blob: bf457843e03217b9aa02815d7791f0fce72aea2b [file] [log] [blame]
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +10001/*
2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9#define pr_fmt(fmt) "xive-kvm: " fmt
10
11#include <linux/kernel.h>
12#include <linux/kvm_host.h>
13#include <linux/err.h>
14#include <linux/gfp.h>
15#include <linux/spinlock.h>
16#include <linux/delay.h>
17#include <linux/percpu.h>
18#include <linux/cpumask.h>
19#include <asm/uaccess.h>
20#include <asm/kvm_book3s.h>
21#include <asm/kvm_ppc.h>
22#include <asm/hvcall.h>
23#include <asm/xics.h>
24#include <asm/xive.h>
25#include <asm/xive-regs.h>
26#include <asm/debug.h>
Paolo Bonzini4415b332017-05-09 11:50:01 +020027#include <asm/debugfs.h>
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +100028#include <asm/time.h>
29#include <asm/opal.h>
30
31#include <linux/debugfs.h>
32#include <linux/seq_file.h>
33
34#include "book3s_xive.h"
35
36
37/*
38 * Virtual mode variants of the hcalls for use on radix/radix
39 * with AIL. They require the VCPU's VP to be "pushed"
40 *
41 * We still instanciate them here because we use some of the
42 * generated utility functions as well in this file.
43 */
44#define XIVE_RUNTIME_CHECKS
45#define X_PFX xive_vm_
46#define X_STATIC static
47#define X_STAT_PFX stat_vm_
48#define __x_tima xive_tima
49#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
50#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +100051#define __x_writeb __raw_writeb
52#define __x_readw __raw_readw
53#define __x_readq __raw_readq
54#define __x_writeq __raw_writeq
55
56#include "book3s_xive_template.c"
57
58/*
59 * We leave a gap of a couple of interrupts in the queue to
60 * account for the IPI and additional safety guard.
61 */
62#define XIVE_Q_GAP 2
63
64/*
65 * This is a simple trigger for a generic XIVE IRQ. This must
66 * only be called for interrupts that support a trigger page
67 */
68static bool xive_irq_trigger(struct xive_irq_data *xd)
69{
70 /* This should be only for MSIs */
71 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
72 return false;
73
74 /* Those interrupts should always have a trigger page */
75 if (WARN_ON(!xd->trig_mmio))
76 return false;
77
78 out_be64(xd->trig_mmio, 0);
79
80 return true;
81}
82
83static irqreturn_t xive_esc_irq(int irq, void *data)
84{
85 struct kvm_vcpu *vcpu = data;
86
87 /* We use the existing H_PROD mechanism to wake up the target */
88 vcpu->arch.prodded = 1;
89 smp_mb();
90 if (vcpu->arch.ceded)
91 kvmppc_fast_vcpu_kick(vcpu);
92
93 return IRQ_HANDLED;
94}
95
96static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
97{
98 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
99 struct xive_q *q = &xc->queues[prio];
100 char *name = NULL;
101 int rc;
102
103 /* Already there ? */
104 if (xc->esc_virq[prio])
105 return 0;
106
107 /* Hook up the escalation interrupt */
108 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
109 if (!xc->esc_virq[prio]) {
110 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
111 prio, xc->server_num);
112 return -EIO;
113 }
114
115 /*
116 * Future improvement: start with them disabled
117 * and handle DD2 and later scheme of merged escalation
118 * interrupts
119 */
120 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
121 vcpu->kvm->arch.lpid, xc->server_num, prio);
122 if (!name) {
123 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
124 prio, xc->server_num);
125 rc = -ENOMEM;
126 goto error;
127 }
128 rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
129 IRQF_NO_THREAD, name, vcpu);
130 if (rc) {
131 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
132 prio, xc->server_num);
133 goto error;
134 }
135 xc->esc_virq_names[prio] = name;
136 return 0;
137error:
138 irq_dispose_mapping(xc->esc_virq[prio]);
139 xc->esc_virq[prio] = 0;
140 kfree(name);
141 return rc;
142}
143
144static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
145{
146 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
147 struct kvmppc_xive *xive = xc->xive;
148 struct xive_q *q = &xc->queues[prio];
149 void *qpage;
150 int rc;
151
152 if (WARN_ON(q->qpage))
153 return 0;
154
155 /* Allocate the queue and retrieve infos on current node for now */
156 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
157 if (!qpage) {
158 pr_err("Failed to allocate queue %d for VCPU %d\n",
159 prio, xc->server_num);
160 return -ENOMEM;;
161 }
162 memset(qpage, 0, 1 << xive->q_order);
163
164 /*
165 * Reconfigure the queue. This will set q->qpage only once the
166 * queue is fully configured. This is a requirement for prio 0
167 * as we will stop doing EOIs for every IPI as soon as we observe
168 * qpage being non-NULL, and instead will only EOI when we receive
169 * corresponding queue 0 entries
170 */
171 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
172 xive->q_order, true);
173 if (rc)
174 pr_err("Failed to configure queue %d for VCPU %d\n",
175 prio, xc->server_num);
176 return rc;
177}
178
179/* Called with kvm_lock held */
180static int xive_check_provisioning(struct kvm *kvm, u8 prio)
181{
182 struct kvmppc_xive *xive = kvm->arch.xive;
183 struct kvm_vcpu *vcpu;
184 int i, rc;
185
186 lockdep_assert_held(&kvm->lock);
187
188 /* Already provisioned ? */
189 if (xive->qmap & (1 << prio))
190 return 0;
191
192 pr_devel("Provisioning prio... %d\n", prio);
193
194 /* Provision each VCPU and enable escalations */
195 kvm_for_each_vcpu(i, vcpu, kvm) {
196 if (!vcpu->arch.xive_vcpu)
197 continue;
198 rc = xive_provision_queue(vcpu, prio);
199 if (rc == 0)
200 xive_attach_escalation(vcpu, prio);
201 if (rc)
202 return rc;
203 }
204
205 /* Order previous stores and mark it as provisioned */
206 mb();
207 xive->qmap |= (1 << prio);
208 return 0;
209}
210
211static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
212{
213 struct kvm_vcpu *vcpu;
214 struct kvmppc_xive_vcpu *xc;
215 struct xive_q *q;
216
217 /* Locate target server */
218 vcpu = kvmppc_xive_find_server(kvm, server);
219 if (!vcpu) {
220 pr_warn("%s: Can't find server %d\n", __func__, server);
221 return;
222 }
223 xc = vcpu->arch.xive_vcpu;
224 if (WARN_ON(!xc))
225 return;
226
227 q = &xc->queues[prio];
228 atomic_inc(&q->pending_count);
229}
230
231static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
232{
233 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
234 struct xive_q *q;
235 u32 max;
236
237 if (WARN_ON(!xc))
238 return -ENXIO;
239 if (!xc->valid)
240 return -ENXIO;
241
242 q = &xc->queues[prio];
243 if (WARN_ON(!q->qpage))
244 return -ENXIO;
245
246 /* Calculate max number of interrupts in that queue. */
247 max = (q->msk + 1) - XIVE_Q_GAP;
248 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
249}
250
251static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
252{
253 struct kvm_vcpu *vcpu;
254 int i, rc;
255
256 /* Locate target server */
257 vcpu = kvmppc_xive_find_server(kvm, *server);
258 if (!vcpu) {
259 pr_devel("Can't find server %d\n", *server);
260 return -EINVAL;
261 }
262
263 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
264
265 /* Try pick it */
266 rc = xive_try_pick_queue(vcpu, prio);
267 if (rc == 0)
268 return rc;
269
270 pr_devel(" .. failed, looking up candidate...\n");
271
272 /* Failed, pick another VCPU */
273 kvm_for_each_vcpu(i, vcpu, kvm) {
274 if (!vcpu->arch.xive_vcpu)
275 continue;
276 rc = xive_try_pick_queue(vcpu, prio);
277 if (rc == 0) {
278 *server = vcpu->arch.xive_vcpu->server_num;
279 pr_devel(" found on 0x%x/%d\n", *server, prio);
280 return rc;
281 }
282 }
283 pr_devel(" no available target !\n");
284
285 /* No available target ! */
286 return -EBUSY;
287}
288
289static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
290 struct kvmppc_xive_src_block *sb,
291 struct kvmppc_xive_irq_state *state)
292{
293 struct xive_irq_data *xd;
294 u32 hw_num;
295 u8 old_prio;
296 u64 val;
297
298 /*
299 * Take the lock, set masked, try again if racing
300 * with H_EOI
301 */
302 for (;;) {
303 arch_spin_lock(&sb->lock);
304 old_prio = state->guest_priority;
305 state->guest_priority = MASKED;
306 mb();
307 if (!state->in_eoi)
308 break;
309 state->guest_priority = old_prio;
310 arch_spin_unlock(&sb->lock);
311 }
312
313 /* No change ? Bail */
314 if (old_prio == MASKED)
315 return old_prio;
316
317 /* Get the right irq */
318 kvmppc_xive_select_irq(state, &hw_num, &xd);
319
320 /*
321 * If the interrupt is marked as needing masking via
322 * firmware, we do it here. Firmware masking however
323 * is "lossy", it won't return the old p and q bits
324 * and won't set the interrupt to a state where it will
325 * record queued ones. If this is an issue we should do
326 * lazy masking instead.
327 *
328 * For now, we work around this in unmask by forcing
329 * an interrupt whenever we unmask a non-LSI via FW
330 * (if ever).
331 */
332 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
333 xive_native_configure_irq(hw_num,
334 xive->vp_base + state->act_server,
335 MASKED, state->number);
336 /* set old_p so we can track if an H_EOI was done */
337 state->old_p = true;
338 state->old_q = false;
339 } else {
340 /* Set PQ to 10, return old P and old Q and remember them */
341 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
342 state->old_p = !!(val & 2);
343 state->old_q = !!(val & 1);
344
345 /*
346 * Synchronize hardware to sensure the queues are updated
347 * when masking
348 */
349 xive_native_sync_source(hw_num);
350 }
351
352 return old_prio;
353}
354
355static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
356 struct kvmppc_xive_irq_state *state)
357{
358 /*
359 * Take the lock try again if racing with H_EOI
360 */
361 for (;;) {
362 arch_spin_lock(&sb->lock);
363 if (!state->in_eoi)
364 break;
365 arch_spin_unlock(&sb->lock);
366 }
367}
368
369static void xive_finish_unmask(struct kvmppc_xive *xive,
370 struct kvmppc_xive_src_block *sb,
371 struct kvmppc_xive_irq_state *state,
372 u8 prio)
373{
374 struct xive_irq_data *xd;
375 u32 hw_num;
376
377 /* If we aren't changing a thing, move on */
378 if (state->guest_priority != MASKED)
379 goto bail;
380
381 /* Get the right irq */
382 kvmppc_xive_select_irq(state, &hw_num, &xd);
383
384 /*
385 * See command in xive_lock_and_mask() concerning masking
386 * via firmware.
387 */
388 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
389 xive_native_configure_irq(hw_num,
390 xive->vp_base + state->act_server,
391 state->act_priority, state->number);
392 /* If an EOI is needed, do it here */
393 if (!state->old_p)
394 xive_vm_source_eoi(hw_num, xd);
395 /* If this is not an LSI, force a trigger */
396 if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
397 xive_irq_trigger(xd);
398 goto bail;
399 }
400
401 /* Old Q set, set PQ to 11 */
402 if (state->old_q)
403 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
404
405 /*
406 * If not old P, then perform an "effective" EOI,
407 * on the source. This will handle the cases where
408 * FW EOI is needed.
409 */
410 if (!state->old_p)
411 xive_vm_source_eoi(hw_num, xd);
412
413 /* Synchronize ordering and mark unmasked */
414 mb();
415bail:
416 state->guest_priority = prio;
417}
418
419/*
420 * Target an interrupt to a given server/prio, this will fallback
421 * to another server if necessary and perform the HW targetting
422 * updates as needed
423 *
424 * NOTE: Must be called with the state lock held
425 */
426static int xive_target_interrupt(struct kvm *kvm,
427 struct kvmppc_xive_irq_state *state,
428 u32 server, u8 prio)
429{
430 struct kvmppc_xive *xive = kvm->arch.xive;
431 u32 hw_num;
432 int rc;
433
434 /*
435 * This will return a tentative server and actual
436 * priority. The count for that new target will have
437 * already been incremented.
438 */
439 rc = xive_select_target(kvm, &server, prio);
440
441 /*
442 * We failed to find a target ? Not much we can do
443 * at least until we support the GIQ.
444 */
445 if (rc)
446 return rc;
447
448 /*
449 * Increment the old queue pending count if there
450 * was one so that the old queue count gets adjusted later
451 * when observed to be empty.
452 */
453 if (state->act_priority != MASKED)
454 xive_inc_q_pending(kvm,
455 state->act_server,
456 state->act_priority);
457 /*
458 * Update state and HW
459 */
460 state->act_priority = prio;
461 state->act_server = server;
462
463 /* Get the right irq */
464 kvmppc_xive_select_irq(state, &hw_num, NULL);
465
466 return xive_native_configure_irq(hw_num,
467 xive->vp_base + server,
468 prio, state->number);
469}
470
471/*
472 * Targetting rules: In order to avoid losing track of
473 * pending interrupts accross mask and unmask, which would
474 * allow queue overflows, we implement the following rules:
475 *
476 * - Unless it was never enabled (or we run out of capacity)
477 * an interrupt is always targetted at a valid server/queue
478 * pair even when "masked" by the guest. This pair tends to
479 * be the last one used but it can be changed under some
480 * circumstances. That allows us to separate targetting
481 * from masking, we only handle accounting during (re)targetting,
482 * this also allows us to let an interrupt drain into its target
483 * queue after masking, avoiding complex schemes to remove
484 * interrupts out of remote processor queues.
485 *
486 * - When masking, we set PQ to 10 and save the previous value
487 * of P and Q.
488 *
489 * - When unmasking, if saved Q was set, we set PQ to 11
490 * otherwise we leave PQ to the HW state which will be either
491 * 10 if nothing happened or 11 if the interrupt fired while
492 * masked. Effectively we are OR'ing the previous Q into the
493 * HW Q.
494 *
495 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
496 * which will unmask the interrupt and shoot a new one if Q was
497 * set.
498 *
499 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
500 * effectively meaning an H_EOI from the guest is still expected
501 * for that interrupt).
502 *
503 * - If H_EOI occurs while masked, we clear the saved P.
504 *
505 * - When changing target, we account on the new target and
506 * increment a separate "pending" counter on the old one.
507 * This pending counter will be used to decrement the old
508 * target's count when its queue has been observed empty.
509 */
510
511int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
512 u32 priority)
513{
514 struct kvmppc_xive *xive = kvm->arch.xive;
515 struct kvmppc_xive_src_block *sb;
516 struct kvmppc_xive_irq_state *state;
517 u8 new_act_prio;
518 int rc = 0;
519 u16 idx;
520
521 if (!xive)
522 return -ENODEV;
523
524 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
525 irq, server, priority);
526
527 /* First, check provisioning of queues */
528 if (priority != MASKED)
529 rc = xive_check_provisioning(xive->kvm,
530 xive_prio_from_guest(priority));
531 if (rc) {
532 pr_devel(" provisioning failure %d !\n", rc);
533 return rc;
534 }
535
536 sb = kvmppc_xive_find_source(xive, irq, &idx);
537 if (!sb)
538 return -EINVAL;
539 state = &sb->irq_state[idx];
540
541 /*
542 * We first handle masking/unmasking since the locking
543 * might need to be retried due to EOIs, we'll handle
544 * targetting changes later. These functions will return
545 * with the SB lock held.
546 *
547 * xive_lock_and_mask() will also set state->guest_priority
548 * but won't otherwise change other fields of the state.
549 *
550 * xive_lock_for_unmask will not actually unmask, this will
551 * be done later by xive_finish_unmask() once the targetting
552 * has been done, so we don't try to unmask an interrupt
553 * that hasn't yet been targetted.
554 */
555 if (priority == MASKED)
556 xive_lock_and_mask(xive, sb, state);
557 else
558 xive_lock_for_unmask(sb, state);
559
560
561 /*
562 * Then we handle targetting.
563 *
564 * First calculate a new "actual priority"
565 */
566 new_act_prio = state->act_priority;
567 if (priority != MASKED)
568 new_act_prio = xive_prio_from_guest(priority);
569
570 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
571 new_act_prio, state->act_server, state->act_priority);
572
573 /*
574 * Then check if we actually need to change anything,
575 *
576 * The condition for re-targetting the interrupt is that
577 * we have a valid new priority (new_act_prio is not 0xff)
578 * and either the server or the priority changed.
579 *
580 * Note: If act_priority was ff and the new priority is
581 * also ff, we don't do anything and leave the interrupt
582 * untargetted. An attempt of doing an int_on on an
583 * untargetted interrupt will fail. If that is a problem
584 * we could initialize interrupts with valid default
585 */
586
587 if (new_act_prio != MASKED &&
588 (state->act_server != server ||
589 state->act_priority != new_act_prio))
590 rc = xive_target_interrupt(kvm, state, server, new_act_prio);
591
592 /*
593 * Perform the final unmasking of the interrupt source
594 * if necessary
595 */
596 if (priority != MASKED)
597 xive_finish_unmask(xive, sb, state, priority);
598
599 /*
600 * Finally Update saved_priority to match. Only int_on/off
601 * set this field to a different value.
602 */
603 state->saved_priority = priority;
604
605 arch_spin_unlock(&sb->lock);
606 return rc;
607}
608
609int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
610 u32 *priority)
611{
612 struct kvmppc_xive *xive = kvm->arch.xive;
613 struct kvmppc_xive_src_block *sb;
614 struct kvmppc_xive_irq_state *state;
615 u16 idx;
616
617 if (!xive)
618 return -ENODEV;
619
620 sb = kvmppc_xive_find_source(xive, irq, &idx);
621 if (!sb)
622 return -EINVAL;
623 state = &sb->irq_state[idx];
624 arch_spin_lock(&sb->lock);
Sam Bobroff2fb1e942017-09-26 16:47:04 +1000625 *server = state->act_server;
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +1000626 *priority = state->guest_priority;
627 arch_spin_unlock(&sb->lock);
628
629 return 0;
630}
631
632int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
633{
634 struct kvmppc_xive *xive = kvm->arch.xive;
635 struct kvmppc_xive_src_block *sb;
636 struct kvmppc_xive_irq_state *state;
637 u16 idx;
638
639 if (!xive)
640 return -ENODEV;
641
642 sb = kvmppc_xive_find_source(xive, irq, &idx);
643 if (!sb)
644 return -EINVAL;
645 state = &sb->irq_state[idx];
646
647 pr_devel("int_on(irq=0x%x)\n", irq);
648
649 /*
650 * Check if interrupt was not targetted
651 */
652 if (state->act_priority == MASKED) {
653 pr_devel("int_on on untargetted interrupt\n");
654 return -EINVAL;
655 }
656
657 /* If saved_priority is 0xff, do nothing */
658 if (state->saved_priority == MASKED)
659 return 0;
660
661 /*
662 * Lock and unmask it.
663 */
664 xive_lock_for_unmask(sb, state);
665 xive_finish_unmask(xive, sb, state, state->saved_priority);
666 arch_spin_unlock(&sb->lock);
667
668 return 0;
669}
670
671int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
672{
673 struct kvmppc_xive *xive = kvm->arch.xive;
674 struct kvmppc_xive_src_block *sb;
675 struct kvmppc_xive_irq_state *state;
676 u16 idx;
677
678 if (!xive)
679 return -ENODEV;
680
681 sb = kvmppc_xive_find_source(xive, irq, &idx);
682 if (!sb)
683 return -EINVAL;
684 state = &sb->irq_state[idx];
685
686 pr_devel("int_off(irq=0x%x)\n", irq);
687
688 /*
689 * Lock and mask
690 */
691 state->saved_priority = xive_lock_and_mask(xive, sb, state);
692 arch_spin_unlock(&sb->lock);
693
694 return 0;
695}
696
697static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
698{
699 struct kvmppc_xive_src_block *sb;
700 struct kvmppc_xive_irq_state *state;
701 u16 idx;
702
703 sb = kvmppc_xive_find_source(xive, irq, &idx);
704 if (!sb)
705 return false;
706 state = &sb->irq_state[idx];
707 if (!state->valid)
708 return false;
709
710 /*
711 * Trigger the IPI. This assumes we never restore a pass-through
712 * interrupt which should be safe enough
713 */
714 xive_irq_trigger(&state->ipi_data);
715
716 return true;
717}
718
719u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
720{
721 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
722
723 if (!xc)
724 return 0;
725
726 /* Return the per-cpu state for state saving/migration */
727 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
728 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT;
729}
730
731int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
732{
733 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
734 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
735 u8 cppr, mfrr;
736 u32 xisr;
737
738 if (!xc || !xive)
739 return -ENOENT;
740
741 /* Grab individual state fields. We don't use pending_pri */
742 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
743 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
744 KVM_REG_PPC_ICP_XISR_MASK;
745 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
746
747 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
748 xc->server_num, cppr, mfrr, xisr);
749
750 /*
751 * We can't update the state of a "pushed" VCPU, but that
752 * shouldn't happen.
753 */
754 if (WARN_ON(vcpu->arch.xive_pushed))
755 return -EIO;
756
757 /* Update VCPU HW saved state */
758 vcpu->arch.xive_saved_state.cppr = cppr;
759 xc->hw_cppr = xc->cppr = cppr;
760
761 /*
762 * Update MFRR state. If it's not 0xff, we mark the VCPU as
763 * having a pending MFRR change, which will re-evaluate the
764 * target. The VCPU will thus potentially get a spurious
765 * interrupt but that's not a big deal.
766 */
767 xc->mfrr = mfrr;
768 if (mfrr < cppr)
769 xive_irq_trigger(&xc->vp_ipi_data);
770
771 /*
772 * Now saved XIRR is "interesting". It means there's something in
773 * the legacy "1 element" queue... for an IPI we simply ignore it,
774 * as the MFRR restore will handle that. For anything else we need
775 * to force a resend of the source.
776 * However the source may not have been setup yet. If that's the
777 * case, we keep that info and increment a counter in the xive to
778 * tell subsequent xive_set_source() to go look.
779 */
780 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
781 xc->delayed_irq = xisr;
782 xive->delayed_irqs++;
783 pr_devel(" xisr restore delayed\n");
784 }
785
786 return 0;
787}
788
789int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
790 struct irq_desc *host_desc)
791{
792 struct kvmppc_xive *xive = kvm->arch.xive;
793 struct kvmppc_xive_src_block *sb;
794 struct kvmppc_xive_irq_state *state;
795 struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
796 unsigned int host_irq = irq_desc_get_irq(host_desc);
797 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
798 u16 idx;
799 u8 prio;
800 int rc;
801
802 if (!xive)
803 return -ENODEV;
804
805 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
806
807 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
808 if (!sb)
809 return -EINVAL;
810 state = &sb->irq_state[idx];
811
812 /*
813 * Mark the passed-through interrupt as going to a VCPU,
814 * this will prevent further EOIs and similar operations
815 * from the XIVE code. It will also mask the interrupt
816 * to either PQ=10 or 11 state, the latter if the interrupt
817 * is pending. This will allow us to unmask or retrigger it
818 * after routing it to the guest with a simple EOI.
819 *
820 * The "state" argument is a "token", all it needs is to be
821 * non-NULL to switch to passed-through or NULL for the
822 * other way around. We may not yet have an actual VCPU
823 * target here and we don't really care.
824 */
825 rc = irq_set_vcpu_affinity(host_irq, state);
826 if (rc) {
827 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
828 return rc;
829 }
830
831 /*
832 * Mask and read state of IPI. We need to know if its P bit
833 * is set as that means it's potentially already using a
834 * queue entry in the target
835 */
836 prio = xive_lock_and_mask(xive, sb, state);
837 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
838 state->old_p, state->old_q);
839
840 /* Turn the IPI hard off */
841 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
842
843 /* Grab info about irq */
844 state->pt_number = hw_irq;
845 state->pt_data = irq_data_get_irq_handler_data(host_data);
846
847 /*
848 * Configure the IRQ to match the existing configuration of
849 * the IPI if it was already targetted. Otherwise this will
850 * mask the interrupt in a lossy way (act_priority is 0xff)
851 * which is fine for a never started interrupt.
852 */
853 xive_native_configure_irq(hw_irq,
854 xive->vp_base + state->act_server,
855 state->act_priority, state->number);
856
857 /*
858 * We do an EOI to enable the interrupt (and retrigger if needed)
859 * if the guest has the interrupt unmasked and the P bit was *not*
860 * set in the IPI. If it was set, we know a slot may still be in
861 * use in the target queue thus we have to wait for a guest
862 * originated EOI
863 */
864 if (prio != MASKED && !state->old_p)
865 xive_vm_source_eoi(hw_irq, state->pt_data);
866
867 /* Clear old_p/old_q as they are no longer relevant */
868 state->old_p = state->old_q = false;
869
870 /* Restore guest prio (unlocks EOI) */
871 mb();
872 state->guest_priority = prio;
873 arch_spin_unlock(&sb->lock);
874
875 return 0;
876}
877EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
878
879int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
880 struct irq_desc *host_desc)
881{
882 struct kvmppc_xive *xive = kvm->arch.xive;
883 struct kvmppc_xive_src_block *sb;
884 struct kvmppc_xive_irq_state *state;
885 unsigned int host_irq = irq_desc_get_irq(host_desc);
886 u16 idx;
887 u8 prio;
888 int rc;
889
890 if (!xive)
891 return -ENODEV;
892
893 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
894
895 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
896 if (!sb)
897 return -EINVAL;
898 state = &sb->irq_state[idx];
899
900 /*
901 * Mask and read state of IRQ. We need to know if its P bit
902 * is set as that means it's potentially already using a
903 * queue entry in the target
904 */
905 prio = xive_lock_and_mask(xive, sb, state);
906 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
907 state->old_p, state->old_q);
908
909 /*
910 * If old_p is set, the interrupt is pending, we switch it to
911 * PQ=11. This will force a resend in the host so the interrupt
912 * isn't lost to whatver host driver may pick it up
913 */
914 if (state->old_p)
915 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
916
917 /* Release the passed-through interrupt to the host */
918 rc = irq_set_vcpu_affinity(host_irq, NULL);
919 if (rc) {
920 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
921 return rc;
922 }
923
924 /* Forget about the IRQ */
925 state->pt_number = 0;
926 state->pt_data = NULL;
927
928 /* Reconfigure the IPI */
929 xive_native_configure_irq(state->ipi_number,
930 xive->vp_base + state->act_server,
931 state->act_priority, state->number);
932
933 /*
934 * If old_p is set (we have a queue entry potentially
935 * occupied) or the interrupt is masked, we set the IPI
936 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
937 */
938 if (prio == MASKED || state->old_p)
939 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
940 else
941 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
942
943 /* Restore guest prio (unlocks EOI) */
944 mb();
945 state->guest_priority = prio;
946 arch_spin_unlock(&sb->lock);
947
948 return 0;
949}
950EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
951
952static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
953{
954 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
955 struct kvm *kvm = vcpu->kvm;
956 struct kvmppc_xive *xive = kvm->arch.xive;
957 int i, j;
958
959 for (i = 0; i <= xive->max_sbid; i++) {
960 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
961
962 if (!sb)
963 continue;
964 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
965 struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
966
967 if (!state->valid)
968 continue;
969 if (state->act_priority == MASKED)
970 continue;
971 if (state->act_server != xc->server_num)
972 continue;
973
974 /* Clean it up */
975 arch_spin_lock(&sb->lock);
976 state->act_priority = MASKED;
977 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
978 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
979 if (state->pt_number) {
980 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
981 xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
982 }
983 arch_spin_unlock(&sb->lock);
984 }
985 }
986}
987
988void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
989{
990 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
991 struct kvmppc_xive *xive = xc->xive;
992 int i;
993
994 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
995
996 /* Ensure no interrupt is still routed to that VP */
997 xc->valid = false;
998 kvmppc_xive_disable_vcpu_interrupts(vcpu);
999
1000 /* Mask the VP IPI */
1001 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1002
1003 /* Disable the VP */
1004 xive_native_disable_vp(xc->vp_id);
1005
1006 /* Free the queues & associated interrupts */
1007 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1008 struct xive_q *q = &xc->queues[i];
1009
1010 /* Free the escalation irq */
1011 if (xc->esc_virq[i]) {
1012 free_irq(xc->esc_virq[i], vcpu);
1013 irq_dispose_mapping(xc->esc_virq[i]);
1014 kfree(xc->esc_virq_names[i]);
1015 }
1016 /* Free the queue */
1017 xive_native_disable_queue(xc->vp_id, q, i);
1018 if (q->qpage) {
1019 free_pages((unsigned long)q->qpage,
1020 xive->q_page_order);
1021 q->qpage = NULL;
1022 }
1023 }
1024
1025 /* Free the IPI */
1026 if (xc->vp_ipi) {
1027 xive_cleanup_irq_data(&xc->vp_ipi_data);
1028 xive_native_free_irq(xc->vp_ipi);
1029 }
1030 /* Free the VP */
1031 kfree(xc);
1032}
1033
1034int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1035 struct kvm_vcpu *vcpu, u32 cpu)
1036{
1037 struct kvmppc_xive *xive = dev->private;
1038 struct kvmppc_xive_vcpu *xc;
1039 int i, r = -EBUSY;
1040
1041 pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1042
1043 if (dev->ops != &kvm_xive_ops) {
1044 pr_devel("Wrong ops !\n");
1045 return -EPERM;
1046 }
1047 if (xive->kvm != vcpu->kvm)
1048 return -EPERM;
1049 if (vcpu->arch.irq_type)
1050 return -EBUSY;
1051 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1052 pr_devel("Duplicate !\n");
1053 return -EEXIST;
1054 }
1055 if (cpu >= KVM_MAX_VCPUS) {
1056 pr_devel("Out of bounds !\n");
1057 return -EINVAL;
1058 }
1059 xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1060 if (!xc)
1061 return -ENOMEM;
1062
1063 /* We need to synchronize with queue provisioning */
1064 mutex_lock(&vcpu->kvm->lock);
1065 vcpu->arch.xive_vcpu = xc;
1066 xc->xive = xive;
1067 xc->vcpu = vcpu;
1068 xc->server_num = cpu;
1069 xc->vp_id = xive->vp_base + cpu;
1070 xc->mfrr = 0xff;
1071 xc->valid = true;
1072
1073 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1074 if (r)
1075 goto bail;
1076
1077 /* Configure VCPU fields for use by assembly push/pull */
1078 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1079 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1080
1081 /* Allocate IPI */
1082 xc->vp_ipi = xive_native_alloc_irq();
1083 if (!xc->vp_ipi) {
1084 r = -EIO;
1085 goto bail;
1086 }
1087 pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1088
1089 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1090 if (r)
1091 goto bail;
1092
1093 /*
1094 * Initialize queues. Initially we set them all for no queueing
1095 * and we enable escalation for queue 0 only which we'll use for
1096 * our mfrr change notifications. If the VCPU is hot-plugged, we
1097 * do handle provisioning however.
1098 */
1099 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1100 struct xive_q *q = &xc->queues[i];
1101
1102 /* Is queue already enabled ? Provision it */
1103 if (xive->qmap & (1 << i)) {
1104 r = xive_provision_queue(vcpu, i);
1105 if (r == 0)
1106 xive_attach_escalation(vcpu, i);
1107 if (r)
1108 goto bail;
1109 } else {
1110 r = xive_native_configure_queue(xc->vp_id,
1111 q, i, NULL, 0, true);
1112 if (r) {
1113 pr_err("Failed to configure queue %d for VCPU %d\n",
1114 i, cpu);
1115 goto bail;
1116 }
1117 }
1118 }
1119
1120 /* If not done above, attach priority 0 escalation */
1121 r = xive_attach_escalation(vcpu, 0);
1122 if (r)
1123 goto bail;
1124
1125 /* Enable the VP */
1126 r = xive_native_enable_vp(xc->vp_id);
1127 if (r)
1128 goto bail;
1129
1130 /* Route the IPI */
1131 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1132 if (!r)
1133 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1134
1135bail:
1136 mutex_unlock(&vcpu->kvm->lock);
1137 if (r) {
1138 kvmppc_xive_cleanup_vcpu(vcpu);
1139 return r;
1140 }
1141
1142 vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1143 return 0;
1144}
1145
1146/*
1147 * Scanning of queues before/after migration save
1148 */
1149static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1150{
1151 struct kvmppc_xive_src_block *sb;
1152 struct kvmppc_xive_irq_state *state;
1153 u16 idx;
1154
1155 sb = kvmppc_xive_find_source(xive, irq, &idx);
1156 if (!sb)
1157 return;
1158
1159 state = &sb->irq_state[idx];
1160
1161 /* Some sanity checking */
1162 if (!state->valid) {
1163 pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1164 return;
1165 }
1166
1167 /*
1168 * If the interrupt is in a queue it should have P set.
1169 * We warn so that gets reported. A backtrace isn't useful
1170 * so no need to use a WARN_ON.
1171 */
1172 if (!state->saved_p)
1173 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1174
1175 /* Set flag */
1176 state->in_queue = true;
1177}
1178
1179static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1180 struct kvmppc_xive_src_block *sb,
1181 u32 irq)
1182{
1183 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1184
1185 if (!state->valid)
1186 return;
1187
1188 /* Mask and save state, this will also sync HW queues */
1189 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1190
1191 /* Transfer P and Q */
1192 state->saved_p = state->old_p;
1193 state->saved_q = state->old_q;
1194
1195 /* Unlock */
1196 arch_spin_unlock(&sb->lock);
1197}
1198
1199static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1200 struct kvmppc_xive_src_block *sb,
1201 u32 irq)
1202{
1203 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1204
1205 if (!state->valid)
1206 return;
1207
1208 /*
1209 * Lock / exclude EOI (not technically necessary if the
1210 * guest isn't running concurrently. If this becomes a
1211 * performance issue we can probably remove the lock.
1212 */
1213 xive_lock_for_unmask(sb, state);
1214
1215 /* Restore mask/prio if it wasn't masked */
1216 if (state->saved_scan_prio != MASKED)
1217 xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1218
1219 /* Unlock */
1220 arch_spin_unlock(&sb->lock);
1221}
1222
1223static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1224{
1225 u32 idx = q->idx;
1226 u32 toggle = q->toggle;
1227 u32 irq;
1228
1229 do {
1230 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1231 if (irq > XICS_IPI)
1232 xive_pre_save_set_queued(xive, irq);
1233 } while(irq);
1234}
1235
1236static void xive_pre_save_scan(struct kvmppc_xive *xive)
1237{
1238 struct kvm_vcpu *vcpu = NULL;
1239 int i, j;
1240
1241 /*
1242 * See comment in xive_get_source() about how this
1243 * work. Collect a stable state for all interrupts
1244 */
1245 for (i = 0; i <= xive->max_sbid; i++) {
1246 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1247 if (!sb)
1248 continue;
1249 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1250 xive_pre_save_mask_irq(xive, sb, j);
1251 }
1252
1253 /* Then scan the queues and update the "in_queue" flag */
1254 kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1255 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1256 if (!xc)
1257 continue;
1258 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
Paul Mackerras00c14752017-06-30 16:39:55 +10001259 if (xc->queues[j].qpage)
1260 xive_pre_save_queue(xive, &xc->queues[j]);
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +10001261 }
1262 }
1263
1264 /* Finally restore interrupt states */
1265 for (i = 0; i <= xive->max_sbid; i++) {
1266 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1267 if (!sb)
1268 continue;
1269 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1270 xive_pre_save_unmask_irq(xive, sb, j);
1271 }
1272}
1273
1274static void xive_post_save_scan(struct kvmppc_xive *xive)
1275{
1276 u32 i, j;
1277
1278 /* Clear all the in_queue flags */
1279 for (i = 0; i <= xive->max_sbid; i++) {
1280 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1281 if (!sb)
1282 continue;
1283 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1284 sb->irq_state[j].in_queue = false;
1285 }
1286
1287 /* Next get_source() will do a new scan */
1288 xive->saved_src_count = 0;
1289}
1290
1291/*
1292 * This returns the source configuration and state to user space.
1293 */
1294static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1295{
1296 struct kvmppc_xive_src_block *sb;
1297 struct kvmppc_xive_irq_state *state;
1298 u64 __user *ubufp = (u64 __user *) addr;
1299 u64 val, prio;
1300 u16 idx;
1301
1302 sb = kvmppc_xive_find_source(xive, irq, &idx);
1303 if (!sb)
1304 return -ENOENT;
1305
1306 state = &sb->irq_state[idx];
1307
1308 if (!state->valid)
1309 return -ENOENT;
1310
1311 pr_devel("get_source(%ld)...\n", irq);
1312
1313 /*
1314 * So to properly save the state into something that looks like a
1315 * XICS migration stream we cannot treat interrupts individually.
1316 *
1317 * We need, instead, mask them all (& save their previous PQ state)
1318 * to get a stable state in the HW, then sync them to ensure that
1319 * any interrupt that had already fired hits its queue, and finally
1320 * scan all the queues to collect which interrupts are still present
1321 * in the queues, so we can set the "pending" flag on them and
1322 * they can be resent on restore.
1323 *
1324 * So we do it all when the "first" interrupt gets saved, all the
1325 * state is collected at that point, the rest of xive_get_source()
1326 * will merely collect and convert that state to the expected
1327 * userspace bit mask.
1328 */
1329 if (xive->saved_src_count == 0)
1330 xive_pre_save_scan(xive);
1331 xive->saved_src_count++;
1332
1333 /* Convert saved state into something compatible with xics */
Sam Bobroff2fb1e942017-09-26 16:47:04 +10001334 val = state->act_server;
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +10001335 prio = state->saved_scan_prio;
1336
1337 if (prio == MASKED) {
1338 val |= KVM_XICS_MASKED;
1339 prio = state->saved_priority;
1340 }
1341 val |= prio << KVM_XICS_PRIORITY_SHIFT;
1342 if (state->lsi) {
1343 val |= KVM_XICS_LEVEL_SENSITIVE;
1344 if (state->saved_p)
1345 val |= KVM_XICS_PENDING;
1346 } else {
1347 if (state->saved_p)
1348 val |= KVM_XICS_PRESENTED;
1349
1350 if (state->saved_q)
1351 val |= KVM_XICS_QUEUED;
1352
1353 /*
1354 * We mark it pending (which will attempt a re-delivery)
1355 * if we are in a queue *or* we were masked and had
1356 * Q set which is equivalent to the XICS "masked pending"
1357 * state
1358 */
1359 if (state->in_queue || (prio == MASKED && state->saved_q))
1360 val |= KVM_XICS_PENDING;
1361 }
1362
1363 /*
1364 * If that was the last interrupt saved, reset the
1365 * in_queue flags
1366 */
1367 if (xive->saved_src_count == xive->src_count)
1368 xive_post_save_scan(xive);
1369
1370 /* Copy the result to userspace */
1371 if (put_user(val, ubufp))
1372 return -EFAULT;
1373
1374 return 0;
1375}
1376
1377static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1378 int irq)
1379{
1380 struct kvm *kvm = xive->kvm;
1381 struct kvmppc_xive_src_block *sb;
1382 int i, bid;
1383
1384 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1385
1386 mutex_lock(&kvm->lock);
1387
1388 /* block already exists - somebody else got here first */
1389 if (xive->src_blocks[bid])
1390 goto out;
1391
1392 /* Create the ICS */
1393 sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1394 if (!sb)
1395 goto out;
1396
1397 sb->id = bid;
1398
1399 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1400 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1401 sb->irq_state[i].guest_priority = MASKED;
1402 sb->irq_state[i].saved_priority = MASKED;
1403 sb->irq_state[i].act_priority = MASKED;
1404 }
1405 smp_wmb();
1406 xive->src_blocks[bid] = sb;
1407
1408 if (bid > xive->max_sbid)
1409 xive->max_sbid = bid;
1410
1411out:
1412 mutex_unlock(&kvm->lock);
1413 return xive->src_blocks[bid];
1414}
1415
1416static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1417{
1418 struct kvm *kvm = xive->kvm;
1419 struct kvm_vcpu *vcpu = NULL;
1420 int i;
1421
1422 kvm_for_each_vcpu(i, vcpu, kvm) {
1423 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1424
1425 if (!xc)
1426 continue;
1427
1428 if (xc->delayed_irq == irq) {
1429 xc->delayed_irq = 0;
1430 xive->delayed_irqs--;
1431 return true;
1432 }
1433 }
1434 return false;
1435}
1436
1437static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1438{
1439 struct kvmppc_xive_src_block *sb;
1440 struct kvmppc_xive_irq_state *state;
1441 u64 __user *ubufp = (u64 __user *) addr;
1442 u16 idx;
1443 u64 val;
1444 u8 act_prio, guest_prio;
1445 u32 server;
1446 int rc = 0;
1447
1448 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1449 return -ENOENT;
1450
1451 pr_devel("set_source(irq=0x%lx)\n", irq);
1452
1453 /* Find the source */
1454 sb = kvmppc_xive_find_source(xive, irq, &idx);
1455 if (!sb) {
1456 pr_devel("No source, creating source block...\n");
1457 sb = xive_create_src_block(xive, irq);
1458 if (!sb) {
1459 pr_devel("Failed to create block...\n");
1460 return -ENOMEM;
1461 }
1462 }
1463 state = &sb->irq_state[idx];
1464
1465 /* Read user passed data */
1466 if (get_user(val, ubufp)) {
1467 pr_devel("fault getting user info !\n");
1468 return -EFAULT;
1469 }
1470
1471 server = val & KVM_XICS_DESTINATION_MASK;
1472 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1473
1474 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1475 val, server, guest_prio);
1476 /*
1477 * If the source doesn't already have an IPI, allocate
1478 * one and get the corresponding data
1479 */
1480 if (!state->ipi_number) {
1481 state->ipi_number = xive_native_alloc_irq();
1482 if (state->ipi_number == 0) {
1483 pr_devel("Failed to allocate IPI !\n");
1484 return -ENOMEM;
1485 }
1486 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1487 pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1488 }
1489
1490 /*
1491 * We use lock_and_mask() to set us in the right masked
1492 * state. We will override that state from the saved state
1493 * further down, but this will handle the cases of interrupts
1494 * that need FW masking. We set the initial guest_priority to
1495 * 0 before calling it to ensure it actually performs the masking.
1496 */
1497 state->guest_priority = 0;
1498 xive_lock_and_mask(xive, sb, state);
1499
1500 /*
1501 * Now, we select a target if we have one. If we don't we
1502 * leave the interrupt untargetted. It means that an interrupt
1503 * can become "untargetted" accross migration if it was masked
1504 * by set_xive() but there is little we can do about it.
1505 */
1506
1507 /* First convert prio and mark interrupt as untargetted */
1508 act_prio = xive_prio_from_guest(guest_prio);
1509 state->act_priority = MASKED;
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +10001510
1511 /*
1512 * We need to drop the lock due to the mutex below. Hopefully
1513 * nothing is touching that interrupt yet since it hasn't been
1514 * advertized to a running guest yet
1515 */
1516 arch_spin_unlock(&sb->lock);
1517
1518 /* If we have a priority target the interrupt */
1519 if (act_prio != MASKED) {
1520 /* First, check provisioning of queues */
1521 mutex_lock(&xive->kvm->lock);
1522 rc = xive_check_provisioning(xive->kvm, act_prio);
1523 mutex_unlock(&xive->kvm->lock);
1524
1525 /* Target interrupt */
1526 if (rc == 0)
1527 rc = xive_target_interrupt(xive->kvm, state,
1528 server, act_prio);
1529 /*
1530 * If provisioning or targetting failed, leave it
1531 * alone and masked. It will remain disabled until
1532 * the guest re-targets it.
1533 */
1534 }
1535
1536 /*
1537 * Find out if this was a delayed irq stashed in an ICP,
1538 * in which case, treat it as pending
1539 */
1540 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1541 val |= KVM_XICS_PENDING;
1542 pr_devel(" Found delayed ! forcing PENDING !\n");
1543 }
1544
1545 /* Cleanup the SW state */
1546 state->old_p = false;
1547 state->old_q = false;
1548 state->lsi = false;
1549 state->asserted = false;
1550
1551 /* Restore LSI state */
1552 if (val & KVM_XICS_LEVEL_SENSITIVE) {
1553 state->lsi = true;
1554 if (val & KVM_XICS_PENDING)
1555 state->asserted = true;
1556 pr_devel(" LSI ! Asserted=%d\n", state->asserted);
1557 }
1558
1559 /*
1560 * Restore P and Q. If the interrupt was pending, we
1561 * force both P and Q, which will trigger a resend.
1562 *
1563 * That means that a guest that had both an interrupt
1564 * pending (queued) and Q set will restore with only
1565 * one instance of that interrupt instead of 2, but that
1566 * is perfectly fine as coalescing interrupts that haven't
1567 * been presented yet is always allowed.
1568 */
1569 if (val & KVM_XICS_PRESENTED || val & KVM_XICS_PENDING)
1570 state->old_p = true;
1571 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1572 state->old_q = true;
1573
1574 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
1575
1576 /*
1577 * If the interrupt was unmasked, update guest priority and
1578 * perform the appropriate state transition and do a
1579 * re-trigger if necessary.
1580 */
1581 if (val & KVM_XICS_MASKED) {
1582 pr_devel(" masked, saving prio\n");
1583 state->guest_priority = MASKED;
1584 state->saved_priority = guest_prio;
1585 } else {
1586 pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
1587 xive_finish_unmask(xive, sb, state, guest_prio);
1588 state->saved_priority = guest_prio;
1589 }
1590
1591 /* Increment the number of valid sources and mark this one valid */
1592 if (!state->valid)
1593 xive->src_count++;
1594 state->valid = true;
1595
1596 return 0;
1597}
1598
1599int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1600 bool line_status)
1601{
1602 struct kvmppc_xive *xive = kvm->arch.xive;
1603 struct kvmppc_xive_src_block *sb;
1604 struct kvmppc_xive_irq_state *state;
1605 u16 idx;
1606
1607 if (!xive)
1608 return -ENODEV;
1609
1610 sb = kvmppc_xive_find_source(xive, irq, &idx);
1611 if (!sb)
1612 return -EINVAL;
1613
1614 /* Perform locklessly .... (we need to do some RCUisms here...) */
1615 state = &sb->irq_state[idx];
1616 if (!state->valid)
1617 return -EINVAL;
1618
1619 /* We don't allow a trigger on a passed-through interrupt */
1620 if (state->pt_number)
1621 return -EINVAL;
1622
1623 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1624 state->asserted = 1;
1625 else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1626 state->asserted = 0;
1627 return 0;
1628 }
1629
1630 /* Trigger the IPI */
1631 xive_irq_trigger(&state->ipi_data);
1632
1633 return 0;
1634}
1635
1636static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1637{
1638 struct kvmppc_xive *xive = dev->private;
1639
1640 /* We honor the existing XICS ioctl */
1641 switch (attr->group) {
1642 case KVM_DEV_XICS_GRP_SOURCES:
1643 return xive_set_source(xive, attr->attr, attr->addr);
1644 }
1645 return -ENXIO;
1646}
1647
1648static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1649{
1650 struct kvmppc_xive *xive = dev->private;
1651
1652 /* We honor the existing XICS ioctl */
1653 switch (attr->group) {
1654 case KVM_DEV_XICS_GRP_SOURCES:
1655 return xive_get_source(xive, attr->attr, attr->addr);
1656 }
1657 return -ENXIO;
1658}
1659
1660static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1661{
1662 /* We honor the same limits as XICS, at least for now */
1663 switch (attr->group) {
1664 case KVM_DEV_XICS_GRP_SOURCES:
1665 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1666 attr->attr < KVMPPC_XICS_NR_IRQS)
1667 return 0;
1668 break;
1669 }
1670 return -ENXIO;
1671}
1672
1673static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1674{
1675 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1676 xive_native_configure_irq(hw_num, 0, MASKED, 0);
1677 xive_cleanup_irq_data(xd);
1678}
1679
1680static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1681{
1682 int i;
1683
1684 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1685 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1686
1687 if (!state->valid)
1688 continue;
1689
1690 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1691 xive_native_free_irq(state->ipi_number);
1692
1693 /* Pass-through, cleanup too */
1694 if (state->pt_number)
1695 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1696
1697 state->valid = false;
1698 }
1699}
1700
1701static void kvmppc_xive_free(struct kvm_device *dev)
1702{
1703 struct kvmppc_xive *xive = dev->private;
1704 struct kvm *kvm = xive->kvm;
1705 int i;
1706
1707 debugfs_remove(xive->dentry);
1708
1709 if (kvm)
1710 kvm->arch.xive = NULL;
1711
1712 /* Mask and free interrupts */
1713 for (i = 0; i <= xive->max_sbid; i++) {
1714 if (xive->src_blocks[i])
1715 kvmppc_xive_free_sources(xive->src_blocks[i]);
1716 kfree(xive->src_blocks[i]);
1717 xive->src_blocks[i] = NULL;
1718 }
1719
1720 if (xive->vp_base != XIVE_INVALID_VP)
1721 xive_native_free_vp_block(xive->vp_base);
1722
1723
1724 kfree(xive);
1725 kfree(dev);
1726}
1727
1728static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1729{
1730 struct kvmppc_xive *xive;
1731 struct kvm *kvm = dev->kvm;
1732 int ret = 0;
1733
1734 pr_devel("Creating xive for partition\n");
1735
1736 xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1737 if (!xive)
1738 return -ENOMEM;
1739
1740 dev->private = xive;
1741 xive->dev = dev;
1742 xive->kvm = kvm;
1743
1744 /* Already there ? */
1745 if (kvm->arch.xive)
1746 ret = -EEXIST;
1747 else
1748 kvm->arch.xive = xive;
1749
1750 /* We use the default queue size set by the host */
1751 xive->q_order = xive_native_default_eq_shift();
1752 if (xive->q_order < PAGE_SHIFT)
1753 xive->q_page_order = 0;
1754 else
1755 xive->q_page_order = xive->q_order - PAGE_SHIFT;
1756
1757 /* Allocate a bunch of VPs */
1758 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1759 pr_devel("VP_Base=%x\n", xive->vp_base);
1760
1761 if (xive->vp_base == XIVE_INVALID_VP)
1762 ret = -ENOMEM;
1763
1764 if (ret) {
1765 kfree(xive);
1766 return ret;
1767 }
1768
1769 return 0;
1770}
1771
1772
1773static int xive_debug_show(struct seq_file *m, void *private)
1774{
1775 struct kvmppc_xive *xive = m->private;
1776 struct kvm *kvm = xive->kvm;
1777 struct kvm_vcpu *vcpu;
1778 u64 t_rm_h_xirr = 0;
1779 u64 t_rm_h_ipoll = 0;
1780 u64 t_rm_h_cppr = 0;
1781 u64 t_rm_h_eoi = 0;
1782 u64 t_rm_h_ipi = 0;
1783 u64 t_vm_h_xirr = 0;
1784 u64 t_vm_h_ipoll = 0;
1785 u64 t_vm_h_cppr = 0;
1786 u64 t_vm_h_eoi = 0;
1787 u64 t_vm_h_ipi = 0;
1788 unsigned int i;
1789
1790 if (!kvm)
1791 return 0;
1792
1793 seq_printf(m, "=========\nVCPU state\n=========\n");
1794
1795 kvm_for_each_vcpu(i, vcpu, kvm) {
1796 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1797
1798 if (!xc)
1799 continue;
1800
1801 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1802 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1803 xc->server_num, xc->cppr, xc->hw_cppr,
1804 xc->mfrr, xc->pending,
1805 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1806
1807 t_rm_h_xirr += xc->stat_rm_h_xirr;
1808 t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1809 t_rm_h_cppr += xc->stat_rm_h_cppr;
1810 t_rm_h_eoi += xc->stat_rm_h_eoi;
1811 t_rm_h_ipi += xc->stat_rm_h_ipi;
1812 t_vm_h_xirr += xc->stat_vm_h_xirr;
1813 t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1814 t_vm_h_cppr += xc->stat_vm_h_cppr;
1815 t_vm_h_eoi += xc->stat_vm_h_eoi;
1816 t_vm_h_ipi += xc->stat_vm_h_ipi;
1817 }
1818
1819 seq_printf(m, "Hcalls totals\n");
1820 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1821 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1822 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1823 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1824 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1825
1826 return 0;
1827}
1828
1829static int xive_debug_open(struct inode *inode, struct file *file)
1830{
1831 return single_open(file, xive_debug_show, inode->i_private);
1832}
1833
1834static const struct file_operations xive_debug_fops = {
1835 .open = xive_debug_open,
1836 .read = seq_read,
1837 .llseek = seq_lseek,
1838 .release = single_release,
1839};
1840
1841static void xive_debugfs_init(struct kvmppc_xive *xive)
1842{
1843 char *name;
1844
1845 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1846 if (!name) {
1847 pr_err("%s: no memory for name\n", __func__);
1848 return;
1849 }
1850
1851 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1852 xive, &xive_debug_fops);
1853
1854 pr_debug("%s: created %s\n", __func__, name);
1855 kfree(name);
1856}
1857
1858static void kvmppc_xive_init(struct kvm_device *dev)
1859{
1860 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1861
1862 /* Register some debug interfaces */
1863 xive_debugfs_init(xive);
1864}
1865
1866struct kvm_device_ops kvm_xive_ops = {
1867 .name = "kvm-xive",
1868 .create = kvmppc_xive_create,
1869 .init = kvmppc_xive_init,
1870 .destroy = kvmppc_xive_free,
1871 .set_attr = xive_set_attr,
1872 .get_attr = xive_get_attr,
1873 .has_attr = xive_has_attr,
1874};
1875
1876void kvmppc_xive_init_module(void)
1877{
1878 __xive_vm_h_xirr = xive_vm_h_xirr;
1879 __xive_vm_h_ipoll = xive_vm_h_ipoll;
1880 __xive_vm_h_ipi = xive_vm_h_ipi;
1881 __xive_vm_h_cppr = xive_vm_h_cppr;
1882 __xive_vm_h_eoi = xive_vm_h_eoi;
1883}
1884
1885void kvmppc_xive_exit_module(void)
1886{
1887 __xive_vm_h_xirr = NULL;
1888 __xive_vm_h_ipoll = NULL;
1889 __xive_vm_h_ipi = NULL;
1890 __xive_vm_h_cppr = NULL;
1891 __xive_vm_h_eoi = NULL;
1892}