blob: 71a072103a7f984be1afc7d25a228e0692a08155 [file] [log] [blame]
Mike Lavender2f9f7622006-01-08 13:34:27 -08001/*
2 * MTD SPI driver for ST M25Pxx flash chips
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/interrupt.h>
22#include <linux/interrupt.h>
23#include <linux/mtd/mtd.h>
24#include <linux/mtd/partitions.h>
25#include <linux/spi/spi.h>
26#include <linux/spi/flash.h>
27
28#include <asm/semaphore.h>
29
30
31/* NOTE: AT 25F and SST 25LF series are very similar,
32 * but commands for sector erase and chip id differ...
33 */
34
35#define FLASH_PAGESIZE 256
36
37/* Flash opcodes. */
38#define OPCODE_WREN 6 /* Write enable */
39#define OPCODE_RDSR 5 /* Read status register */
40#define OPCODE_READ 3 /* Read data bytes */
41#define OPCODE_PP 2 /* Page program */
42#define OPCODE_SE 0xd8 /* Sector erase */
43#define OPCODE_RES 0xab /* Read Electronic Signature */
44#define OPCODE_RDID 0x9f /* Read JEDEC ID */
45
46/* Status Register bits. */
47#define SR_WIP 1 /* Write in progress */
48#define SR_WEL 2 /* Write enable latch */
49#define SR_BP0 4 /* Block protect 0 */
50#define SR_BP1 8 /* Block protect 1 */
51#define SR_BP2 0x10 /* Block protect 2 */
52#define SR_SRWD 0x80 /* SR write protect */
53
54/* Define max times to check status register before we give up. */
55#define MAX_READY_WAIT_COUNT 100000
56
57
58#ifdef CONFIG_MTD_PARTITIONS
59#define mtd_has_partitions() (1)
60#else
61#define mtd_has_partitions() (0)
62#endif
63
64/****************************************************************************/
65
66struct m25p {
67 struct spi_device *spi;
68 struct semaphore lock;
69 struct mtd_info mtd;
70 unsigned partitioned;
71 u8 command[4];
72};
73
74static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
75{
76 return container_of(mtd, struct m25p, mtd);
77}
78
79/****************************************************************************/
80
81/*
82 * Internal helper functions
83 */
84
85/*
86 * Read the status register, returning its value in the location
87 * Return the status register value.
88 * Returns negative if error occurred.
89 */
90static int read_sr(struct m25p *flash)
91{
92 ssize_t retval;
93 u8 code = OPCODE_RDSR;
94 u8 val;
95
96 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
97
98 if (retval < 0) {
99 dev_err(&flash->spi->dev, "error %d reading SR\n",
100 (int) retval);
101 return retval;
102 }
103
104 return val;
105}
106
107
108/*
109 * Set write enable latch with Write Enable command.
110 * Returns negative if error occurred.
111 */
112static inline int write_enable(struct m25p *flash)
113{
114 u8 code = OPCODE_WREN;
115
116 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
117}
118
119
120/*
121 * Service routine to read status register until ready, or timeout occurs.
122 * Returns non-zero if error.
123 */
124static int wait_till_ready(struct m25p *flash)
125{
126 int count;
127 int sr;
128
129 /* one chip guarantees max 5 msec wait here after page writes,
130 * but potentially three seconds (!) after page erase.
131 */
132 for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
133 if ((sr = read_sr(flash)) < 0)
134 break;
135 else if (!(sr & SR_WIP))
136 return 0;
137
138 /* REVISIT sometimes sleeping would be best */
139 }
140
141 return 1;
142}
143
144
145/*
146 * Erase one sector of flash memory at offset ``offset'' which is any
147 * address within the sector which should be erased.
148 *
149 * Returns 0 if successful, non-zero otherwise.
150 */
151static int erase_sector(struct m25p *flash, u32 offset)
152{
153 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s at 0x%08x\n", flash->spi->dev.bus_id,
154 __FUNCTION__, offset);
155
156 /* Wait until finished previous write command. */
157 if (wait_till_ready(flash))
158 return 1;
159
160 /* Send write enable, then erase commands. */
161 write_enable(flash);
162
163 /* Set up command buffer. */
164 flash->command[0] = OPCODE_SE;
165 flash->command[1] = offset >> 16;
166 flash->command[2] = offset >> 8;
167 flash->command[3] = offset;
168
169 spi_write(flash->spi, flash->command, sizeof(flash->command));
170
171 return 0;
172}
173
174/****************************************************************************/
175
176/*
177 * MTD implementation
178 */
179
180/*
181 * Erase an address range on the flash chip. The address range may extend
182 * one or more erase sectors. Return an error is there is a problem erasing.
183 */
184static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
185{
186 struct m25p *flash = mtd_to_m25p(mtd);
187 u32 addr,len;
188
189 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
190 flash->spi->dev.bus_id, __FUNCTION__, "at",
191 (u32)instr->addr, instr->len);
192
193 /* sanity checks */
194 if (instr->addr + instr->len > flash->mtd.size)
195 return -EINVAL;
196 if ((instr->addr % mtd->erasesize) != 0
197 || (instr->len % mtd->erasesize) != 0) {
198 return -EINVAL;
199 }
200
201 addr = instr->addr;
202 len = instr->len;
203
204 down(&flash->lock);
205
206 /* now erase those sectors */
207 while (len) {
208 if (erase_sector(flash, addr)) {
209 instr->state = MTD_ERASE_FAILED;
210 up(&flash->lock);
211 return -EIO;
212 }
213
214 addr += mtd->erasesize;
215 len -= mtd->erasesize;
216 }
217
218 up(&flash->lock);
219
220 instr->state = MTD_ERASE_DONE;
221 mtd_erase_callback(instr);
222
223 return 0;
224}
225
226/*
227 * Read an address range from the flash chip. The address range
228 * may be any size provided it is within the physical boundaries.
229 */
230static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
231 size_t *retlen, u_char *buf)
232{
233 struct m25p *flash = mtd_to_m25p(mtd);
234 struct spi_transfer t[2];
235 struct spi_message m;
236
237 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
238 flash->spi->dev.bus_id, __FUNCTION__, "from",
239 (u32)from, len);
240
241 /* sanity checks */
242 if (!len)
243 return 0;
244
245 if (from + len > flash->mtd.size)
246 return -EINVAL;
247
248 down(&flash->lock);
249
250 /* Wait till previous write/erase is done. */
251 if (wait_till_ready(flash)) {
252 /* REVISIT status return?? */
253 up(&flash->lock);
254 return 1;
255 }
256
257 memset(t, 0, (sizeof t));
258
259 /* NOTE: OPCODE_FAST_READ (if available) is faster... */
260
261 /* Set up the write data buffer. */
262 flash->command[0] = OPCODE_READ;
263 flash->command[1] = from >> 16;
264 flash->command[2] = from >> 8;
265 flash->command[3] = from;
266
267 /* Byte count starts at zero. */
268 if (retlen)
269 *retlen = 0;
270
271 t[0].tx_buf = flash->command;
272 t[0].len = sizeof(flash->command);
273
274 t[1].rx_buf = buf;
275 t[1].len = len;
276
277 m.transfers = t;
278 m.n_transfer = 2;
279
280 spi_sync(flash->spi, &m);
281
282 *retlen = m.actual_length - sizeof(flash->command);
283
284 up(&flash->lock);
285
286 return 0;
287}
288
289/*
290 * Write an address range to the flash chip. Data must be written in
291 * FLASH_PAGESIZE chunks. The address range may be any size provided
292 * it is within the physical boundaries.
293 */
294static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
295 size_t *retlen, const u_char *buf)
296{
297 struct m25p *flash = mtd_to_m25p(mtd);
298 u32 page_offset, page_size;
299 struct spi_transfer t[2];
300 struct spi_message m;
301
302 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
303 flash->spi->dev.bus_id, __FUNCTION__, "to",
304 (u32)to, len);
305
306 if (retlen)
307 *retlen = 0;
308
309 /* sanity checks */
310 if (!len)
311 return(0);
312
313 if (to + len > flash->mtd.size)
314 return -EINVAL;
315
316 down(&flash->lock);
317
318 /* Wait until finished previous write command. */
319 if (wait_till_ready(flash))
320 return 1;
321
322 write_enable(flash);
323
324 memset(t, 0, (sizeof t));
325
326 /* Set up the opcode in the write buffer. */
327 flash->command[0] = OPCODE_PP;
328 flash->command[1] = to >> 16;
329 flash->command[2] = to >> 8;
330 flash->command[3] = to;
331
332 t[0].tx_buf = flash->command;
333 t[0].len = sizeof(flash->command);
334
335 m.transfers = t;
336 m.n_transfer = 2;
337
338 /* what page do we start with? */
339 page_offset = to % FLASH_PAGESIZE;
340
341 /* do all the bytes fit onto one page? */
342 if (page_offset + len <= FLASH_PAGESIZE) {
343 t[1].tx_buf = buf;
344 t[1].len = len;
345
346 spi_sync(flash->spi, &m);
347
348 *retlen = m.actual_length - sizeof(flash->command);
349 } else {
350 u32 i;
351
352 /* the size of data remaining on the first page */
353 page_size = FLASH_PAGESIZE - page_offset;
354
355 t[1].tx_buf = buf;
356 t[1].len = page_size;
357 spi_sync(flash->spi, &m);
358
359 *retlen = m.actual_length - sizeof(flash->command);
360
361 /* write everything in PAGESIZE chunks */
362 for (i = page_size; i < len; i += page_size) {
363 page_size = len - i;
364 if (page_size > FLASH_PAGESIZE)
365 page_size = FLASH_PAGESIZE;
366
367 /* write the next page to flash */
368 flash->command[1] = (to + i) >> 16;
369 flash->command[2] = (to + i) >> 8;
370 flash->command[3] = (to + i);
371
372 t[1].tx_buf = buf + i;
373 t[1].len = page_size;
374
375 wait_till_ready(flash);
376
377 write_enable(flash);
378
379 spi_sync(flash->spi, &m);
380
381 *retlen += m.actual_length - sizeof(flash->command);
382 }
383 }
384
385 up(&flash->lock);
386
387 return 0;
388}
389
390
391/****************************************************************************/
392
393/*
394 * SPI device driver setup and teardown
395 */
396
397struct flash_info {
398 char *name;
399 u8 id;
400 u16 jedec_id;
401 unsigned sector_size;
402 unsigned n_sectors;
403};
404
405static struct flash_info __devinitdata m25p_data [] = {
406 /* REVISIT: fill in JEDEC ids, for parts that have them */
407 { "m25p05", 0x05, 0x0000, 32 * 1024, 2 },
408 { "m25p10", 0x10, 0x0000, 32 * 1024, 4 },
409 { "m25p20", 0x11, 0x0000, 64 * 1024, 4 },
410 { "m25p40", 0x12, 0x0000, 64 * 1024, 8 },
411 { "m25p80", 0x13, 0x0000, 64 * 1024, 16 },
412 { "m25p16", 0x14, 0x0000, 64 * 1024, 32 },
413 { "m25p32", 0x15, 0x0000, 64 * 1024, 64 },
414 { "m25p64", 0x16, 0x2017, 64 * 1024, 128 },
415};
416
417/*
418 * board specific setup should have ensured the SPI clock used here
419 * matches what the READ command supports, at least until this driver
420 * understands FAST_READ (for clocks over 25 MHz).
421 */
422static int __devinit m25p_probe(struct spi_device *spi)
423{
424 struct flash_platform_data *data;
425 struct m25p *flash;
426 struct flash_info *info;
427 unsigned i;
428
429 /* Platform data helps sort out which chip type we have, as
430 * well as how this board partitions it.
431 */
432 data = spi->dev.platform_data;
433 if (!data || !data->type) {
434 /* FIXME some chips can identify themselves with RES
435 * or JEDEC get-id commands. Try them ...
436 */
437 DEBUG(MTD_DEBUG_LEVEL1, "%s: no chip id\n",
438 flash->spi->dev.bus_id);
439 return -ENODEV;
440 }
441
442 for (i = 0, info = m25p_data; i < ARRAY_SIZE(m25p_data); i++, info++) {
443 if (strcmp(data->type, info->name) == 0)
444 break;
445 }
446 if (i == ARRAY_SIZE(m25p_data)) {
447 DEBUG(MTD_DEBUG_LEVEL1, "%s: unrecognized id %s\n",
448 flash->spi->dev.bus_id, data->type);
449 return -ENODEV;
450 }
451
452 flash = kzalloc(sizeof *flash, SLAB_KERNEL);
453 if (!flash)
454 return -ENOMEM;
455
456 flash->spi = spi;
457 init_MUTEX(&flash->lock);
458 dev_set_drvdata(&spi->dev, flash);
459
460 if (data->name)
461 flash->mtd.name = data->name;
462 else
463 flash->mtd.name = spi->dev.bus_id;
464
465 flash->mtd.type = MTD_NORFLASH;
466 flash->mtd.flags = MTD_CAP_NORFLASH;
467 flash->mtd.size = info->sector_size * info->n_sectors;
468 flash->mtd.erasesize = info->sector_size;
469 flash->mtd.erase = m25p80_erase;
470 flash->mtd.read = m25p80_read;
471 flash->mtd.write = m25p80_write;
472
473 dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,
474 flash->mtd.size / 1024);
475
476 DEBUG(MTD_DEBUG_LEVEL2,
477 "mtd .name = %s, .size = 0x%.8x (%uM) "
478 ".erasesize = 0x%.8x (%uK) .numeraseregions = %d\n",
479 flash->mtd.name,
480 flash->mtd.size, flash->mtd.size / (1024*1024),
481 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
482 flash->mtd.numeraseregions);
483
484 if (flash->mtd.numeraseregions)
485 for (i = 0; i < flash->mtd.numeraseregions; i++)
486 DEBUG(MTD_DEBUG_LEVEL2,
487 "mtd.eraseregions[%d] = { .offset = 0x%.8x, "
488 ".erasesize = 0x%.8x (%uK), "
489 ".numblocks = %d }\n",
490 i, flash->mtd.eraseregions[i].offset,
491 flash->mtd.eraseregions[i].erasesize,
492 flash->mtd.eraseregions[i].erasesize / 1024,
493 flash->mtd.eraseregions[i].numblocks);
494
495
496 /* partitions should match sector boundaries; and it may be good to
497 * use readonly partitions for writeprotected sectors (BP2..BP0).
498 */
499 if (mtd_has_partitions()) {
500 struct mtd_partition *parts = NULL;
501 int nr_parts = 0;
502
503#ifdef CONFIG_MTD_CMDLINE_PARTS
504 static const char *part_probes[] = { "cmdlinepart", NULL, };
505
506 nr_parts = parse_mtd_partitions(&flash->mtd,
507 part_probes, &parts, 0);
508#endif
509
510 if (nr_parts <= 0 && data && data->parts) {
511 parts = data->parts;
512 nr_parts = data->nr_parts;
513 }
514
515 if (nr_parts > 0) {
516 for (i = 0; i < data->nr_parts; i++) {
517 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
518 "{.name = %s, .offset = 0x%.8x, "
519 ".size = 0x%.8x (%uK) }\n",
520 i, data->parts[i].name,
521 data->parts[i].offset,
522 data->parts[i].size,
523 data->parts[i].size / 1024);
524 }
525 flash->partitioned = 1;
526 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
527 }
528 } else if (data->nr_parts)
529 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
530 data->nr_parts, data->name);
531
532 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
533}
534
535
536static int __devexit m25p_remove(struct spi_device *spi)
537{
538 struct m25p *flash = dev_get_drvdata(&spi->dev);
539 int status;
540
541 /* Clean up MTD stuff. */
542 if (mtd_has_partitions() && flash->partitioned)
543 status = del_mtd_partitions(&flash->mtd);
544 else
545 status = del_mtd_device(&flash->mtd);
546 if (status == 0)
547 kfree(flash);
548 return 0;
549}
550
551
552static struct spi_driver m25p80_driver = {
553 .driver = {
554 .name = "m25p80",
555 .bus = &spi_bus_type,
556 .owner = THIS_MODULE,
557 },
558 .probe = m25p_probe,
559 .remove = __devexit_p(m25p_remove),
560};
561
562
563static int m25p80_init(void)
564{
565 return spi_register_driver(&m25p80_driver);
566}
567
568
569static void m25p80_exit(void)
570{
571 spi_unregister_driver(&m25p80_driver);
572}
573
574
575module_init(m25p80_init);
576module_exit(m25p80_exit);
577
578MODULE_LICENSE("GPL");
579MODULE_AUTHOR("Mike Lavender");
580MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");