Rafael J. Wysocki | 95c513e | 2018-03-16 13:51:01 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * ACPI Time and Alarm (TAD) Device Driver |
| 4 | * |
| 5 | * Copyright (C) 2018 Intel Corporation |
| 6 | * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> |
| 7 | * |
| 8 | * This driver is based on Section 9.18 of the ACPI 6.2 specification revision. |
| 9 | * |
| 10 | * It only supports the system wakeup capabilities of the TAD. |
| 11 | * |
| 12 | * Provided are sysfs attributes, available under the TAD platform device, |
| 13 | * allowing user space to manage the AC and DC wakeup timers of the TAD: |
| 14 | * set and read their values, set and check their expire timer wake policies, |
| 15 | * check and clear their status and check the capabilities of the TAD reported |
| 16 | * by AML. The DC timer attributes are only present if the TAD supports a |
| 17 | * separate DC alarm timer. |
| 18 | * |
| 19 | * The wakeup events handling and power management of the TAD is expected to |
| 20 | * be taken care of by the ACPI PM domain attached to its platform device. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/acpi.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/platform_device.h> |
| 27 | #include <linux/pm_runtime.h> |
| 28 | #include <linux/suspend.h> |
| 29 | |
| 30 | MODULE_LICENSE("GPL v2"); |
| 31 | MODULE_AUTHOR("Rafael J. Wysocki"); |
| 32 | |
| 33 | /* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */ |
| 34 | #define ACPI_TAD_AC_WAKE BIT(0) |
| 35 | #define ACPI_TAD_DC_WAKE BIT(1) |
| 36 | #define ACPI_TAD_RT BIT(2) |
| 37 | #define ACPI_TAD_RT_IN_MS BIT(3) |
| 38 | #define ACPI_TAD_S4_S5__GWS BIT(4) |
| 39 | #define ACPI_TAD_AC_S4_WAKE BIT(5) |
| 40 | #define ACPI_TAD_AC_S5_WAKE BIT(6) |
| 41 | #define ACPI_TAD_DC_S4_WAKE BIT(7) |
| 42 | #define ACPI_TAD_DC_S5_WAKE BIT(8) |
| 43 | |
| 44 | /* ACPI TAD alarm timer selection */ |
| 45 | #define ACPI_TAD_AC_TIMER (u32)0 |
| 46 | #define ACPI_TAD_DC_TIMER (u32)1 |
| 47 | |
| 48 | /* Special value for disabled timer or expired timer wake policy. */ |
| 49 | #define ACPI_TAD_WAKE_DISABLED (~(u32)0) |
| 50 | |
| 51 | struct acpi_tad_driver_data { |
| 52 | u32 capabilities; |
| 53 | }; |
| 54 | |
| 55 | static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id, |
| 56 | u32 value) |
| 57 | { |
| 58 | acpi_handle handle = ACPI_HANDLE(dev); |
| 59 | union acpi_object args[] = { |
| 60 | { .type = ACPI_TYPE_INTEGER, }, |
| 61 | { .type = ACPI_TYPE_INTEGER, }, |
| 62 | }; |
| 63 | struct acpi_object_list arg_list = { |
| 64 | .pointer = args, |
| 65 | .count = ARRAY_SIZE(args), |
| 66 | }; |
| 67 | unsigned long long retval; |
| 68 | acpi_status status; |
| 69 | |
| 70 | args[0].integer.value = timer_id; |
| 71 | args[1].integer.value = value; |
| 72 | |
| 73 | pm_runtime_get_sync(dev); |
| 74 | |
| 75 | status = acpi_evaluate_integer(handle, method, &arg_list, &retval); |
| 76 | |
| 77 | pm_runtime_put_sync(dev); |
| 78 | |
| 79 | if (ACPI_FAILURE(status) || retval) |
| 80 | return -EIO; |
| 81 | |
| 82 | return 0; |
| 83 | } |
| 84 | |
| 85 | static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method, |
| 86 | u32 timer_id, const char *specval) |
| 87 | { |
| 88 | u32 value; |
| 89 | |
| 90 | if (sysfs_streq(buf, specval)) { |
| 91 | value = ACPI_TAD_WAKE_DISABLED; |
| 92 | } else { |
| 93 | int ret = kstrtou32(buf, 0, &value); |
| 94 | |
| 95 | if (ret) |
| 96 | return ret; |
| 97 | |
| 98 | if (value == ACPI_TAD_WAKE_DISABLED) |
| 99 | return -EINVAL; |
| 100 | } |
| 101 | |
| 102 | return acpi_tad_wake_set(dev, method, timer_id, value); |
| 103 | } |
| 104 | |
| 105 | static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method, |
| 106 | u32 timer_id, const char *specval) |
| 107 | { |
| 108 | acpi_handle handle = ACPI_HANDLE(dev); |
| 109 | union acpi_object args[] = { |
| 110 | { .type = ACPI_TYPE_INTEGER, }, |
| 111 | }; |
| 112 | struct acpi_object_list arg_list = { |
| 113 | .pointer = args, |
| 114 | .count = ARRAY_SIZE(args), |
| 115 | }; |
| 116 | unsigned long long retval; |
| 117 | acpi_status status; |
| 118 | |
| 119 | args[0].integer.value = timer_id; |
| 120 | |
| 121 | pm_runtime_get_sync(dev); |
| 122 | |
| 123 | status = acpi_evaluate_integer(handle, method, &arg_list, &retval); |
| 124 | |
| 125 | pm_runtime_put_sync(dev); |
| 126 | |
| 127 | if (ACPI_FAILURE(status)) |
| 128 | return -EIO; |
| 129 | |
| 130 | if ((u32)retval == ACPI_TAD_WAKE_DISABLED) |
| 131 | return sprintf(buf, "%s\n", specval); |
| 132 | |
| 133 | return sprintf(buf, "%u\n", (u32)retval); |
| 134 | } |
| 135 | |
| 136 | static const char *alarm_specval = "disabled"; |
| 137 | |
| 138 | static int acpi_tad_alarm_write(struct device *dev, const char *buf, |
| 139 | u32 timer_id) |
| 140 | { |
| 141 | return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval); |
| 142 | } |
| 143 | |
| 144 | static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id) |
| 145 | { |
| 146 | return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval); |
| 147 | } |
| 148 | |
| 149 | static const char *policy_specval = "never"; |
| 150 | |
| 151 | static int acpi_tad_policy_write(struct device *dev, const char *buf, |
| 152 | u32 timer_id) |
| 153 | { |
| 154 | return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval); |
| 155 | } |
| 156 | |
| 157 | static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id) |
| 158 | { |
| 159 | return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval); |
| 160 | } |
| 161 | |
| 162 | static int acpi_tad_clear_status(struct device *dev, u32 timer_id) |
| 163 | { |
| 164 | acpi_handle handle = ACPI_HANDLE(dev); |
| 165 | union acpi_object args[] = { |
| 166 | { .type = ACPI_TYPE_INTEGER, }, |
| 167 | }; |
| 168 | struct acpi_object_list arg_list = { |
| 169 | .pointer = args, |
| 170 | .count = ARRAY_SIZE(args), |
| 171 | }; |
| 172 | unsigned long long retval; |
| 173 | acpi_status status; |
| 174 | |
| 175 | args[0].integer.value = timer_id; |
| 176 | |
| 177 | pm_runtime_get_sync(dev); |
| 178 | |
| 179 | status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval); |
| 180 | |
| 181 | pm_runtime_put_sync(dev); |
| 182 | |
| 183 | if (ACPI_FAILURE(status) || retval) |
| 184 | return -EIO; |
| 185 | |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id) |
| 190 | { |
| 191 | int ret, value; |
| 192 | |
| 193 | ret = kstrtoint(buf, 0, &value); |
| 194 | if (ret) |
| 195 | return ret; |
| 196 | |
| 197 | if (value) |
| 198 | return -EINVAL; |
| 199 | |
| 200 | return acpi_tad_clear_status(dev, timer_id); |
| 201 | } |
| 202 | |
| 203 | static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id) |
| 204 | { |
| 205 | acpi_handle handle = ACPI_HANDLE(dev); |
| 206 | union acpi_object args[] = { |
| 207 | { .type = ACPI_TYPE_INTEGER, }, |
| 208 | }; |
| 209 | struct acpi_object_list arg_list = { |
| 210 | .pointer = args, |
| 211 | .count = ARRAY_SIZE(args), |
| 212 | }; |
| 213 | unsigned long long retval; |
| 214 | acpi_status status; |
| 215 | |
| 216 | args[0].integer.value = timer_id; |
| 217 | |
| 218 | pm_runtime_get_sync(dev); |
| 219 | |
| 220 | status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval); |
| 221 | |
| 222 | pm_runtime_put_sync(dev); |
| 223 | |
| 224 | if (ACPI_FAILURE(status)) |
| 225 | return -EIO; |
| 226 | |
| 227 | return sprintf(buf, "0x%02X\n", (u32)retval); |
| 228 | } |
| 229 | |
| 230 | static ssize_t caps_show(struct device *dev, struct device_attribute *attr, |
| 231 | char *buf) |
| 232 | { |
| 233 | struct acpi_tad_driver_data *dd = dev_get_drvdata(dev); |
| 234 | |
| 235 | return sprintf(buf, "0x%02X\n", dd->capabilities); |
| 236 | } |
| 237 | |
| 238 | static DEVICE_ATTR_RO(caps); |
| 239 | |
| 240 | static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr, |
| 241 | const char *buf, size_t count) |
| 242 | { |
| 243 | int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER); |
| 244 | |
| 245 | return ret ? ret : count; |
| 246 | } |
| 247 | |
| 248 | static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr, |
| 249 | char *buf) |
| 250 | { |
| 251 | return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER); |
| 252 | } |
| 253 | |
| 254 | static DEVICE_ATTR(ac_alarm, S_IRUSR | S_IWUSR, ac_alarm_show, ac_alarm_store); |
| 255 | |
| 256 | static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr, |
| 257 | const char *buf, size_t count) |
| 258 | { |
| 259 | int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER); |
| 260 | |
| 261 | return ret ? ret : count; |
| 262 | } |
| 263 | |
| 264 | static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr, |
| 265 | char *buf) |
| 266 | { |
| 267 | return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER); |
| 268 | } |
| 269 | |
| 270 | static DEVICE_ATTR(ac_policy, S_IRUSR | S_IWUSR, ac_policy_show, ac_policy_store); |
| 271 | |
| 272 | static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr, |
| 273 | const char *buf, size_t count) |
| 274 | { |
| 275 | int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER); |
| 276 | |
| 277 | return ret ? ret : count; |
| 278 | } |
| 279 | |
| 280 | static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr, |
| 281 | char *buf) |
| 282 | { |
| 283 | return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER); |
| 284 | } |
| 285 | |
| 286 | static DEVICE_ATTR(ac_status, S_IRUSR | S_IWUSR, ac_status_show, ac_status_store); |
| 287 | |
| 288 | static struct attribute *acpi_tad_attrs[] = { |
| 289 | &dev_attr_caps.attr, |
| 290 | &dev_attr_ac_alarm.attr, |
| 291 | &dev_attr_ac_policy.attr, |
| 292 | &dev_attr_ac_status.attr, |
| 293 | NULL, |
| 294 | }; |
| 295 | static const struct attribute_group acpi_tad_attr_group = { |
| 296 | .attrs = acpi_tad_attrs, |
| 297 | }; |
| 298 | |
| 299 | static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr, |
| 300 | const char *buf, size_t count) |
| 301 | { |
| 302 | int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER); |
| 303 | |
| 304 | return ret ? ret : count; |
| 305 | } |
| 306 | |
| 307 | static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr, |
| 308 | char *buf) |
| 309 | { |
| 310 | return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER); |
| 311 | } |
| 312 | |
| 313 | static DEVICE_ATTR(dc_alarm, S_IRUSR | S_IWUSR, dc_alarm_show, dc_alarm_store); |
| 314 | |
| 315 | static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr, |
| 316 | const char *buf, size_t count) |
| 317 | { |
| 318 | int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER); |
| 319 | |
| 320 | return ret ? ret : count; |
| 321 | } |
| 322 | |
| 323 | static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr, |
| 324 | char *buf) |
| 325 | { |
| 326 | return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER); |
| 327 | } |
| 328 | |
| 329 | static DEVICE_ATTR(dc_policy, S_IRUSR | S_IWUSR, dc_policy_show, dc_policy_store); |
| 330 | |
| 331 | static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr, |
| 332 | const char *buf, size_t count) |
| 333 | { |
| 334 | int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER); |
| 335 | |
| 336 | return ret ? ret : count; |
| 337 | } |
| 338 | |
| 339 | static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr, |
| 340 | char *buf) |
| 341 | { |
| 342 | return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER); |
| 343 | } |
| 344 | |
| 345 | static DEVICE_ATTR(dc_status, S_IRUSR | S_IWUSR, dc_status_show, dc_status_store); |
| 346 | |
| 347 | static struct attribute *acpi_tad_dc_attrs[] = { |
| 348 | &dev_attr_dc_alarm.attr, |
| 349 | &dev_attr_dc_policy.attr, |
| 350 | &dev_attr_dc_status.attr, |
| 351 | NULL, |
| 352 | }; |
| 353 | static const struct attribute_group acpi_tad_dc_attr_group = { |
| 354 | .attrs = acpi_tad_dc_attrs, |
| 355 | }; |
| 356 | |
| 357 | static int acpi_tad_disable_timer(struct device *dev, u32 timer_id) |
| 358 | { |
| 359 | return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED); |
| 360 | } |
| 361 | |
| 362 | static int acpi_tad_remove(struct platform_device *pdev) |
| 363 | { |
| 364 | struct device *dev = &pdev->dev; |
| 365 | struct acpi_tad_driver_data *dd = dev_get_drvdata(dev); |
| 366 | |
| 367 | device_init_wakeup(dev, false); |
| 368 | |
| 369 | pm_runtime_get_sync(dev); |
| 370 | |
| 371 | if (dd->capabilities & ACPI_TAD_DC_WAKE) |
| 372 | sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group); |
| 373 | |
| 374 | sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group); |
| 375 | |
| 376 | acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER); |
| 377 | acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER); |
| 378 | if (dd->capabilities & ACPI_TAD_DC_WAKE) { |
| 379 | acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER); |
| 380 | acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER); |
| 381 | } |
| 382 | |
| 383 | pm_runtime_put_sync(dev); |
| 384 | pm_runtime_disable(dev); |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | static int acpi_tad_probe(struct platform_device *pdev) |
| 389 | { |
| 390 | struct device *dev = &pdev->dev; |
| 391 | acpi_handle handle = ACPI_HANDLE(dev); |
| 392 | struct acpi_tad_driver_data *dd; |
| 393 | acpi_status status; |
| 394 | unsigned long long caps; |
| 395 | int ret; |
| 396 | |
| 397 | /* |
| 398 | * Initialization failure messages are mostly about firmware issues, so |
| 399 | * print them at the "info" level. |
| 400 | */ |
| 401 | status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps); |
| 402 | if (ACPI_FAILURE(status)) { |
| 403 | dev_info(dev, "Unable to get capabilities\n"); |
| 404 | return -ENODEV; |
| 405 | } |
| 406 | |
| 407 | if (!(caps & ACPI_TAD_AC_WAKE)) { |
| 408 | dev_info(dev, "Unsupported capabilities\n"); |
| 409 | return -ENODEV; |
| 410 | } |
| 411 | |
| 412 | if (!acpi_has_method(handle, "_PRW")) { |
| 413 | dev_info(dev, "Missing _PRW\n"); |
| 414 | return -ENODEV; |
| 415 | } |
| 416 | |
| 417 | dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL); |
| 418 | if (!dd) |
| 419 | return -ENOMEM; |
| 420 | |
| 421 | dd->capabilities = caps; |
| 422 | dev_set_drvdata(dev, dd); |
| 423 | |
| 424 | /* |
| 425 | * Assume that the ACPI PM domain has been attached to the device and |
| 426 | * simply enable system wakeup and runtime PM and put the device into |
| 427 | * runtime suspend. Everything else should be taken care of by the ACPI |
| 428 | * PM domain callbacks. |
| 429 | */ |
| 430 | device_init_wakeup(dev, true); |
| 431 | dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND | |
| 432 | DPM_FLAG_LEAVE_SUSPENDED); |
| 433 | /* |
| 434 | * The platform bus type layer tells the ACPI PM domain powers up the |
| 435 | * device, so set the runtime PM status of it to "active". |
| 436 | */ |
| 437 | pm_runtime_set_active(dev); |
| 438 | pm_runtime_enable(dev); |
| 439 | pm_runtime_suspend(dev); |
| 440 | |
| 441 | ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group); |
| 442 | if (ret) |
| 443 | goto fail; |
| 444 | |
| 445 | if (caps & ACPI_TAD_DC_WAKE) { |
| 446 | ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group); |
| 447 | if (ret) |
| 448 | goto fail; |
| 449 | } |
| 450 | |
| 451 | return 0; |
| 452 | |
| 453 | fail: |
| 454 | acpi_tad_remove(pdev); |
| 455 | return ret; |
| 456 | } |
| 457 | |
| 458 | static const struct acpi_device_id acpi_tad_ids[] = { |
| 459 | {"ACPI000E", 0}, |
| 460 | {} |
| 461 | }; |
| 462 | |
| 463 | static struct platform_driver acpi_tad_driver = { |
| 464 | .driver = { |
| 465 | .name = "acpi-tad", |
| 466 | .acpi_match_table = acpi_tad_ids, |
| 467 | }, |
| 468 | .probe = acpi_tad_probe, |
| 469 | .remove = acpi_tad_remove, |
| 470 | }; |
| 471 | MODULE_DEVICE_TABLE(acpi, acpi_tad_ids); |
| 472 | |
| 473 | module_platform_driver(acpi_tad_driver); |