blob: 0c1ab4ac8bdb37c94d18eec596cbb79a3b929a0a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3 *
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
6 *
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
9 *
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
12 *
13 *
14 * Theory of Operation
15 *
16 * I. Board Compatibility
17 *
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27 * driver.
28 * Sample code (2 revisions) is available at Infineon.
29 *
30 * II. Board-specific settings
31 *
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
36 *
37 * Sharing of the PCI interrupt line for this board is possible.
38 *
39 * III. Driver operation
40 *
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
46 *
47 * Tx direction
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
51 *
52 * Rx direction
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
55 *
56 * IV. Notes
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mistery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
66 *
67 * TODO:
68 * - test X25.
69 * - use polling at high irq/s,
70 * - performance analysis,
71 * - endianness.
72 *
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
75 *
76 * 2002/01 Ueimor
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
80 * - misc crapectomy.
81 */
82
83#include <linux/module.h>
84#include <linux/types.h>
85#include <linux/errno.h>
86#include <linux/list.h>
87#include <linux/ioport.h>
88#include <linux/pci.h>
89#include <linux/kernel.h>
90#include <linux/mm.h>
91
92#include <asm/system.h>
93#include <asm/cache.h>
94#include <asm/byteorder.h>
95#include <asm/uaccess.h>
96#include <asm/io.h>
97#include <asm/irq.h>
98
99#include <linux/init.h>
100#include <linux/string.h>
101
102#include <linux/if_arp.h>
103#include <linux/netdevice.h>
104#include <linux/skbuff.h>
105#include <linux/delay.h>
106#include <net/syncppp.h>
107#include <linux/hdlc.h>
108
109/* Version */
110static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
111static int debug;
112static int quartz;
113
114#ifdef CONFIG_DSCC4_PCI_RST
115static DECLARE_MUTEX(dscc4_sem);
116static u32 dscc4_pci_config_store[16];
117#endif
118
119#define DRV_NAME "dscc4"
120
121#undef DSCC4_POLLING
122
123/* Module parameters */
124
125MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
126MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
127MODULE_LICENSE("GPL");
128module_param(debug, int, 0);
129MODULE_PARM_DESC(debug,"Enable/disable extra messages");
130module_param(quartz, int, 0);
131MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
132
133/* Structures */
134
135struct thingie {
136 int define;
137 u32 bits;
138};
139
140struct TxFD {
141 u32 state;
142 u32 next;
143 u32 data;
144 u32 complete;
145 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
146};
147
148struct RxFD {
149 u32 state1;
150 u32 next;
151 u32 data;
152 u32 state2;
153 u32 end;
154};
155
156#define DUMMY_SKB_SIZE 64
157#define TX_LOW 8
158#define TX_RING_SIZE 32
159#define RX_RING_SIZE 32
160#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
161#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
162#define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
163#define TX_TIMEOUT (HZ/10)
164#define DSCC4_HZ_MAX 33000000
165#define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
166#define dev_per_card 4
167#define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
168
169#define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
170#define TO_SIZE(state) (((state) >> 16) & 0x1fff)
171
172/*
173 * Given the operating range of Linux HDLC, the 2 defines below could be
174 * made simpler. However they are a fine reminder for the limitations of
175 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
176 */
177#define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
178#define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
179#define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
180#define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
181
182struct dscc4_pci_priv {
183 u32 *iqcfg;
184 int cfg_cur;
185 spinlock_t lock;
186 struct pci_dev *pdev;
187
188 struct dscc4_dev_priv *root;
189 dma_addr_t iqcfg_dma;
190 u32 xtal_hz;
191};
192
193struct dscc4_dev_priv {
194 struct sk_buff *rx_skbuff[RX_RING_SIZE];
195 struct sk_buff *tx_skbuff[TX_RING_SIZE];
196
197 struct RxFD *rx_fd;
198 struct TxFD *tx_fd;
199 u32 *iqrx;
200 u32 *iqtx;
201
202 /* FIXME: check all the volatile are required */
203 volatile u32 tx_current;
204 u32 rx_current;
205 u32 iqtx_current;
206 u32 iqrx_current;
207
208 volatile u32 tx_dirty;
209 volatile u32 ltda;
210 u32 rx_dirty;
211 u32 lrda;
212
213 dma_addr_t tx_fd_dma;
214 dma_addr_t rx_fd_dma;
215 dma_addr_t iqtx_dma;
216 dma_addr_t iqrx_dma;
217
218 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
219
220 struct timer_list timer;
221
222 struct dscc4_pci_priv *pci_priv;
223 spinlock_t lock;
224
225 int dev_id;
226 volatile u32 flags;
227 u32 timer_help;
228
229 unsigned short encoding;
230 unsigned short parity;
231 struct net_device *dev;
232 sync_serial_settings settings;
233 void __iomem *base_addr;
234 u32 __pad __attribute__ ((aligned (4)));
235};
236
237/* GLOBAL registers definitions */
238#define GCMDR 0x00
239#define GSTAR 0x04
240#define GMODE 0x08
241#define IQLENR0 0x0C
242#define IQLENR1 0x10
243#define IQRX0 0x14
244#define IQTX0 0x24
245#define IQCFG 0x3c
246#define FIFOCR1 0x44
247#define FIFOCR2 0x48
248#define FIFOCR3 0x4c
249#define FIFOCR4 0x34
250#define CH0CFG 0x50
251#define CH0BRDA 0x54
252#define CH0BTDA 0x58
253#define CH0FRDA 0x98
254#define CH0FTDA 0xb0
255#define CH0LRDA 0xc8
256#define CH0LTDA 0xe0
257
258/* SCC registers definitions */
259#define SCC_START 0x0100
260#define SCC_OFFSET 0x80
261#define CMDR 0x00
262#define STAR 0x04
263#define CCR0 0x08
264#define CCR1 0x0c
265#define CCR2 0x10
266#define BRR 0x2C
267#define RLCR 0x40
268#define IMR 0x54
269#define ISR 0x58
270
271#define GPDIR 0x0400
272#define GPDATA 0x0404
273#define GPIM 0x0408
274
275/* Bit masks */
276#define EncodingMask 0x00700000
277#define CrcMask 0x00000003
278
279#define IntRxScc0 0x10000000
280#define IntTxScc0 0x01000000
281
282#define TxPollCmd 0x00000400
283#define RxActivate 0x08000000
284#define MTFi 0x04000000
285#define Rdr 0x00400000
286#define Rdt 0x00200000
287#define Idr 0x00100000
288#define Idt 0x00080000
289#define TxSccRes 0x01000000
290#define RxSccRes 0x00010000
291#define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
292#define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
293
294#define Ccr0ClockMask 0x0000003f
295#define Ccr1LoopMask 0x00000200
296#define IsrMask 0x000fffff
297#define BrrExpMask 0x00000f00
298#define BrrMultMask 0x0000003f
299#define EncodingMask 0x00700000
300#define Hold 0x40000000
301#define SccBusy 0x10000000
302#define PowerUp 0x80000000
303#define Vis 0x00001000
304#define FrameOk (FrameVfr | FrameCrc)
305#define FrameVfr 0x80
306#define FrameRdo 0x40
307#define FrameCrc 0x20
308#define FrameRab 0x10
309#define FrameAborted 0x00000200
310#define FrameEnd 0x80000000
311#define DataComplete 0x40000000
312#define LengthCheck 0x00008000
313#define SccEvt 0x02000000
314#define NoAck 0x00000200
315#define Action 0x00000001
316#define HiDesc 0x20000000
317
318/* SCC events */
319#define RxEvt 0xf0000000
320#define TxEvt 0x0f000000
321#define Alls 0x00040000
322#define Xdu 0x00010000
323#define Cts 0x00004000
324#define Xmr 0x00002000
325#define Xpr 0x00001000
326#define Rdo 0x00000080
327#define Rfs 0x00000040
328#define Cd 0x00000004
329#define Rfo 0x00000002
330#define Flex 0x00000001
331
332/* DMA core events */
333#define Cfg 0x00200000
334#define Hi 0x00040000
335#define Fi 0x00020000
336#define Err 0x00010000
337#define Arf 0x00000002
338#define ArAck 0x00000001
339
340/* State flags */
341#define Ready 0x00000000
342#define NeedIDR 0x00000001
343#define NeedIDT 0x00000002
344#define RdoSet 0x00000004
345#define FakeReset 0x00000008
346
347/* Don't mask RDO. Ever. */
348#ifdef DSCC4_POLLING
349#define EventsMask 0xfffeef7f
350#else
351#define EventsMask 0xfffa8f7a
352#endif
353
354/* Functions prototypes */
355static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
356static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
357static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
358static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
359static int dscc4_open(struct net_device *);
360static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
361static int dscc4_close(struct net_device *);
362static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
363static int dscc4_init_ring(struct net_device *);
364static void dscc4_release_ring(struct dscc4_dev_priv *);
365static void dscc4_timer(unsigned long);
366static void dscc4_tx_timeout(struct net_device *);
367static irqreturn_t dscc4_irq(int irq, void *dev_id, struct pt_regs *ptregs);
368static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
369static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
370#ifdef DSCC4_POLLING
371static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
372#endif
373
374static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
375{
376 return dev_to_hdlc(dev)->priv;
377}
378
379static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
380{
381 return p->dev;
382}
383
384static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
385 struct net_device *dev, int offset)
386{
387 u32 state;
388
389 /* Cf scc_writel for concern regarding thread-safety */
390 state = dpriv->scc_regs[offset >> 2];
391 state &= ~mask;
392 state |= value;
393 dpriv->scc_regs[offset >> 2] = state;
394 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
395}
396
397static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
398 struct net_device *dev, int offset)
399{
400 /*
401 * Thread-UNsafe.
402 * As of 2002/02/16, there are no thread racing for access.
403 */
404 dpriv->scc_regs[offset >> 2] = bits;
405 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
406}
407
408static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
409{
410 return dpriv->scc_regs[offset >> 2];
411}
412
413static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
414{
415 /* Cf errata DS5 p.4 */
416 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
417 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
418}
419
420static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
421 struct net_device *dev)
422{
423 dpriv->ltda = dpriv->tx_fd_dma +
424 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
425 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
426 /* Flush posted writes *NOW* */
427 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
428}
429
430static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
431 struct net_device *dev)
432{
433 dpriv->lrda = dpriv->rx_fd_dma +
434 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
435 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
436}
437
438static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
439{
440 return dpriv->tx_current == dpriv->tx_dirty;
441}
442
443static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
444 struct net_device *dev)
445{
446 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
447}
448
449int state_check(u32 state, struct dscc4_dev_priv *dpriv, struct net_device *dev,
450 const char *msg)
451{
452 int ret = 0;
453
454 if (debug > 1) {
455 if (SOURCE_ID(state) != dpriv->dev_id) {
456 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
457 dev->name, msg, SOURCE_ID(state), state );
458 ret = -1;
459 }
460 if (state & 0x0df80c00) {
461 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
462 dev->name, msg, state);
463 ret = -1;
464 }
465 }
466 return ret;
467}
468
469void dscc4_tx_print(struct net_device *dev, struct dscc4_dev_priv *dpriv,
470 char *msg)
471{
472 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
473 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
474}
475
476static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
477{
478 struct pci_dev *pdev = dpriv->pci_priv->pdev;
479 struct TxFD *tx_fd = dpriv->tx_fd;
480 struct RxFD *rx_fd = dpriv->rx_fd;
481 struct sk_buff **skbuff;
482 int i;
483
484 pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
485 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
486
487 skbuff = dpriv->tx_skbuff;
488 for (i = 0; i < TX_RING_SIZE; i++) {
489 if (*skbuff) {
490 pci_unmap_single(pdev, tx_fd->data, (*skbuff)->len,
491 PCI_DMA_TODEVICE);
492 dev_kfree_skb(*skbuff);
493 }
494 skbuff++;
495 tx_fd++;
496 }
497
498 skbuff = dpriv->rx_skbuff;
499 for (i = 0; i < RX_RING_SIZE; i++) {
500 if (*skbuff) {
501 pci_unmap_single(pdev, rx_fd->data,
502 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
503 dev_kfree_skb(*skbuff);
504 }
505 skbuff++;
506 rx_fd++;
507 }
508}
509
510inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv, struct net_device *dev)
511{
512 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
513 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
514 const int len = RX_MAX(HDLC_MAX_MRU);
515 struct sk_buff *skb;
516 int ret = 0;
517
518 skb = dev_alloc_skb(len);
519 dpriv->rx_skbuff[dirty] = skb;
520 if (skb) {
521 skb->protocol = hdlc_type_trans(skb, dev);
522 rx_fd->data = pci_map_single(dpriv->pci_priv->pdev, skb->data,
523 len, PCI_DMA_FROMDEVICE);
524 } else {
525 rx_fd->data = (u32) NULL;
526 ret = -1;
527 }
528 return ret;
529}
530
531/*
532 * IRQ/thread/whatever safe
533 */
534static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
535 struct net_device *dev, char *msg)
536{
537 s8 i = 0;
538
539 do {
540 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
541 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
542 msg, i);
543 goto done;
544 }
Nishanth Aravamudan3173c892005-09-11 02:09:55 -0700545 schedule_timeout_uninterruptible(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546 rmb();
547 } while (++i > 0);
548 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
549done:
550 return (i >= 0) ? i : -EAGAIN;
551}
552
553static int dscc4_do_action(struct net_device *dev, char *msg)
554{
555 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
556 s16 i = 0;
557
558 writel(Action, ioaddr + GCMDR);
559 ioaddr += GSTAR;
560 do {
561 u32 state = readl(ioaddr);
562
563 if (state & ArAck) {
564 printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
565 writel(ArAck, ioaddr);
566 goto done;
567 } else if (state & Arf) {
568 printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
569 writel(Arf, ioaddr);
570 i = -1;
571 goto done;
572 }
573 rmb();
574 } while (++i > 0);
575 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
576done:
577 return i;
578}
579
580static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
581{
582 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
583 s8 i = 0;
584
585 do {
586 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
587 (dpriv->iqtx[cur] & Xpr))
588 break;
589 smp_rmb();
Nishanth Aravamudan3173c892005-09-11 02:09:55 -0700590 schedule_timeout_uninterruptible(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591 } while (++i > 0);
592
593 return (i >= 0 ) ? i : -EAGAIN;
594}
595
596#if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
597static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
598{
599 unsigned long flags;
600
601 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
602 /* Cf errata DS5 p.6 */
603 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
604 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
605 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
606 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
607 writel(Action, dpriv->base_addr + GCMDR);
608 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
609}
610
611#endif
612
613#if 0
614static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
615{
616 u16 i = 0;
617
618 /* Cf errata DS5 p.7 */
619 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
620 scc_writel(0x00050000, dpriv, dev, CCR2);
621 /*
622 * Must be longer than the time required to fill the fifo.
623 */
624 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
625 udelay(1);
626 wmb();
627 }
628
629 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
630 if (dscc4_do_action(dev, "Rdt") < 0)
631 printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
632}
633#endif
634
635/* TODO: (ab)use this function to refill a completely depleted RX ring. */
636static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
637 struct net_device *dev)
638{
639 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
640 struct net_device_stats *stats = hdlc_stats(dev);
641 struct pci_dev *pdev = dpriv->pci_priv->pdev;
642 struct sk_buff *skb;
643 int pkt_len;
644
645 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
646 if (!skb) {
647 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __FUNCTION__);
648 goto refill;
649 }
650 pkt_len = TO_SIZE(rx_fd->state2);
651 pci_unmap_single(pdev, rx_fd->data, RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
652 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
653 stats->rx_packets++;
654 stats->rx_bytes += pkt_len;
655 skb_put(skb, pkt_len);
656 if (netif_running(dev))
657 skb->protocol = hdlc_type_trans(skb, dev);
658 skb->dev->last_rx = jiffies;
659 netif_rx(skb);
660 } else {
661 if (skb->data[pkt_len] & FrameRdo)
662 stats->rx_fifo_errors++;
663 else if (!(skb->data[pkt_len] | ~FrameCrc))
664 stats->rx_crc_errors++;
665 else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
666 stats->rx_length_errors++;
667 else
668 stats->rx_errors++;
669 dev_kfree_skb_irq(skb);
670 }
671refill:
672 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
673 if (try_get_rx_skb(dpriv, dev) < 0)
674 break;
675 dpriv->rx_dirty++;
676 }
677 dscc4_rx_update(dpriv, dev);
678 rx_fd->state2 = 0x00000000;
679 rx_fd->end = 0xbabeface;
680}
681
682static void dscc4_free1(struct pci_dev *pdev)
683{
684 struct dscc4_pci_priv *ppriv;
685 struct dscc4_dev_priv *root;
686 int i;
687
688 ppriv = pci_get_drvdata(pdev);
689 root = ppriv->root;
690
691 for (i = 0; i < dev_per_card; i++)
692 unregister_hdlc_device(dscc4_to_dev(root + i));
693
694 pci_set_drvdata(pdev, NULL);
695
696 for (i = 0; i < dev_per_card; i++)
697 free_netdev(root[i].dev);
698 kfree(root);
699 kfree(ppriv);
700}
701
702static int __devinit dscc4_init_one(struct pci_dev *pdev,
703 const struct pci_device_id *ent)
704{
705 struct dscc4_pci_priv *priv;
706 struct dscc4_dev_priv *dpriv;
707 void __iomem *ioaddr;
708 int i, rc;
709
710 printk(KERN_DEBUG "%s", version);
711
712 rc = pci_enable_device(pdev);
713 if (rc < 0)
714 goto out;
715
716 rc = pci_request_region(pdev, 0, "registers");
717 if (rc < 0) {
718 printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
719 DRV_NAME);
720 goto err_disable_0;
721 }
722 rc = pci_request_region(pdev, 1, "LBI interface");
723 if (rc < 0) {
724 printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
725 DRV_NAME);
726 goto err_free_mmio_region_1;
727 }
728
729 ioaddr = ioremap(pci_resource_start(pdev, 0),
730 pci_resource_len(pdev, 0));
731 if (!ioaddr) {
732 printk(KERN_ERR "%s: cannot remap MMIO region %lx @ %lx\n",
733 DRV_NAME, pci_resource_len(pdev, 0),
734 pci_resource_start(pdev, 0));
735 rc = -EIO;
736 goto err_free_mmio_regions_2;
737 }
738 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#lx (regs), %#lx (lbi), IRQ %d\n",
739 pci_resource_start(pdev, 0),
740 pci_resource_start(pdev, 1), pdev->irq);
741
742 /* Cf errata DS5 p.2 */
743 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
744 pci_set_master(pdev);
745
746 rc = dscc4_found1(pdev, ioaddr);
747 if (rc < 0)
748 goto err_iounmap_3;
749
750 priv = pci_get_drvdata(pdev);
751
752 rc = request_irq(pdev->irq, dscc4_irq, SA_SHIRQ, DRV_NAME, priv->root);
753 if (rc < 0) {
754 printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
755 goto err_release_4;
756 }
757
758 /* power up/little endian/dma core controlled via lrda/ltda */
759 writel(0x00000001, ioaddr + GMODE);
760 /* Shared interrupt queue */
761 {
762 u32 bits;
763
764 bits = (IRQ_RING_SIZE >> 5) - 1;
765 bits |= bits << 4;
766 bits |= bits << 8;
767 bits |= bits << 16;
768 writel(bits, ioaddr + IQLENR0);
769 }
770 /* Global interrupt queue */
771 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
772 priv->iqcfg = (u32 *) pci_alloc_consistent(pdev,
773 IRQ_RING_SIZE*sizeof(u32), &priv->iqcfg_dma);
774 if (!priv->iqcfg)
775 goto err_free_irq_5;
776 writel(priv->iqcfg_dma, ioaddr + IQCFG);
777
778 rc = -ENOMEM;
779
780 /*
781 * SCC 0-3 private rx/tx irq structures
782 * IQRX/TXi needs to be set soon. Learned it the hard way...
783 */
784 for (i = 0; i < dev_per_card; i++) {
785 dpriv = priv->root + i;
786 dpriv->iqtx = (u32 *) pci_alloc_consistent(pdev,
787 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
788 if (!dpriv->iqtx)
789 goto err_free_iqtx_6;
790 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
791 }
792 for (i = 0; i < dev_per_card; i++) {
793 dpriv = priv->root + i;
794 dpriv->iqrx = (u32 *) pci_alloc_consistent(pdev,
795 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
796 if (!dpriv->iqrx)
797 goto err_free_iqrx_7;
798 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
799 }
800
801 /* Cf application hint. Beware of hard-lock condition on threshold. */
802 writel(0x42104000, ioaddr + FIFOCR1);
803 //writel(0x9ce69800, ioaddr + FIFOCR2);
804 writel(0xdef6d800, ioaddr + FIFOCR2);
805 //writel(0x11111111, ioaddr + FIFOCR4);
806 writel(0x18181818, ioaddr + FIFOCR4);
807 // FIXME: should depend on the chipset revision
808 writel(0x0000000e, ioaddr + FIFOCR3);
809
810 writel(0xff200001, ioaddr + GCMDR);
811
812 rc = 0;
813out:
814 return rc;
815
816err_free_iqrx_7:
817 while (--i >= 0) {
818 dpriv = priv->root + i;
819 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
820 dpriv->iqrx, dpriv->iqrx_dma);
821 }
822 i = dev_per_card;
823err_free_iqtx_6:
824 while (--i >= 0) {
825 dpriv = priv->root + i;
826 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
827 dpriv->iqtx, dpriv->iqtx_dma);
828 }
829 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
830 priv->iqcfg_dma);
831err_free_irq_5:
832 free_irq(pdev->irq, priv->root);
833err_release_4:
834 dscc4_free1(pdev);
835err_iounmap_3:
836 iounmap (ioaddr);
837err_free_mmio_regions_2:
838 pci_release_region(pdev, 1);
839err_free_mmio_region_1:
840 pci_release_region(pdev, 0);
841err_disable_0:
842 pci_disable_device(pdev);
843 goto out;
844};
845
846/*
847 * Let's hope the default values are decent enough to protect my
848 * feet from the user's gun - Ueimor
849 */
850static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
851 struct net_device *dev)
852{
853 /* No interrupts, SCC core disabled. Let's relax */
854 scc_writel(0x00000000, dpriv, dev, CCR0);
855
856 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
857
858 /*
859 * No address recognition/crc-CCITT/cts enabled
860 * Shared flags transmission disabled - cf errata DS5 p.11
861 * Carrier detect disabled - cf errata p.14
862 * FIXME: carrier detection/polarity may be handled more gracefully.
863 */
864 scc_writel(0x02408000, dpriv, dev, CCR1);
865
866 /* crc not forwarded - Cf errata DS5 p.11 */
867 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
868 // crc forwarded
869 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
870}
871
872static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
873{
874 int ret = 0;
875
876 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
877 ret = -EOPNOTSUPP;
878 else
879 dpriv->pci_priv->xtal_hz = hz;
880
881 return ret;
882}
883
884static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
885{
886 struct dscc4_pci_priv *ppriv;
887 struct dscc4_dev_priv *root;
888 int i, ret = -ENOMEM;
889
890 root = kmalloc(dev_per_card*sizeof(*root), GFP_KERNEL);
891 if (!root) {
892 printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
893 goto err_out;
894 }
895 memset(root, 0, dev_per_card*sizeof(*root));
896
897 for (i = 0; i < dev_per_card; i++) {
898 root[i].dev = alloc_hdlcdev(root + i);
899 if (!root[i].dev)
900 goto err_free_dev;
901 }
902
903 ppriv = kmalloc(sizeof(*ppriv), GFP_KERNEL);
904 if (!ppriv) {
905 printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
906 goto err_free_dev;
907 }
908 memset(ppriv, 0, sizeof(struct dscc4_pci_priv));
909
910 ppriv->root = root;
911 spin_lock_init(&ppriv->lock);
912
913 for (i = 0; i < dev_per_card; i++) {
914 struct dscc4_dev_priv *dpriv = root + i;
915 struct net_device *d = dscc4_to_dev(dpriv);
916 hdlc_device *hdlc = dev_to_hdlc(d);
917
918 d->base_addr = (unsigned long)ioaddr;
919 d->init = NULL;
920 d->irq = pdev->irq;
921 d->open = dscc4_open;
922 d->stop = dscc4_close;
923 d->set_multicast_list = NULL;
924 d->do_ioctl = dscc4_ioctl;
925 d->tx_timeout = dscc4_tx_timeout;
926 d->watchdog_timeo = TX_TIMEOUT;
927 SET_MODULE_OWNER(d);
928 SET_NETDEV_DEV(d, &pdev->dev);
929
930 dpriv->dev_id = i;
931 dpriv->pci_priv = ppriv;
932 dpriv->base_addr = ioaddr;
933 spin_lock_init(&dpriv->lock);
934
935 hdlc->xmit = dscc4_start_xmit;
936 hdlc->attach = dscc4_hdlc_attach;
937
938 dscc4_init_registers(dpriv, d);
939 dpriv->parity = PARITY_CRC16_PR0_CCITT;
940 dpriv->encoding = ENCODING_NRZ;
941
942 ret = dscc4_init_ring(d);
943 if (ret < 0)
944 goto err_unregister;
945
946 ret = register_hdlc_device(d);
947 if (ret < 0) {
948 printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
949 dscc4_release_ring(dpriv);
950 goto err_unregister;
951 }
952 }
953
954 ret = dscc4_set_quartz(root, quartz);
955 if (ret < 0)
956 goto err_unregister;
957
958 pci_set_drvdata(pdev, ppriv);
959 return ret;
960
961err_unregister:
962 while (i-- > 0) {
963 dscc4_release_ring(root + i);
964 unregister_hdlc_device(dscc4_to_dev(root + i));
965 }
966 kfree(ppriv);
967 i = dev_per_card;
968err_free_dev:
969 while (i-- > 0)
970 free_netdev(root[i].dev);
971 kfree(root);
972err_out:
973 return ret;
974};
975
976/* FIXME: get rid of the unneeded code */
977static void dscc4_timer(unsigned long data)
978{
979 struct net_device *dev = (struct net_device *)data;
980 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
981// struct dscc4_pci_priv *ppriv;
982
983 goto done;
984done:
985 dpriv->timer.expires = jiffies + TX_TIMEOUT;
986 add_timer(&dpriv->timer);
987}
988
989static void dscc4_tx_timeout(struct net_device *dev)
990{
991 /* FIXME: something is missing there */
992}
993
994static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
995{
996 sync_serial_settings *settings = &dpriv->settings;
997
998 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
999 struct net_device *dev = dscc4_to_dev(dpriv);
1000
1001 printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1002 return -1;
1003 }
1004 return 0;
1005}
1006
1007#ifdef CONFIG_DSCC4_PCI_RST
1008/*
1009 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1010 * so as to provide a safe way to reset the asic while not the whole machine
1011 * rebooting.
1012 *
1013 * This code doesn't need to be efficient. Keep It Simple
1014 */
1015static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1016{
1017 int i;
1018
1019 down(&dscc4_sem);
1020 for (i = 0; i < 16; i++)
1021 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1022
1023 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1024 writel(0x001c0000, ioaddr + GMODE);
1025 /* Configure GPIO port as output */
1026 writel(0x0000ffff, ioaddr + GPDIR);
1027 /* Disable interruption */
1028 writel(0x0000ffff, ioaddr + GPIM);
1029
1030 writel(0x0000ffff, ioaddr + GPDATA);
1031 writel(0x00000000, ioaddr + GPDATA);
1032
1033 /* Flush posted writes */
1034 readl(ioaddr + GSTAR);
1035
Nishanth Aravamudan3173c892005-09-11 02:09:55 -07001036 schedule_timeout_uninterruptible(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037
1038 for (i = 0; i < 16; i++)
1039 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1040 up(&dscc4_sem);
1041}
1042#else
1043#define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1044#endif /* CONFIG_DSCC4_PCI_RST */
1045
1046static int dscc4_open(struct net_device *dev)
1047{
1048 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1049 struct dscc4_pci_priv *ppriv;
1050 int ret = -EAGAIN;
1051
1052 if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit)
1053 goto err;
1054
1055 if ((ret = hdlc_open(dev)))
1056 goto err;
1057
1058 ppriv = dpriv->pci_priv;
1059
1060 /*
1061 * Due to various bugs, there is no way to reliably reset a
1062 * specific port (manufacturer's dependant special PCI #RST wiring
1063 * apart: it affects all ports). Thus the device goes in the best
1064 * silent mode possible at dscc4_close() time and simply claims to
1065 * be up if it's opened again. It still isn't possible to change
1066 * the HDLC configuration without rebooting but at least the ports
1067 * can be up/down ifconfig'ed without killing the host.
1068 */
1069 if (dpriv->flags & FakeReset) {
1070 dpriv->flags &= ~FakeReset;
1071 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1072 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1073 scc_writel(EventsMask, dpriv, dev, IMR);
1074 printk(KERN_INFO "%s: up again.\n", dev->name);
1075 goto done;
1076 }
1077
1078 /* IDT+IDR during XPR */
1079 dpriv->flags = NeedIDR | NeedIDT;
1080
1081 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1082
1083 /*
1084 * The following is a bit paranoid...
1085 *
1086 * NB: the datasheet "...CEC will stay active if the SCC is in
1087 * power-down mode or..." and CCR2.RAC = 1 are two different
1088 * situations.
1089 */
1090 if (scc_readl_star(dpriv, dev) & SccBusy) {
1091 printk(KERN_ERR "%s busy. Try later\n", dev->name);
1092 ret = -EAGAIN;
1093 goto err_out;
1094 } else
1095 printk(KERN_INFO "%s: available. Good\n", dev->name);
1096
1097 scc_writel(EventsMask, dpriv, dev, IMR);
1098
1099 /* Posted write is flushed in the wait_ack loop */
1100 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1101
1102 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1103 goto err_disable_scc_events;
1104
1105 /*
1106 * I would expect XPR near CE completion (before ? after ?).
1107 * At worst, this code won't see a late XPR and people
1108 * will have to re-issue an ifconfig (this is harmless).
1109 * WARNING, a really missing XPR usually means a hardware
1110 * reset is needed. Suggestions anyone ?
1111 */
1112 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1113 printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1114 goto err_disable_scc_events;
1115 }
1116
1117 if (debug > 2)
1118 dscc4_tx_print(dev, dpriv, "Open");
1119
1120done:
1121 netif_start_queue(dev);
1122
1123 init_timer(&dpriv->timer);
1124 dpriv->timer.expires = jiffies + 10*HZ;
1125 dpriv->timer.data = (unsigned long)dev;
1126 dpriv->timer.function = &dscc4_timer;
1127 add_timer(&dpriv->timer);
1128 netif_carrier_on(dev);
1129
1130 return 0;
1131
1132err_disable_scc_events:
1133 scc_writel(0xffffffff, dpriv, dev, IMR);
1134 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1135err_out:
1136 hdlc_close(dev);
1137err:
1138 return ret;
1139}
1140
1141#ifdef DSCC4_POLLING
1142static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1143{
1144 /* FIXME: it's gonna be easy (TM), for sure */
1145}
1146#endif /* DSCC4_POLLING */
1147
1148static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1149{
1150 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1151 struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1152 struct TxFD *tx_fd;
1153 int next;
1154
1155 next = dpriv->tx_current%TX_RING_SIZE;
1156 dpriv->tx_skbuff[next] = skb;
1157 tx_fd = dpriv->tx_fd + next;
1158 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1159 tx_fd->data = pci_map_single(ppriv->pdev, skb->data, skb->len,
1160 PCI_DMA_TODEVICE);
1161 tx_fd->complete = 0x00000000;
1162 tx_fd->jiffies = jiffies;
1163 mb();
1164
1165#ifdef DSCC4_POLLING
1166 spin_lock(&dpriv->lock);
1167 while (dscc4_tx_poll(dpriv, dev));
1168 spin_unlock(&dpriv->lock);
1169#endif
1170
1171 dev->trans_start = jiffies;
1172
1173 if (debug > 2)
1174 dscc4_tx_print(dev, dpriv, "Xmit");
1175 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1176 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1177 netif_stop_queue(dev);
1178
1179 if (dscc4_tx_quiescent(dpriv, dev))
1180 dscc4_do_tx(dpriv, dev);
1181
1182 return 0;
1183}
1184
1185static int dscc4_close(struct net_device *dev)
1186{
1187 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1188
1189 del_timer_sync(&dpriv->timer);
1190 netif_stop_queue(dev);
1191
1192 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1193 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1194 scc_writel(0xffffffff, dpriv, dev, IMR);
1195
1196 dpriv->flags |= FakeReset;
1197
1198 hdlc_close(dev);
1199
1200 return 0;
1201}
1202
1203static inline int dscc4_check_clock_ability(int port)
1204{
1205 int ret = 0;
1206
1207#ifdef CONFIG_DSCC4_PCISYNC
1208 if (port >= 2)
1209 ret = -1;
1210#endif
1211 return ret;
1212}
1213
1214/*
1215 * DS1 p.137: "There are a total of 13 different clocking modes..."
1216 * ^^
1217 * Design choices:
1218 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1219 * Clock mode 3b _should_ work but the testing seems to make this point
1220 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1221 * This is supposed to provide least surprise "DTE like" behavior.
1222 * - if line rate is specified, clocks are assumed to be locally generated.
1223 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1224 * between these it automagically done according on the required frequency
1225 * scaling. Of course some rounding may take place.
1226 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1227 * appropriate external clocking device for testing.
1228 * - no time-slot/clock mode 5: shameless lazyness.
1229 *
1230 * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1231 *
1232 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1233 * won't pass the init sequence. For example, straight back-to-back DTE without
1234 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1235 * called.
1236 *
1237 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1238 * DS0 for example)
1239 *
1240 * Clock mode related bits of CCR0:
1241 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1242 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1243 * | | +-------- High Speed: say 0
1244 * | | | +-+-+-- Clock Mode: 0..7
1245 * | | | | | |
1246 * -+-+-+-+-+-+-+-+
1247 * x|x|5|4|3|2|1|0| lower bits
1248 *
1249 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1250 * +-+-+-+------------------ M (0..15)
1251 * | | | | +-+-+-+-+-+-- N (0..63)
1252 * 0 0 0 0 | | | | 0 0 | | | | | |
1253 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1254 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1255 *
1256 */
1257static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1258{
1259 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1260 int ret = -1;
1261 u32 brr;
1262
1263 *state &= ~Ccr0ClockMask;
1264 if (*bps) { /* Clock generated - required for DCE */
1265 u32 n = 0, m = 0, divider;
1266 int xtal;
1267
1268 xtal = dpriv->pci_priv->xtal_hz;
1269 if (!xtal)
1270 goto done;
1271 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1272 goto done;
1273 divider = xtal / *bps;
1274 if (divider > BRR_DIVIDER_MAX) {
1275 divider >>= 4;
1276 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1277 } else
1278 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1279 if (divider >> 22) {
1280 n = 63;
1281 m = 15;
1282 } else if (divider) {
1283 /* Extraction of the 6 highest weighted bits */
1284 m = 0;
1285 while (0xffffffc0 & divider) {
1286 m++;
1287 divider >>= 1;
1288 }
1289 n = divider;
1290 }
1291 brr = (m << 8) | n;
1292 divider = n << m;
1293 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1294 divider <<= 4;
1295 *bps = xtal / divider;
1296 } else {
1297 /*
1298 * External clock - DTE
1299 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1300 * Nothing more to be done
1301 */
1302 brr = 0;
1303 }
1304 scc_writel(brr, dpriv, dev, BRR);
1305 ret = 0;
1306done:
1307 return ret;
1308}
1309
1310static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1311{
1312 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1313 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1314 const size_t size = sizeof(dpriv->settings);
1315 int ret = 0;
1316
1317 if (dev->flags & IFF_UP)
1318 return -EBUSY;
1319
1320 if (cmd != SIOCWANDEV)
1321 return -EOPNOTSUPP;
1322
1323 switch(ifr->ifr_settings.type) {
1324 case IF_GET_IFACE:
1325 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1326 if (ifr->ifr_settings.size < size) {
1327 ifr->ifr_settings.size = size; /* data size wanted */
1328 return -ENOBUFS;
1329 }
1330 if (copy_to_user(line, &dpriv->settings, size))
1331 return -EFAULT;
1332 break;
1333
1334 case IF_IFACE_SYNC_SERIAL:
1335 if (!capable(CAP_NET_ADMIN))
1336 return -EPERM;
1337
1338 if (dpriv->flags & FakeReset) {
1339 printk(KERN_INFO "%s: please reset the device"
1340 " before this command\n", dev->name);
1341 return -EPERM;
1342 }
1343 if (copy_from_user(&dpriv->settings, line, size))
1344 return -EFAULT;
1345 ret = dscc4_set_iface(dpriv, dev);
1346 break;
1347
1348 default:
1349 ret = hdlc_ioctl(dev, ifr, cmd);
1350 break;
1351 }
1352
1353 return ret;
1354}
1355
1356static int dscc4_match(struct thingie *p, int value)
1357{
1358 int i;
1359
1360 for (i = 0; p[i].define != -1; i++) {
1361 if (value == p[i].define)
1362 break;
1363 }
1364 if (p[i].define == -1)
1365 return -1;
1366 else
1367 return i;
1368}
1369
1370static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1371 struct net_device *dev)
1372{
1373 sync_serial_settings *settings = &dpriv->settings;
1374 int ret = -EOPNOTSUPP;
1375 u32 bps, state;
1376
1377 bps = settings->clock_rate;
1378 state = scc_readl(dpriv, CCR0);
1379 if (dscc4_set_clock(dev, &bps, &state) < 0)
1380 goto done;
1381 if (bps) { /* DCE */
1382 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1383 if (settings->clock_rate != bps) {
1384 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1385 dev->name, settings->clock_rate, bps);
1386 settings->clock_rate = bps;
1387 }
1388 } else { /* DTE */
1389 state |= PowerUp | Vis;
1390 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1391 }
1392 scc_writel(state, dpriv, dev, CCR0);
1393 ret = 0;
1394done:
1395 return ret;
1396}
1397
1398static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1399 struct net_device *dev)
1400{
1401 struct thingie encoding[] = {
1402 { ENCODING_NRZ, 0x00000000 },
1403 { ENCODING_NRZI, 0x00200000 },
1404 { ENCODING_FM_MARK, 0x00400000 },
1405 { ENCODING_FM_SPACE, 0x00500000 },
1406 { ENCODING_MANCHESTER, 0x00600000 },
1407 { -1, 0}
1408 };
1409 int i, ret = 0;
1410
1411 i = dscc4_match(encoding, dpriv->encoding);
1412 if (i >= 0)
1413 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1414 else
1415 ret = -EOPNOTSUPP;
1416 return ret;
1417}
1418
1419static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1420 struct net_device *dev)
1421{
1422 sync_serial_settings *settings = &dpriv->settings;
1423 u32 state;
1424
1425 state = scc_readl(dpriv, CCR1);
1426 if (settings->loopback) {
1427 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1428 state |= 0x00000100;
1429 } else {
1430 printk(KERN_DEBUG "%s: normal\n", dev->name);
1431 state &= ~0x00000100;
1432 }
1433 scc_writel(state, dpriv, dev, CCR1);
1434 return 0;
1435}
1436
1437static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1438 struct net_device *dev)
1439{
1440 struct thingie crc[] = {
1441 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1442 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1443 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1444 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1445 };
1446 int i, ret = 0;
1447
1448 i = dscc4_match(crc, dpriv->parity);
1449 if (i >= 0)
1450 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1451 else
1452 ret = -EOPNOTSUPP;
1453 return ret;
1454}
1455
1456static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1457{
1458 struct {
1459 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1460 } *p, do_setting[] = {
1461 { dscc4_encoding_setting },
1462 { dscc4_clock_setting },
1463 { dscc4_loopback_setting },
1464 { dscc4_crc_setting },
1465 { NULL }
1466 };
1467 int ret = 0;
1468
1469 for (p = do_setting; p->action; p++) {
1470 if ((ret = p->action(dpriv, dev)) < 0)
1471 break;
1472 }
1473 return ret;
1474}
1475
1476static irqreturn_t dscc4_irq(int irq, void *token, struct pt_regs *ptregs)
1477{
1478 struct dscc4_dev_priv *root = token;
1479 struct dscc4_pci_priv *priv;
1480 struct net_device *dev;
1481 void __iomem *ioaddr;
1482 u32 state;
1483 unsigned long flags;
1484 int i, handled = 1;
1485
1486 priv = root->pci_priv;
1487 dev = dscc4_to_dev(root);
1488
1489 spin_lock_irqsave(&priv->lock, flags);
1490
1491 ioaddr = root->base_addr;
1492
1493 state = readl(ioaddr + GSTAR);
1494 if (!state) {
1495 handled = 0;
1496 goto out;
1497 }
1498 if (debug > 3)
1499 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1500 writel(state, ioaddr + GSTAR);
1501
1502 if (state & Arf) {
1503 printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1504 dev->name);
1505 goto out;
1506 }
1507 state &= ~ArAck;
1508 if (state & Cfg) {
1509 if (debug > 0)
1510 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1511 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & Arf)
1512 printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1513 if (!(state &= ~Cfg))
1514 goto out;
1515 }
1516 if (state & RxEvt) {
1517 i = dev_per_card - 1;
1518 do {
1519 dscc4_rx_irq(priv, root + i);
1520 } while (--i >= 0);
1521 state &= ~RxEvt;
1522 }
1523 if (state & TxEvt) {
1524 i = dev_per_card - 1;
1525 do {
1526 dscc4_tx_irq(priv, root + i);
1527 } while (--i >= 0);
1528 state &= ~TxEvt;
1529 }
1530out:
1531 spin_unlock_irqrestore(&priv->lock, flags);
1532 return IRQ_RETVAL(handled);
1533}
1534
1535static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1536 struct dscc4_dev_priv *dpriv)
1537{
1538 struct net_device *dev = dscc4_to_dev(dpriv);
1539 u32 state;
1540 int cur, loop = 0;
1541
1542try:
1543 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1544 state = dpriv->iqtx[cur];
1545 if (!state) {
1546 if (debug > 4)
1547 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1548 state);
1549 if ((debug > 1) && (loop > 1))
1550 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1551 if (loop && netif_queue_stopped(dev))
1552 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1553 netif_wake_queue(dev);
1554
1555 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1556 !dscc4_tx_done(dpriv))
1557 dscc4_do_tx(dpriv, dev);
1558 return;
1559 }
1560 loop++;
1561 dpriv->iqtx[cur] = 0;
1562 dpriv->iqtx_current++;
1563
1564 if (state_check(state, dpriv, dev, "Tx") < 0)
1565 return;
1566
1567 if (state & SccEvt) {
1568 if (state & Alls) {
1569 struct net_device_stats *stats = hdlc_stats(dev);
1570 struct sk_buff *skb;
1571 struct TxFD *tx_fd;
1572
1573 if (debug > 2)
1574 dscc4_tx_print(dev, dpriv, "Alls");
1575 /*
1576 * DataComplete can't be trusted for Tx completion.
1577 * Cf errata DS5 p.8
1578 */
1579 cur = dpriv->tx_dirty%TX_RING_SIZE;
1580 tx_fd = dpriv->tx_fd + cur;
1581 skb = dpriv->tx_skbuff[cur];
1582 if (skb) {
1583 pci_unmap_single(ppriv->pdev, tx_fd->data,
1584 skb->len, PCI_DMA_TODEVICE);
1585 if (tx_fd->state & FrameEnd) {
1586 stats->tx_packets++;
1587 stats->tx_bytes += skb->len;
1588 }
1589 dev_kfree_skb_irq(skb);
1590 dpriv->tx_skbuff[cur] = NULL;
1591 ++dpriv->tx_dirty;
1592 } else {
1593 if (debug > 1)
1594 printk(KERN_ERR "%s Tx: NULL skb %d\n",
1595 dev->name, cur);
1596 }
1597 /*
1598 * If the driver ends sending crap on the wire, it
1599 * will be way easier to diagnose than the (not so)
1600 * random freeze induced by null sized tx frames.
1601 */
1602 tx_fd->data = tx_fd->next;
1603 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1604 tx_fd->complete = 0x00000000;
1605 tx_fd->jiffies = 0;
1606
1607 if (!(state &= ~Alls))
1608 goto try;
1609 }
1610 /*
1611 * Transmit Data Underrun
1612 */
1613 if (state & Xdu) {
1614 printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1615 dpriv->flags = NeedIDT;
1616 /* Tx reset */
1617 writel(MTFi | Rdt,
1618 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1619 writel(Action, dpriv->base_addr + GCMDR);
1620 return;
1621 }
1622 if (state & Cts) {
1623 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1624 if (!(state &= ~Cts)) /* DEBUG */
1625 goto try;
1626 }
1627 if (state & Xmr) {
1628 /* Frame needs to be sent again - FIXME */
1629 printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1630 if (!(state &= ~Xmr)) /* DEBUG */
1631 goto try;
1632 }
1633 if (state & Xpr) {
1634 void __iomem *scc_addr;
1635 unsigned long ring;
1636 int i;
1637
1638 /*
1639 * - the busy condition happens (sometimes);
1640 * - it doesn't seem to make the handler unreliable.
1641 */
1642 for (i = 1; i; i <<= 1) {
1643 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1644 break;
1645 }
1646 if (!i)
1647 printk(KERN_INFO "%s busy in irq\n", dev->name);
1648
1649 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1650 /* Keep this order: IDT before IDR */
1651 if (dpriv->flags & NeedIDT) {
1652 if (debug > 2)
1653 dscc4_tx_print(dev, dpriv, "Xpr");
1654 ring = dpriv->tx_fd_dma +
1655 (dpriv->tx_dirty%TX_RING_SIZE)*
1656 sizeof(struct TxFD);
1657 writel(ring, scc_addr + CH0BTDA);
1658 dscc4_do_tx(dpriv, dev);
1659 writel(MTFi | Idt, scc_addr + CH0CFG);
1660 if (dscc4_do_action(dev, "IDT") < 0)
1661 goto err_xpr;
1662 dpriv->flags &= ~NeedIDT;
1663 }
1664 if (dpriv->flags & NeedIDR) {
1665 ring = dpriv->rx_fd_dma +
1666 (dpriv->rx_current%RX_RING_SIZE)*
1667 sizeof(struct RxFD);
1668 writel(ring, scc_addr + CH0BRDA);
1669 dscc4_rx_update(dpriv, dev);
1670 writel(MTFi | Idr, scc_addr + CH0CFG);
1671 if (dscc4_do_action(dev, "IDR") < 0)
1672 goto err_xpr;
1673 dpriv->flags &= ~NeedIDR;
1674 smp_wmb();
1675 /* Activate receiver and misc */
1676 scc_writel(0x08050008, dpriv, dev, CCR2);
1677 }
1678 err_xpr:
1679 if (!(state &= ~Xpr))
1680 goto try;
1681 }
1682 if (state & Cd) {
1683 if (debug > 0)
1684 printk(KERN_INFO "%s: CD transition\n", dev->name);
1685 if (!(state &= ~Cd)) /* DEBUG */
1686 goto try;
1687 }
1688 } else { /* ! SccEvt */
1689 if (state & Hi) {
1690#ifdef DSCC4_POLLING
1691 while (!dscc4_tx_poll(dpriv, dev));
1692#endif
1693 printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1694 state &= ~Hi;
1695 }
1696 if (state & Err) {
1697 printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1698 hdlc_stats(dev)->tx_errors++;
1699 state &= ~Err;
1700 }
1701 }
1702 goto try;
1703}
1704
1705static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1706 struct dscc4_dev_priv *dpriv)
1707{
1708 struct net_device *dev = dscc4_to_dev(dpriv);
1709 u32 state;
1710 int cur;
1711
1712try:
1713 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1714 state = dpriv->iqrx[cur];
1715 if (!state)
1716 return;
1717 dpriv->iqrx[cur] = 0;
1718 dpriv->iqrx_current++;
1719
1720 if (state_check(state, dpriv, dev, "Rx") < 0)
1721 return;
1722
1723 if (!(state & SccEvt)){
1724 struct RxFD *rx_fd;
1725
1726 if (debug > 4)
1727 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1728 state);
1729 state &= 0x00ffffff;
1730 if (state & Err) { /* Hold or reset */
1731 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1732 cur = dpriv->rx_current%RX_RING_SIZE;
1733 rx_fd = dpriv->rx_fd + cur;
1734 /*
1735 * Presume we're not facing a DMAC receiver reset.
1736 * As We use the rx size-filtering feature of the
1737 * DSCC4, the beginning of a new frame is waiting in
1738 * the rx fifo. I bet a Receive Data Overflow will
1739 * happen most of time but let's try and avoid it.
1740 * Btw (as for RDO) if one experiences ERR whereas
1741 * the system looks rather idle, there may be a
1742 * problem with latency. In this case, increasing
1743 * RX_RING_SIZE may help.
1744 */
1745 //while (dpriv->rx_needs_refill) {
1746 while (!(rx_fd->state1 & Hold)) {
1747 rx_fd++;
1748 cur++;
1749 if (!(cur = cur%RX_RING_SIZE))
1750 rx_fd = dpriv->rx_fd;
1751 }
1752 //dpriv->rx_needs_refill--;
1753 try_get_rx_skb(dpriv, dev);
1754 if (!rx_fd->data)
1755 goto try;
1756 rx_fd->state1 &= ~Hold;
1757 rx_fd->state2 = 0x00000000;
1758 rx_fd->end = 0xbabeface;
1759 //}
1760 goto try;
1761 }
1762 if (state & Fi) {
1763 dscc4_rx_skb(dpriv, dev);
1764 goto try;
1765 }
1766 if (state & Hi ) { /* HI bit */
1767 printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1768 state &= ~Hi;
1769 goto try;
1770 }
1771 } else { /* SccEvt */
1772 if (debug > 1) {
1773 //FIXME: verifier la presence de tous les evenements
1774 static struct {
1775 u32 mask;
1776 const char *irq_name;
1777 } evts[] = {
1778 { 0x00008000, "TIN"},
1779 { 0x00000020, "RSC"},
1780 { 0x00000010, "PCE"},
1781 { 0x00000008, "PLLA"},
1782 { 0, NULL}
1783 }, *evt;
1784
1785 for (evt = evts; evt->irq_name; evt++) {
1786 if (state & evt->mask) {
1787 printk(KERN_DEBUG "%s: %s\n",
1788 dev->name, evt->irq_name);
1789 if (!(state &= ~evt->mask))
1790 goto try;
1791 }
1792 }
1793 } else {
1794 if (!(state &= ~0x0000c03c))
1795 goto try;
1796 }
1797 if (state & Cts) {
1798 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1799 if (!(state &= ~Cts)) /* DEBUG */
1800 goto try;
1801 }
1802 /*
1803 * Receive Data Overflow (FIXME: fscked)
1804 */
1805 if (state & Rdo) {
1806 struct RxFD *rx_fd;
1807 void __iomem *scc_addr;
1808 int cur;
1809
1810 //if (debug)
1811 // dscc4_rx_dump(dpriv);
1812 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1813
1814 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1815 /*
1816 * This has no effect. Why ?
1817 * ORed with TxSccRes, one sees the CFG ack (for
1818 * the TX part only).
1819 */
1820 scc_writel(RxSccRes, dpriv, dev, CMDR);
1821 dpriv->flags |= RdoSet;
1822
1823 /*
1824 * Let's try and save something in the received data.
1825 * rx_current must be incremented at least once to
1826 * avoid HOLD in the BRDA-to-be-pointed desc.
1827 */
1828 do {
1829 cur = dpriv->rx_current++%RX_RING_SIZE;
1830 rx_fd = dpriv->rx_fd + cur;
1831 if (!(rx_fd->state2 & DataComplete))
1832 break;
1833 if (rx_fd->state2 & FrameAborted) {
1834 hdlc_stats(dev)->rx_over_errors++;
1835 rx_fd->state1 |= Hold;
1836 rx_fd->state2 = 0x00000000;
1837 rx_fd->end = 0xbabeface;
1838 } else
1839 dscc4_rx_skb(dpriv, dev);
1840 } while (1);
1841
1842 if (debug > 0) {
1843 if (dpriv->flags & RdoSet)
1844 printk(KERN_DEBUG
1845 "%s: no RDO in Rx data\n", DRV_NAME);
1846 }
1847#ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1848 /*
1849 * FIXME: must the reset be this violent ?
1850 */
1851#warning "FIXME: CH0BRDA"
1852 writel(dpriv->rx_fd_dma +
1853 (dpriv->rx_current%RX_RING_SIZE)*
1854 sizeof(struct RxFD), scc_addr + CH0BRDA);
1855 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1856 if (dscc4_do_action(dev, "RDR") < 0) {
1857 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1858 dev->name, "RDR");
1859 goto rdo_end;
1860 }
1861 writel(MTFi|Idr, scc_addr + CH0CFG);
1862 if (dscc4_do_action(dev, "IDR") < 0) {
1863 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1864 dev->name, "IDR");
1865 goto rdo_end;
1866 }
1867 rdo_end:
1868#endif
1869 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1870 goto try;
1871 }
1872 if (state & Cd) {
1873 printk(KERN_INFO "%s: CD transition\n", dev->name);
1874 if (!(state &= ~Cd)) /* DEBUG */
1875 goto try;
1876 }
1877 if (state & Flex) {
1878 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1879 if (!(state &= ~Flex))
1880 goto try;
1881 }
1882 }
1883}
1884
1885/*
1886 * I had expected the following to work for the first descriptor
1887 * (tx_fd->state = 0xc0000000)
1888 * - Hold=1 (don't try and branch to the next descripto);
1889 * - No=0 (I want an empty data section, i.e. size=0);
1890 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1891 * It failed and locked solid. Thus the introduction of a dummy skb.
1892 * Problem is acknowledged in errata sheet DS5. Joy :o/
1893 */
1894struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1895{
1896 struct sk_buff *skb;
1897
1898 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1899 if (skb) {
1900 int last = dpriv->tx_dirty%TX_RING_SIZE;
1901 struct TxFD *tx_fd = dpriv->tx_fd + last;
1902
1903 skb->len = DUMMY_SKB_SIZE;
1904 memcpy(skb->data, version, strlen(version)%DUMMY_SKB_SIZE);
1905 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1906 tx_fd->data = pci_map_single(dpriv->pci_priv->pdev, skb->data,
1907 DUMMY_SKB_SIZE, PCI_DMA_TODEVICE);
1908 dpriv->tx_skbuff[last] = skb;
1909 }
1910 return skb;
1911}
1912
1913static int dscc4_init_ring(struct net_device *dev)
1914{
1915 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1916 struct pci_dev *pdev = dpriv->pci_priv->pdev;
1917 struct TxFD *tx_fd;
1918 struct RxFD *rx_fd;
1919 void *ring;
1920 int i;
1921
1922 ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1923 if (!ring)
1924 goto err_out;
1925 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1926
1927 ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1928 if (!ring)
1929 goto err_free_dma_rx;
1930 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1931
1932 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1933 dpriv->tx_dirty = 0xffffffff;
1934 i = dpriv->tx_current = 0;
1935 do {
1936 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1937 tx_fd->complete = 0x00000000;
1938 /* FIXME: NULL should be ok - to be tried */
1939 tx_fd->data = dpriv->tx_fd_dma;
1940 (tx_fd++)->next = (u32)(dpriv->tx_fd_dma +
1941 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1942 } while (i < TX_RING_SIZE);
1943
1944 if (dscc4_init_dummy_skb(dpriv) < 0)
1945 goto err_free_dma_tx;
1946
1947 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1948 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1949 do {
1950 /* size set by the host. Multiple of 4 bytes please */
1951 rx_fd->state1 = HiDesc;
1952 rx_fd->state2 = 0x00000000;
1953 rx_fd->end = 0xbabeface;
1954 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1955 // FIXME: return value verifiee mais traitement suspect
1956 if (try_get_rx_skb(dpriv, dev) >= 0)
1957 dpriv->rx_dirty++;
1958 (rx_fd++)->next = (u32)(dpriv->rx_fd_dma +
1959 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1960 } while (i < RX_RING_SIZE);
1961
1962 return 0;
1963
1964err_free_dma_tx:
1965 pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1966err_free_dma_rx:
1967 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1968err_out:
1969 return -ENOMEM;
1970}
1971
1972static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1973{
1974 struct dscc4_pci_priv *ppriv;
1975 struct dscc4_dev_priv *root;
1976 void __iomem *ioaddr;
1977 int i;
1978
1979 ppriv = pci_get_drvdata(pdev);
1980 root = ppriv->root;
1981
1982 ioaddr = root->base_addr;
1983
1984 dscc4_pci_reset(pdev, ioaddr);
1985
1986 free_irq(pdev->irq, root);
1987 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1988 ppriv->iqcfg_dma);
1989 for (i = 0; i < dev_per_card; i++) {
1990 struct dscc4_dev_priv *dpriv = root + i;
1991
1992 dscc4_release_ring(dpriv);
1993 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1994 dpriv->iqrx, dpriv->iqrx_dma);
1995 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1996 dpriv->iqtx, dpriv->iqtx_dma);
1997 }
1998
1999 dscc4_free1(pdev);
2000
2001 iounmap(ioaddr);
2002
2003 pci_release_region(pdev, 1);
2004 pci_release_region(pdev, 0);
2005
2006 pci_disable_device(pdev);
2007}
2008
2009static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2010 unsigned short parity)
2011{
2012 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2013
2014 if (encoding != ENCODING_NRZ &&
2015 encoding != ENCODING_NRZI &&
2016 encoding != ENCODING_FM_MARK &&
2017 encoding != ENCODING_FM_SPACE &&
2018 encoding != ENCODING_MANCHESTER)
2019 return -EINVAL;
2020
2021 if (parity != PARITY_NONE &&
2022 parity != PARITY_CRC16_PR0_CCITT &&
2023 parity != PARITY_CRC16_PR1_CCITT &&
2024 parity != PARITY_CRC32_PR0_CCITT &&
2025 parity != PARITY_CRC32_PR1_CCITT)
2026 return -EINVAL;
2027
2028 dpriv->encoding = encoding;
2029 dpriv->parity = parity;
2030 return 0;
2031}
2032
2033#ifndef MODULE
2034static int __init dscc4_setup(char *str)
2035{
2036 int *args[] = { &debug, &quartz, NULL }, **p = args;
2037
2038 while (*p && (get_option(&str, *p) == 2))
2039 p++;
2040 return 1;
2041}
2042
2043__setup("dscc4.setup=", dscc4_setup);
2044#endif
2045
2046static struct pci_device_id dscc4_pci_tbl[] = {
2047 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2048 PCI_ANY_ID, PCI_ANY_ID, },
2049 { 0,}
2050};
2051MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2052
2053static struct pci_driver dscc4_driver = {
2054 .name = DRV_NAME,
2055 .id_table = dscc4_pci_tbl,
2056 .probe = dscc4_init_one,
2057 .remove = __devexit_p(dscc4_remove_one),
2058};
2059
2060static int __init dscc4_init_module(void)
2061{
2062 return pci_module_init(&dscc4_driver);
2063}
2064
2065static void __exit dscc4_cleanup_module(void)
2066{
2067 pci_unregister_driver(&dscc4_driver);
2068}
2069
2070module_init(dscc4_init_module);
2071module_exit(dscc4_cleanup_module);