Matti Vaittinen | 33d599f | 2020-05-08 18:40:43 +0300 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * KUnit test for the linear_ranges helper. |
| 4 | * |
| 5 | * Copyright (C) 2020, ROHM Semiconductors. |
| 6 | * Author: Matti Vaittinen <matti.vaittien@fi.rohmeurope.com> |
| 7 | */ |
| 8 | #include <kunit/test.h> |
| 9 | |
| 10 | #include <linux/linear_range.h> |
| 11 | |
| 12 | /* First things first. I deeply dislike unit-tests. I have seen all the hell |
| 13 | * breaking loose when people who think the unit tests are "the silver bullet" |
| 14 | * to kill bugs get to decide how a company should implement testing strategy... |
| 15 | * |
| 16 | * Believe me, it may get _really_ ridiculous. It is tempting to think that |
| 17 | * walking through all the possible execution branches will nail down 100% of |
| 18 | * bugs. This may lead to ideas about demands to get certain % of "test |
| 19 | * coverage" - measured as line coverage. And that is one of the worst things |
| 20 | * you can do. |
| 21 | * |
| 22 | * Ask people to provide line coverage and they do. I've seen clever tools |
| 23 | * which generate test cases to test the existing functions - and by default |
| 24 | * these tools expect code to be correct and just generate checks which are |
| 25 | * passing when ran against current code-base. Run this generator and you'll get |
| 26 | * tests that do not test code is correct but just verify nothing changes. |
| 27 | * Problem is that testing working code is pointless. And if it is not |
| 28 | * working, your test must not assume it is working. You won't catch any bugs |
| 29 | * by such tests. What you can do is to generate a huge amount of tests. |
| 30 | * Especially if you were are asked to proivde 100% line-coverage x_x. So what |
| 31 | * does these tests - which are not finding any bugs now - do? |
| 32 | * |
| 33 | * They add inertia to every future development. I think it was Terry Pratchet |
| 34 | * who wrote someone having same impact as thick syrup has to chronometre. |
| 35 | * Excessive amount of unit-tests have this effect to development. If you do |
| 36 | * actually find _any_ bug from code in such environment and try fixing it... |
| 37 | * ...chances are you also need to fix the test cases. In sunny day you fix one |
| 38 | * test. But I've done refactoring which resulted 500+ broken tests (which had |
| 39 | * really zero value other than proving to managers that we do do "quality")... |
| 40 | * |
| 41 | * After this being said - there are situations where UTs can be handy. If you |
| 42 | * have algorithms which take some input and should produce output - then you |
| 43 | * can implement few, carefully selected simple UT-cases which test this. I've |
| 44 | * previously used this for example for netlink and device-tree data parsing |
| 45 | * functions. Feed some data examples to functions and verify the output is as |
| 46 | * expected. I am not covering all the cases but I will see the logic should be |
| 47 | * working. |
| 48 | * |
| 49 | * Here we also do some minor testing. I don't want to go through all branches |
| 50 | * or test more or less obvious things - but I want to see the main logic is |
| 51 | * working. And I definitely don't want to add 500+ test cases that break when |
| 52 | * some simple fix is done x_x. So - let's only add few, well selected tests |
| 53 | * which ensure as much logic is good as possible. |
| 54 | */ |
| 55 | |
| 56 | /* |
| 57 | * Test Range 1: |
| 58 | * selectors: 2 3 4 5 6 |
| 59 | * values (5): 10 20 30 40 50 |
| 60 | * |
| 61 | * Test Range 2: |
| 62 | * selectors: 7 8 9 10 |
| 63 | * values (4): 100 150 200 250 |
| 64 | */ |
| 65 | |
| 66 | #define RANGE1_MIN 10 |
| 67 | #define RANGE1_MIN_SEL 2 |
| 68 | #define RANGE1_STEP 10 |
| 69 | |
| 70 | /* 2, 3, 4, 5, 6 */ |
| 71 | static const unsigned int range1_sels[] = { RANGE1_MIN_SEL, RANGE1_MIN_SEL + 1, |
| 72 | RANGE1_MIN_SEL + 2, |
| 73 | RANGE1_MIN_SEL + 3, |
| 74 | RANGE1_MIN_SEL + 4 }; |
| 75 | /* 10, 20, 30, 40, 50 */ |
| 76 | static const unsigned int range1_vals[] = { RANGE1_MIN, RANGE1_MIN + |
| 77 | RANGE1_STEP, |
| 78 | RANGE1_MIN + RANGE1_STEP * 2, |
| 79 | RANGE1_MIN + RANGE1_STEP * 3, |
| 80 | RANGE1_MIN + RANGE1_STEP * 4 }; |
| 81 | |
| 82 | #define RANGE2_MIN 100 |
| 83 | #define RANGE2_MIN_SEL 7 |
| 84 | #define RANGE2_STEP 50 |
| 85 | |
| 86 | /* 7, 8, 9, 10 */ |
| 87 | static const unsigned int range2_sels[] = { RANGE2_MIN_SEL, RANGE2_MIN_SEL + 1, |
| 88 | RANGE2_MIN_SEL + 2, |
| 89 | RANGE2_MIN_SEL + 3 }; |
| 90 | /* 100, 150, 200, 250 */ |
| 91 | static const unsigned int range2_vals[] = { RANGE2_MIN, RANGE2_MIN + |
| 92 | RANGE2_STEP, |
| 93 | RANGE2_MIN + RANGE2_STEP * 2, |
| 94 | RANGE2_MIN + RANGE2_STEP * 3 }; |
| 95 | |
| 96 | #define RANGE1_NUM_VALS (ARRAY_SIZE(range1_vals)) |
| 97 | #define RANGE2_NUM_VALS (ARRAY_SIZE(range2_vals)) |
| 98 | #define RANGE_NUM_VALS (RANGE1_NUM_VALS + RANGE2_NUM_VALS) |
| 99 | |
| 100 | #define RANGE1_MAX_SEL (RANGE1_MIN_SEL + RANGE1_NUM_VALS - 1) |
| 101 | #define RANGE1_MAX_VAL (range1_vals[RANGE1_NUM_VALS - 1]) |
| 102 | |
| 103 | #define RANGE2_MAX_SEL (RANGE2_MIN_SEL + RANGE2_NUM_VALS - 1) |
| 104 | #define RANGE2_MAX_VAL (range2_vals[RANGE2_NUM_VALS - 1]) |
| 105 | |
| 106 | #define SMALLEST_SEL RANGE1_MIN_SEL |
| 107 | #define SMALLEST_VAL RANGE1_MIN |
| 108 | |
| 109 | static struct linear_range testr[] = { |
| 110 | { |
| 111 | .min = RANGE1_MIN, |
| 112 | .min_sel = RANGE1_MIN_SEL, |
| 113 | .max_sel = RANGE1_MAX_SEL, |
| 114 | .step = RANGE1_STEP, |
| 115 | }, { |
| 116 | .min = RANGE2_MIN, |
| 117 | .min_sel = RANGE2_MIN_SEL, |
| 118 | .max_sel = RANGE2_MAX_SEL, |
| 119 | .step = RANGE2_STEP |
| 120 | }, |
| 121 | }; |
| 122 | |
| 123 | static void range_test_get_value(struct kunit *test) |
| 124 | { |
| 125 | int ret, i; |
| 126 | unsigned int sel, val; |
| 127 | |
| 128 | for (i = 0; i < RANGE1_NUM_VALS; i++) { |
| 129 | sel = range1_sels[i]; |
| 130 | ret = linear_range_get_value_array(&testr[0], 2, sel, &val); |
| 131 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 132 | KUNIT_EXPECT_EQ(test, val, range1_vals[i]); |
| 133 | } |
| 134 | for (i = 0; i < RANGE2_NUM_VALS; i++) { |
| 135 | sel = range2_sels[i]; |
| 136 | ret = linear_range_get_value_array(&testr[0], 2, sel, &val); |
| 137 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 138 | KUNIT_EXPECT_EQ(test, val, range2_vals[i]); |
| 139 | } |
| 140 | ret = linear_range_get_value_array(&testr[0], 2, sel + 1, &val); |
| 141 | KUNIT_EXPECT_NE(test, 0, ret); |
| 142 | } |
| 143 | |
| 144 | static void range_test_get_selector_high(struct kunit *test) |
| 145 | { |
| 146 | int ret, i; |
| 147 | unsigned int sel; |
| 148 | bool found; |
| 149 | |
| 150 | for (i = 0; i < RANGE1_NUM_VALS; i++) { |
| 151 | ret = linear_range_get_selector_high(&testr[0], range1_vals[i], |
| 152 | &sel, &found); |
| 153 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 154 | KUNIT_EXPECT_EQ(test, sel, range1_sels[i]); |
| 155 | KUNIT_EXPECT_TRUE(test, found); |
| 156 | } |
| 157 | |
| 158 | ret = linear_range_get_selector_high(&testr[0], RANGE1_MAX_VAL + 1, |
| 159 | &sel, &found); |
| 160 | KUNIT_EXPECT_LE(test, ret, 0); |
| 161 | |
| 162 | ret = linear_range_get_selector_high(&testr[0], RANGE1_MIN - 1, |
| 163 | &sel, &found); |
| 164 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 165 | KUNIT_EXPECT_FALSE(test, found); |
| 166 | KUNIT_EXPECT_EQ(test, sel, range1_sels[0]); |
| 167 | } |
| 168 | |
| 169 | static void range_test_get_value_amount(struct kunit *test) |
| 170 | { |
| 171 | int ret; |
| 172 | |
| 173 | ret = linear_range_values_in_range_array(&testr[0], 2); |
| 174 | KUNIT_EXPECT_EQ(test, (int)RANGE_NUM_VALS, ret); |
| 175 | } |
| 176 | |
| 177 | static void range_test_get_selector_low(struct kunit *test) |
| 178 | { |
| 179 | int i, ret; |
| 180 | unsigned int sel; |
| 181 | bool found; |
| 182 | |
| 183 | for (i = 0; i < RANGE1_NUM_VALS; i++) { |
| 184 | ret = linear_range_get_selector_low_array(&testr[0], 2, |
| 185 | range1_vals[i], &sel, |
| 186 | &found); |
| 187 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 188 | KUNIT_EXPECT_EQ(test, sel, range1_sels[i]); |
| 189 | KUNIT_EXPECT_TRUE(test, found); |
| 190 | } |
| 191 | for (i = 0; i < RANGE2_NUM_VALS; i++) { |
| 192 | ret = linear_range_get_selector_low_array(&testr[0], 2, |
| 193 | range2_vals[i], &sel, |
| 194 | &found); |
| 195 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 196 | KUNIT_EXPECT_EQ(test, sel, range2_sels[i]); |
| 197 | KUNIT_EXPECT_TRUE(test, found); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Seek value greater than range max => get_selector_*_low should |
| 202 | * return Ok - but set found to false as value is not in range |
| 203 | */ |
| 204 | ret = linear_range_get_selector_low_array(&testr[0], 2, |
| 205 | range2_vals[RANGE2_NUM_VALS - 1] + 1, |
| 206 | &sel, &found); |
| 207 | |
| 208 | KUNIT_EXPECT_EQ(test, 0, ret); |
| 209 | KUNIT_EXPECT_EQ(test, sel, range2_sels[RANGE2_NUM_VALS - 1]); |
| 210 | KUNIT_EXPECT_FALSE(test, found); |
| 211 | } |
| 212 | |
| 213 | static struct kunit_case range_test_cases[] = { |
| 214 | KUNIT_CASE(range_test_get_value_amount), |
| 215 | KUNIT_CASE(range_test_get_selector_high), |
| 216 | KUNIT_CASE(range_test_get_selector_low), |
| 217 | KUNIT_CASE(range_test_get_value), |
| 218 | {}, |
| 219 | }; |
| 220 | |
| 221 | static struct kunit_suite range_test_module = { |
| 222 | .name = "linear-ranges-test", |
| 223 | .test_cases = range_test_cases, |
| 224 | }; |
| 225 | |
| 226 | kunit_test_suites(&range_test_module); |
| 227 | |
| 228 | MODULE_LICENSE("GPL"); |