors ECS data when the
2619 * others are NOT enabled. Our solution is to first enable ECS access in this
2620 * routine on all processors, gather some data in a amd64_pvt structure and
2621 * later come back in a finish-setup function to perform that final
2622 * initialization. See also amd64_init_2nd_stage() for that.
2623 */
2624static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2625 int mc_type_index)
2626{
2627 struct amd64_pvt *pvt = NULL;
2628 int err = 0, ret;
2629
2630 ret = -ENOMEM;
2631 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2632 if (!pvt)
2633 goto err_exit;
2634
Borislav Petkov37da0452009-06-10 17:36:57 +02002635 pvt->mc_node_id = get_node_id(dram_f2_ctl);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002636
2637 pvt->dram_f2_ctl = dram_f2_ctl;
2638 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2639 pvt->mc_type_index = mc_type_index;
2640 pvt->ops = family_ops(mc_type_index);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002641
Borislav Petkov395ae782010-10-01 18:38:19 +02002642 ret = -EINVAL;
2643 if (amd64_per_family_init(pvt))
2644 goto err_free;
2645
Doug Thompson7d6034d2009-04-27 20:01:01 +02002646 /*
2647 * We have the dram_f2_ctl device as an argument, now go reserve its
2648 * sibling devices from the PCI system.
2649 */
2650 ret = -ENODEV;
2651 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2652 if (err)
2653 goto err_free;
2654
2655 ret = -EINVAL;
2656 err = amd64_check_ecc_enabled(pvt);
2657 if (err)
2658 goto err_put;
2659
2660 /*
2661 * Key operation here: setup of HW prior to performing ops on it. Some
2662 * setup is required to access ECS data. After this is performed, the
2663 * 'teardown' function must be called upon error and normal exit paths.
2664 */
2665 if (boot_cpu_data.x86 >= 0x10)
2666 amd64_setup(pvt);
2667
2668 /*
2669 * Save the pointer to the private data for use in 2nd initialization
2670 * stage
2671 */
2672 pvt_lookup[pvt->mc_node_id] = pvt;
2673
2674 return 0;
2675
2676err_put:
2677 amd64_free_mc_sibling_devices(pvt);
2678
2679err_free:
2680 kfree(pvt);
2681
2682err_exit:
2683 return ret;
2684}
2685
2686/*
2687 * This is the finishing stage of the init code. Needs to be performed after all
2688 * MCs' hardware have been prepped for accessing extended config space.
2689 */
2690static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2691{
2692 int node_id = pvt->mc_node_id;
2693 struct mem_ctl_info *mci;
Andrew Morton18ba54a2009-12-07 19:04:23 +01002694 int ret = -ENODEV;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002695
2696 amd64_read_mc_registers(pvt);
2697
Doug Thompson7d6034d2009-04-27 20:01:01 +02002698 /*
2699 * We need to determine how many memory channels there are. Then use
2700 * that information for calculating the size of the dynamic instance
2701 * tables in the 'mci' structure
2702 */
2703 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2704 if (pvt->channel_count < 0)
2705 goto err_exit;
2706
2707 ret = -ENOMEM;
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002708 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002709 if (!mci)
2710 goto err_exit;
2711
2712 mci->pvt_info = pvt;
2713
2714 mci->dev = &pvt->dram_f2_ctl->dev;
2715 amd64_setup_mci_misc_attributes(mci);
2716
2717 if (amd64_init_csrows(mci))
2718 mci->edac_cap = EDAC_FLAG_NONE;
2719
2720 amd64_enable_ecc_error_reporting(mci);
2721 amd64_set_mc_sysfs_attributes(mci);
2722
2723 ret = -ENODEV;
2724 if (edac_mc_add_mc(mci)) {
2725 debugf1("failed edac_mc_add_mc()\n");
2726 goto err_add_mc;
2727 }
2728
2729 mci_lookup[node_id] = mci;
2730 pvt_lookup[node_id] = NULL;
Borislav Petkov549d0422009-07-24 13:51:42 +02002731
2732 /* register stuff with EDAC MCE */
2733 if (report_gart_errors)
2734 amd_report_gart_errors(true);
2735
2736 amd_register_ecc_decoder(amd64_decode_bus_error);
2737
Doug Thompson7d6034d2009-04-27 20:01:01 +02002738 return 0;
2739
2740err_add_mc:
2741 edac_mc_free(mci);
2742
2743err_exit:
2744 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2745
2746 amd64_restore_ecc_error_reporting(pvt);
2747
2748 if (boot_cpu_data.x86 > 0xf)
2749 amd64_teardown(pvt);
2750
2751 amd64_free_mc_sibling_devices(pvt);
2752
2753 kfree(pvt_lookup[pvt->mc_node_id]);
2754 pvt_lookup[node_id] = NULL;
2755
2756 return ret;
2757}
2758
2759
2760static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2761 const struct pci_device_id *mc_type)
2762{
2763 int ret = 0;
2764
Borislav Petkov37da0452009-06-10 17:36:57 +02002765 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
Doug Thompson7d6034d2009-04-27 20:01:01 +02002766 get_amd_family_name(mc_type->driver_data));
2767
2768 ret = pci_enable_device(pdev);
2769 if (ret < 0)
2770 ret = -EIO;
2771 else
2772 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2773
2774 if (ret < 0)
2775 debugf0("ret=%d\n", ret);
2776
2777 return ret;
2778}
2779
2780static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2781{
2782 struct mem_ctl_info *mci;
2783 struct amd64_pvt *pvt;
2784
2785 /* Remove from EDAC CORE tracking list */
2786 mci = edac_mc_del_mc(&pdev->dev);
2787 if (!mci)
2788 return;
2789
2790 pvt = mci->pvt_info;
2791
2792 amd64_restore_ecc_error_reporting(pvt);
2793
2794 if (boot_cpu_data.x86 > 0xf)
2795 amd64_teardown(pvt);
2796
2797 amd64_free_mc_sibling_devices(pvt);
2798
Borislav Petkov549d0422009-07-24 13:51:42 +02002799 /* unregister from EDAC MCE */
2800 amd_report_gart_errors(false);
2801 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2802
Doug Thompson7d6034d2009-04-27 20:01:01 +02002803 /* Free the EDAC CORE resources */
Borislav Petkov8f68ed92009-12-21 15:15:59 +01002804 mci->pvt_info = NULL;
2805 mci_lookup[pvt->mc_node_id] = NULL;
2806
2807 kfree(pvt);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002808 edac_mc_free(mci);
2809}
2810
2811/*
2812 * This table is part of the interface for loading drivers for PCI devices. The
2813 * PCI core identifies what devices are on a system during boot, and then
2814 * inquiry this table to see if this driver is for a given device found.
2815 */
2816static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2817 {
2818 .vendor = PCI_VENDOR_ID_AMD,
2819 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2820 .subvendor = PCI_ANY_ID,
2821 .subdevice = PCI_ANY_ID,
2822 .class = 0,
2823 .class_mask = 0,
2824 .driver_data = K8_CPUS
2825 },
2826 {
2827 .vendor = PCI_VENDOR_ID_AMD,
2828 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2829 .subvendor = PCI_ANY_ID,
2830 .subdevice = PCI_ANY_ID,
2831 .class = 0,
2832 .class_mask = 0,
2833 .driver_data = F10_CPUS
2834 },
Doug Thompson7d6034d2009-04-27 20:01:01 +02002835 {0, }
2836};
2837MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2838
2839static struct pci_driver amd64_pci_driver = {
2840 .name = EDAC_MOD_STR,
2841 .probe = amd64_init_one_instance,
2842 .remove = __devexit_p(amd64_remove_one_instance),
2843 .id_table = amd64_pci_table,
2844};
2845
2846static void amd64_setup_pci_device(void)
2847{
2848 struct mem_ctl_info *mci;
2849 struct amd64_pvt *pvt;
2850
2851 if (amd64_ctl_pci)
2852 return;
2853
2854 mci = mci_lookup[0];
2855 if (mci) {
2856
2857 pvt = mci->pvt_info;
2858 amd64_ctl_pci =
2859 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2860 EDAC_MOD_STR);
2861
2862 if (!amd64_ctl_pci) {
2863 pr_warning("%s(): Unable to create PCI control\n",
2864 __func__);
2865
2866 pr_warning("%s(): PCI error report via EDAC not set\n",
2867 __func__);
2868 }
2869 }
2870}
2871
2872static int __init amd64_edac_init(void)
2873{
2874 int nb, err = -ENODEV;
Borislav Petkov56b34b92009-12-21 18:13:01 +01002875 bool load_ok = false;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002876
2877 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2878
2879 opstate_init();
2880
Hans Rosenfeld9653a5c2010-10-29 17:14:31 +02002881 if (amd_cache_northbridges() < 0)
Borislav Petkov56b34b92009-12-21 18:13:01 +01002882 goto err_ret;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002883
Borislav Petkov50542252009-12-11 18:14:40 +01002884 msrs = msrs_alloc();
Borislav Petkov56b34b92009-12-21 18:13:01 +01002885 if (!msrs)
2886 goto err_ret;
Borislav Petkov50542252009-12-11 18:14:40 +01002887
Doug Thompson7d6034d2009-04-27 20:01:01 +02002888 err = pci_register_driver(&amd64_pci_driver);
2889 if (err)
Borislav Petkov56b34b92009-12-21 18:13:01 +01002890 goto err_pci;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002891
2892 /*
2893 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2894 * amd64_pvt structs. These will be used in the 2nd stage init function
2895 * to finish initialization of the MC instances.
2896 */
Borislav Petkov56b34b92009-12-21 18:13:01 +01002897 err = -ENODEV;
Hans Rosenfeld9653a5c2010-10-29 17:14:31 +02002898 for (nb = 0; nb < amd_nb_num(); nb++) {
Doug Thompson7d6034d2009-04-27 20:01:01 +02002899 if (!pvt_lookup[nb])
2900 continue;
2901
2902 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2903 if (err)
Borislav Petkov37da0452009-06-10 17:36:57 +02002904 goto err_2nd_stage;
Borislav Petkov56b34b92009-12-21 18:13:01 +01002905
2906 load_ok = true;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002907 }
2908
Borislav Petkov56b34b92009-12-21 18:13:01 +01002909 if (load_ok) {
2910 amd64_setup_pci_device();
2911 return 0;
2912 }
Doug Thompson7d6034d2009-04-27 20:01:01 +02002913
Borislav Petkov37da0452009-06-10 17:36:57 +02002914err_2nd_stage:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002915 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov56b34b92009-12-21 18:13:01 +01002916err_pci:
2917 msrs_free(msrs);
2918 msrs = NULL;
2919err_ret:
Doug Thompson7d6034d2009-04-27 20:01:01 +02002920 return err;
2921}
2922
2923static void __exit amd64_edac_exit(void)
2924{
2925 if (amd64_ctl_pci)
2926 edac_pci_release_generic_ctl(amd64_ctl_pci);
2927
2928 pci_unregister_driver(&amd64_pci_driver);
Borislav Petkov50542252009-12-11 18:14:40 +01002929
2930 msrs_free(msrs);
2931 msrs = NULL;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002932}
2933
2934module_init(amd64_edac_init);
2935module_exit(amd64_edac_exit);
2936
2937MODULE_LICENSE("GPL");
2938MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2939 "Dave Peterson, Thayne Harbaugh");
2940MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2941 EDAC_AMD64_VERSION);
2942
2943module_param(edac_op_state, int, 0444);
2944MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");