blob: 5e6e1f7fd77713f58cfa03b0b4c8a32463e8d707 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/* Change Log
32 * 5.3.12 6/7/04
33 * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
34 * - if_mii support and associated kcompat for older kernels
35 * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
36 * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
37 *
38 * 5.7.1 12/16/04
39 * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
40 * fix was removed as it caused system instability. The suspected cause of
41 * this is the called to e1000_irq_disable in e1000_intr. Inlined the
42 * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
43 * 5.7.0 12/10/04
44 * - include fix to the condition that determines when to quit NAPI - Robert Olsson
45 * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
46 * 5.6.5 11/01/04
47 * - Enabling NETIF_F_SG without checksum offload is illegal -
48 John Mason <jdmason@us.ibm.com>
49 * 5.6.3 10/26/04
50 * - Remove redundant initialization - Jamal Hadi
51 * - Reset buffer_info->dma in tx resource cleanup logic
52 * 5.6.2 10/12/04
53 * - Avoid filling tx_ring completely - shemminger@osdl.org
54 * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
55 * nacc@us.ibm.com
56 * - Sparse cleanup - shemminger@osdl.org
57 * - Fix tx resource cleanup logic
58 * - LLTX support - ak@suse.de and hadi@cyberus.ca
59 */
60
61char e1000_driver_name[] = "e1000";
62char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
63#ifndef CONFIG_E1000_NAPI
64#define DRIVERNAPI
65#else
66#define DRIVERNAPI "-NAPI"
67#endif
68#define DRV_VERSION "5.7.6-k2"DRIVERNAPI
69char e1000_driver_version[] = DRV_VERSION;
70char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
71
72/* e1000_pci_tbl - PCI Device ID Table
73 *
74 * Last entry must be all 0s
75 *
76 * Macro expands to...
77 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
78 */
79static struct pci_device_id e1000_pci_tbl[] = {
80 INTEL_E1000_ETHERNET_DEVICE(0x1000),
81 INTEL_E1000_ETHERNET_DEVICE(0x1001),
82 INTEL_E1000_ETHERNET_DEVICE(0x1004),
83 INTEL_E1000_ETHERNET_DEVICE(0x1008),
84 INTEL_E1000_ETHERNET_DEVICE(0x1009),
85 INTEL_E1000_ETHERNET_DEVICE(0x100C),
86 INTEL_E1000_ETHERNET_DEVICE(0x100D),
87 INTEL_E1000_ETHERNET_DEVICE(0x100E),
88 INTEL_E1000_ETHERNET_DEVICE(0x100F),
89 INTEL_E1000_ETHERNET_DEVICE(0x1010),
90 INTEL_E1000_ETHERNET_DEVICE(0x1011),
91 INTEL_E1000_ETHERNET_DEVICE(0x1012),
92 INTEL_E1000_ETHERNET_DEVICE(0x1013),
93 INTEL_E1000_ETHERNET_DEVICE(0x1014),
94 INTEL_E1000_ETHERNET_DEVICE(0x1015),
95 INTEL_E1000_ETHERNET_DEVICE(0x1016),
96 INTEL_E1000_ETHERNET_DEVICE(0x1017),
97 INTEL_E1000_ETHERNET_DEVICE(0x1018),
98 INTEL_E1000_ETHERNET_DEVICE(0x1019),
99 INTEL_E1000_ETHERNET_DEVICE(0x101D),
100 INTEL_E1000_ETHERNET_DEVICE(0x101E),
101 INTEL_E1000_ETHERNET_DEVICE(0x1026),
102 INTEL_E1000_ETHERNET_DEVICE(0x1027),
103 INTEL_E1000_ETHERNET_DEVICE(0x1028),
104 INTEL_E1000_ETHERNET_DEVICE(0x1075),
105 INTEL_E1000_ETHERNET_DEVICE(0x1076),
106 INTEL_E1000_ETHERNET_DEVICE(0x1077),
107 INTEL_E1000_ETHERNET_DEVICE(0x1078),
108 INTEL_E1000_ETHERNET_DEVICE(0x1079),
109 INTEL_E1000_ETHERNET_DEVICE(0x107A),
110 INTEL_E1000_ETHERNET_DEVICE(0x107B),
111 INTEL_E1000_ETHERNET_DEVICE(0x107C),
112 INTEL_E1000_ETHERNET_DEVICE(0x108A),
113 /* required last entry */
114 {0,}
115};
116
117MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
118
119int e1000_up(struct e1000_adapter *adapter);
120void e1000_down(struct e1000_adapter *adapter);
121void e1000_reset(struct e1000_adapter *adapter);
122int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
123int e1000_setup_tx_resources(struct e1000_adapter *adapter);
124int e1000_setup_rx_resources(struct e1000_adapter *adapter);
125void e1000_free_tx_resources(struct e1000_adapter *adapter);
126void e1000_free_rx_resources(struct e1000_adapter *adapter);
127void e1000_update_stats(struct e1000_adapter *adapter);
128
129/* Local Function Prototypes */
130
131static int e1000_init_module(void);
132static void e1000_exit_module(void);
133static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134static void __devexit e1000_remove(struct pci_dev *pdev);
135static int e1000_sw_init(struct e1000_adapter *adapter);
136static int e1000_open(struct net_device *netdev);
137static int e1000_close(struct net_device *netdev);
138static void e1000_configure_tx(struct e1000_adapter *adapter);
139static void e1000_configure_rx(struct e1000_adapter *adapter);
140static void e1000_setup_rctl(struct e1000_adapter *adapter);
141static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
142static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
143static void e1000_set_multi(struct net_device *netdev);
144static void e1000_update_phy_info(unsigned long data);
145static void e1000_watchdog(unsigned long data);
146static void e1000_watchdog_task(struct e1000_adapter *adapter);
147static void e1000_82547_tx_fifo_stall(unsigned long data);
148static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
149static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
150static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
151static int e1000_set_mac(struct net_device *netdev, void *p);
152static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
153static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
154#ifdef CONFIG_E1000_NAPI
155static int e1000_clean(struct net_device *netdev, int *budget);
156static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
157 int *work_done, int work_to_do);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700158static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
159 int *work_done, int work_to_do);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160#else
161static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700162static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163#endif
164static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700165static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
167static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
168 int cmd);
169void e1000_set_ethtool_ops(struct net_device *netdev);
170static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
171static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
172static void e1000_tx_timeout(struct net_device *dev);
173static void e1000_tx_timeout_task(struct net_device *dev);
174static void e1000_smartspeed(struct e1000_adapter *adapter);
175static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
176 struct sk_buff *skb);
177
178static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
179static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
180static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
181static void e1000_restore_vlan(struct e1000_adapter *adapter);
182
183static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
184static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
185#ifdef CONFIG_PM
186static int e1000_resume(struct pci_dev *pdev);
187#endif
188
189#ifdef CONFIG_NET_POLL_CONTROLLER
190/* for netdump / net console */
191static void e1000_netpoll (struct net_device *netdev);
192#endif
193
194struct notifier_block e1000_notifier_reboot = {
195 .notifier_call = e1000_notify_reboot,
196 .next = NULL,
197 .priority = 0
198};
199
200/* Exported from other modules */
201
202extern void e1000_check_options(struct e1000_adapter *adapter);
203
204static struct pci_driver e1000_driver = {
205 .name = e1000_driver_name,
206 .id_table = e1000_pci_tbl,
207 .probe = e1000_probe,
208 .remove = __devexit_p(e1000_remove),
209 /* Power Managment Hooks */
210#ifdef CONFIG_PM
211 .suspend = e1000_suspend,
212 .resume = e1000_resume
213#endif
214};
215
216MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
217MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
221static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
222module_param(debug, int, 0);
223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225/**
226 * e1000_init_module - Driver Registration Routine
227 *
228 * e1000_init_module is the first routine called when the driver is
229 * loaded. All it does is register with the PCI subsystem.
230 **/
231
232static int __init
233e1000_init_module(void)
234{
235 int ret;
236 printk(KERN_INFO "%s - version %s\n",
237 e1000_driver_string, e1000_driver_version);
238
239 printk(KERN_INFO "%s\n", e1000_copyright);
240
241 ret = pci_module_init(&e1000_driver);
242 if(ret >= 0) {
243 register_reboot_notifier(&e1000_notifier_reboot);
244 }
245 return ret;
246}
247
248module_init(e1000_init_module);
249
250/**
251 * e1000_exit_module - Driver Exit Cleanup Routine
252 *
253 * e1000_exit_module is called just before the driver is removed
254 * from memory.
255 **/
256
257static void __exit
258e1000_exit_module(void)
259{
260 unregister_reboot_notifier(&e1000_notifier_reboot);
261 pci_unregister_driver(&e1000_driver);
262}
263
264module_exit(e1000_exit_module);
265
266/**
267 * e1000_irq_disable - Mask off interrupt generation on the NIC
268 * @adapter: board private structure
269 **/
270
271static inline void
272e1000_irq_disable(struct e1000_adapter *adapter)
273{
274 atomic_inc(&adapter->irq_sem);
275 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
276 E1000_WRITE_FLUSH(&adapter->hw);
277 synchronize_irq(adapter->pdev->irq);
278}
279
280/**
281 * e1000_irq_enable - Enable default interrupt generation settings
282 * @adapter: board private structure
283 **/
284
285static inline void
286e1000_irq_enable(struct e1000_adapter *adapter)
287{
288 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
289 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
290 E1000_WRITE_FLUSH(&adapter->hw);
291 }
292}
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700293void
294e1000_update_mng_vlan(struct e1000_adapter *adapter)
295{
296 struct net_device *netdev = adapter->netdev;
297 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
298 uint16_t old_vid = adapter->mng_vlan_id;
299 if(adapter->vlgrp) {
300 if(!adapter->vlgrp->vlan_devices[vid]) {
301 if(adapter->hw.mng_cookie.status &
302 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
303 e1000_vlan_rx_add_vid(netdev, vid);
304 adapter->mng_vlan_id = vid;
305 } else
306 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
307
308 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
309 (vid != old_vid) &&
310 !adapter->vlgrp->vlan_devices[old_vid])
311 e1000_vlan_rx_kill_vid(netdev, old_vid);
312 }
313 }
314}
315
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316int
317e1000_up(struct e1000_adapter *adapter)
318{
319 struct net_device *netdev = adapter->netdev;
320 int err;
321
322 /* hardware has been reset, we need to reload some things */
323
324 /* Reset the PHY if it was previously powered down */
325 if(adapter->hw.media_type == e1000_media_type_copper) {
326 uint16_t mii_reg;
327 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
328 if(mii_reg & MII_CR_POWER_DOWN)
329 e1000_phy_reset(&adapter->hw);
330 }
331
332 e1000_set_multi(netdev);
333
334 e1000_restore_vlan(adapter);
335
336 e1000_configure_tx(adapter);
337 e1000_setup_rctl(adapter);
338 e1000_configure_rx(adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700339 adapter->alloc_rx_buf(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340
Malli Chilakalafa4f7ef2005-04-28 19:39:13 -0700341#ifdef CONFIG_PCI_MSI
342 if(adapter->hw.mac_type > e1000_82547_rev_2) {
343 adapter->have_msi = TRUE;
344 if((err = pci_enable_msi(adapter->pdev))) {
345 DPRINTK(PROBE, ERR,
346 "Unable to allocate MSI interrupt Error: %d\n", err);
347 adapter->have_msi = FALSE;
348 }
349 }
350#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
352 SA_SHIRQ | SA_SAMPLE_RANDOM,
353 netdev->name, netdev)))
354 return err;
355
356 mod_timer(&adapter->watchdog_timer, jiffies);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700357
358#ifdef CONFIG_E1000_NAPI
359 netif_poll_enable(netdev);
360#endif
Malli Chilakala5de55622005-04-28 19:39:30 -0700361 e1000_irq_enable(adapter);
362
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 return 0;
364}
365
366void
367e1000_down(struct e1000_adapter *adapter)
368{
369 struct net_device *netdev = adapter->netdev;
370
371 e1000_irq_disable(adapter);
372 free_irq(adapter->pdev->irq, netdev);
Malli Chilakalafa4f7ef2005-04-28 19:39:13 -0700373#ifdef CONFIG_PCI_MSI
374 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
375 adapter->have_msi == TRUE)
376 pci_disable_msi(adapter->pdev);
377#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378 del_timer_sync(&adapter->tx_fifo_stall_timer);
379 del_timer_sync(&adapter->watchdog_timer);
380 del_timer_sync(&adapter->phy_info_timer);
381
382#ifdef CONFIG_E1000_NAPI
383 netif_poll_disable(netdev);
384#endif
385 adapter->link_speed = 0;
386 adapter->link_duplex = 0;
387 netif_carrier_off(netdev);
388 netif_stop_queue(netdev);
389
390 e1000_reset(adapter);
391 e1000_clean_tx_ring(adapter);
392 e1000_clean_rx_ring(adapter);
393
394 /* If WoL is not enabled
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700395 * and management mode is not IAMT
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 * Power down the PHY so no link is implied when interface is down */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700397 if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
398 adapter->hw.media_type == e1000_media_type_copper &&
399 !e1000_check_mng_mode(&adapter->hw) &&
400 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401 uint16_t mii_reg;
402 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
403 mii_reg |= MII_CR_POWER_DOWN;
404 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
Malli Chilakala4e48a2b2005-04-28 19:39:53 -0700405 mdelay(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700406 }
407}
408
409void
410e1000_reset(struct e1000_adapter *adapter)
411{
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700412 uint32_t pba, manc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
414 /* Repartition Pba for greater than 9k mtu
415 * To take effect CTRL.RST is required.
416 */
417
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700418 switch (adapter->hw.mac_type) {
419 case e1000_82547:
420 pba = E1000_PBA_30K;
421 break;
422 case e1000_82573:
423 pba = E1000_PBA_12K;
424 break;
425 default:
426 pba = E1000_PBA_48K;
427 break;
428 }
429
430
431
432 if(adapter->hw.mac_type == e1000_82547) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 adapter->tx_fifo_head = 0;
434 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
435 adapter->tx_fifo_size =
436 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
437 atomic_set(&adapter->tx_fifo_stall, 0);
438 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700439
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440 E1000_WRITE_REG(&adapter->hw, PBA, pba);
441
442 /* flow control settings */
443 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
444 E1000_FC_HIGH_DIFF;
445 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
446 E1000_FC_LOW_DIFF;
447 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
448 adapter->hw.fc_send_xon = 1;
449 adapter->hw.fc = adapter->hw.original_fc;
450
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700451 /* Allow time for pending master requests to run */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700452 e1000_reset_hw(&adapter->hw);
453 if(adapter->hw.mac_type >= e1000_82544)
454 E1000_WRITE_REG(&adapter->hw, WUC, 0);
455 if(e1000_init_hw(&adapter->hw))
456 DPRINTK(PROBE, ERR, "Hardware Error\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700457 e1000_update_mng_vlan(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
459 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
460
461 e1000_reset_adaptive(&adapter->hw);
462 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700463 if (adapter->en_mng_pt) {
464 manc = E1000_READ_REG(&adapter->hw, MANC);
465 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
466 E1000_WRITE_REG(&adapter->hw, MANC, manc);
467 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468}
469
470/**
471 * e1000_probe - Device Initialization Routine
472 * @pdev: PCI device information struct
473 * @ent: entry in e1000_pci_tbl
474 *
475 * Returns 0 on success, negative on failure
476 *
477 * e1000_probe initializes an adapter identified by a pci_dev structure.
478 * The OS initialization, configuring of the adapter private structure,
479 * and a hardware reset occur.
480 **/
481
482static int __devinit
483e1000_probe(struct pci_dev *pdev,
484 const struct pci_device_id *ent)
485{
486 struct net_device *netdev;
487 struct e1000_adapter *adapter;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700488 unsigned long mmio_start, mmio_len;
489 uint32_t swsm;
490
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491 static int cards_found = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700492 int i, err, pci_using_dac;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493 uint16_t eeprom_data;
494 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700495 if((err = pci_enable_device(pdev)))
496 return err;
497
498 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
499 pci_using_dac = 1;
500 } else {
501 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
502 E1000_ERR("No usable DMA configuration, aborting\n");
503 return err;
504 }
505 pci_using_dac = 0;
506 }
507
508 if((err = pci_request_regions(pdev, e1000_driver_name)))
509 return err;
510
511 pci_set_master(pdev);
512
513 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
514 if(!netdev) {
515 err = -ENOMEM;
516 goto err_alloc_etherdev;
517 }
518
519 SET_MODULE_OWNER(netdev);
520 SET_NETDEV_DEV(netdev, &pdev->dev);
521
522 pci_set_drvdata(pdev, netdev);
523 adapter = netdev->priv;
524 adapter->netdev = netdev;
525 adapter->pdev = pdev;
526 adapter->hw.back = adapter;
527 adapter->msg_enable = (1 << debug) - 1;
528
529 mmio_start = pci_resource_start(pdev, BAR_0);
530 mmio_len = pci_resource_len(pdev, BAR_0);
531
532 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
533 if(!adapter->hw.hw_addr) {
534 err = -EIO;
535 goto err_ioremap;
536 }
537
538 for(i = BAR_1; i <= BAR_5; i++) {
539 if(pci_resource_len(pdev, i) == 0)
540 continue;
541 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
542 adapter->hw.io_base = pci_resource_start(pdev, i);
543 break;
544 }
545 }
546
547 netdev->open = &e1000_open;
548 netdev->stop = &e1000_close;
549 netdev->hard_start_xmit = &e1000_xmit_frame;
550 netdev->get_stats = &e1000_get_stats;
551 netdev->set_multicast_list = &e1000_set_multi;
552 netdev->set_mac_address = &e1000_set_mac;
553 netdev->change_mtu = &e1000_change_mtu;
554 netdev->do_ioctl = &e1000_ioctl;
555 e1000_set_ethtool_ops(netdev);
556 netdev->tx_timeout = &e1000_tx_timeout;
557 netdev->watchdog_timeo = 5 * HZ;
558#ifdef CONFIG_E1000_NAPI
559 netdev->poll = &e1000_clean;
560 netdev->weight = 64;
561#endif
562 netdev->vlan_rx_register = e1000_vlan_rx_register;
563 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
564 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
565#ifdef CONFIG_NET_POLL_CONTROLLER
566 netdev->poll_controller = e1000_netpoll;
567#endif
568 strcpy(netdev->name, pci_name(pdev));
569
570 netdev->mem_start = mmio_start;
571 netdev->mem_end = mmio_start + mmio_len;
572 netdev->base_addr = adapter->hw.io_base;
573
574 adapter->bd_number = cards_found;
575
576 /* setup the private structure */
577
578 if((err = e1000_sw_init(adapter)))
579 goto err_sw_init;
580
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700581 if((err = e1000_check_phy_reset_block(&adapter->hw)))
582 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
583
Linus Torvalds1da177e2005-04-16 15:20:36 -0700584 if(adapter->hw.mac_type >= e1000_82543) {
585 netdev->features = NETIF_F_SG |
586 NETIF_F_HW_CSUM |
587 NETIF_F_HW_VLAN_TX |
588 NETIF_F_HW_VLAN_RX |
589 NETIF_F_HW_VLAN_FILTER;
590 }
591
592#ifdef NETIF_F_TSO
593 if((adapter->hw.mac_type >= e1000_82544) &&
594 (adapter->hw.mac_type != e1000_82547))
595 netdev->features |= NETIF_F_TSO;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700596
597#ifdef NETIF_F_TSO_IPV6
598 if(adapter->hw.mac_type > e1000_82547_rev_2)
599 netdev->features |= NETIF_F_TSO_IPV6;
600#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700601#endif
602 if(pci_using_dac)
603 netdev->features |= NETIF_F_HIGHDMA;
604
605 /* hard_start_xmit is safe against parallel locking */
606 netdev->features |= NETIF_F_LLTX;
607
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700608 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
609
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610 /* before reading the EEPROM, reset the controller to
611 * put the device in a known good starting state */
612
613 e1000_reset_hw(&adapter->hw);
614
615 /* make sure the EEPROM is good */
616
617 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
618 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
619 err = -EIO;
620 goto err_eeprom;
621 }
622
623 /* copy the MAC address out of the EEPROM */
624
625 if (e1000_read_mac_addr(&adapter->hw))
626 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
627 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
628
629 if(!is_valid_ether_addr(netdev->dev_addr)) {
630 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
631 err = -EIO;
632 goto err_eeprom;
633 }
634
635 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
636
637 e1000_get_bus_info(&adapter->hw);
638
639 init_timer(&adapter->tx_fifo_stall_timer);
640 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
641 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
642
643 init_timer(&adapter->watchdog_timer);
644 adapter->watchdog_timer.function = &e1000_watchdog;
645 adapter->watchdog_timer.data = (unsigned long) adapter;
646
647 INIT_WORK(&adapter->watchdog_task,
648 (void (*)(void *))e1000_watchdog_task, adapter);
649
650 init_timer(&adapter->phy_info_timer);
651 adapter->phy_info_timer.function = &e1000_update_phy_info;
652 adapter->phy_info_timer.data = (unsigned long) adapter;
653
654 INIT_WORK(&adapter->tx_timeout_task,
655 (void (*)(void *))e1000_tx_timeout_task, netdev);
656
657 /* we're going to reset, so assume we have no link for now */
658
659 netif_carrier_off(netdev);
660 netif_stop_queue(netdev);
661
662 e1000_check_options(adapter);
663
664 /* Initial Wake on LAN setting
665 * If APM wake is enabled in the EEPROM,
666 * enable the ACPI Magic Packet filter
667 */
668
669 switch(adapter->hw.mac_type) {
670 case e1000_82542_rev2_0:
671 case e1000_82542_rev2_1:
672 case e1000_82543:
673 break;
674 case e1000_82544:
675 e1000_read_eeprom(&adapter->hw,
676 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
677 eeprom_apme_mask = E1000_EEPROM_82544_APM;
678 break;
679 case e1000_82546:
680 case e1000_82546_rev_3:
681 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
682 && (adapter->hw.media_type == e1000_media_type_copper)) {
683 e1000_read_eeprom(&adapter->hw,
684 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
685 break;
686 }
687 /* Fall Through */
688 default:
689 e1000_read_eeprom(&adapter->hw,
690 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
691 break;
692 }
693 if(eeprom_data & eeprom_apme_mask)
694 adapter->wol |= E1000_WUFC_MAG;
695
696 /* reset the hardware with the new settings */
697 e1000_reset(adapter);
698
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700699 /* Let firmware know the driver has taken over */
700 switch(adapter->hw.mac_type) {
701 case e1000_82573:
702 swsm = E1000_READ_REG(&adapter->hw, SWSM);
703 E1000_WRITE_REG(&adapter->hw, SWSM,
704 swsm | E1000_SWSM_DRV_LOAD);
705 break;
706 default:
707 break;
708 }
709
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 strcpy(netdev->name, "eth%d");
711 if((err = register_netdev(netdev)))
712 goto err_register;
713
714 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
715
716 cards_found++;
717 return 0;
718
719err_register:
720err_sw_init:
721err_eeprom:
722 iounmap(adapter->hw.hw_addr);
723err_ioremap:
724 free_netdev(netdev);
725err_alloc_etherdev:
726 pci_release_regions(pdev);
727 return err;
728}
729
730/**
731 * e1000_remove - Device Removal Routine
732 * @pdev: PCI device information struct
733 *
734 * e1000_remove is called by the PCI subsystem to alert the driver
735 * that it should release a PCI device. The could be caused by a
736 * Hot-Plug event, or because the driver is going to be removed from
737 * memory.
738 **/
739
740static void __devexit
741e1000_remove(struct pci_dev *pdev)
742{
743 struct net_device *netdev = pci_get_drvdata(pdev);
744 struct e1000_adapter *adapter = netdev->priv;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700745 uint32_t manc, swsm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746
747 flush_scheduled_work();
748
749 if(adapter->hw.mac_type >= e1000_82540 &&
750 adapter->hw.media_type == e1000_media_type_copper) {
751 manc = E1000_READ_REG(&adapter->hw, MANC);
752 if(manc & E1000_MANC_SMBUS_EN) {
753 manc |= E1000_MANC_ARP_EN;
754 E1000_WRITE_REG(&adapter->hw, MANC, manc);
755 }
756 }
757
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700758 switch(adapter->hw.mac_type) {
759 case e1000_82573:
760 swsm = E1000_READ_REG(&adapter->hw, SWSM);
761 E1000_WRITE_REG(&adapter->hw, SWSM,
762 swsm & ~E1000_SWSM_DRV_LOAD);
763 break;
764
765 default:
766 break;
767 }
768
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 unregister_netdev(netdev);
770
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700771 if(!e1000_check_phy_reset_block(&adapter->hw))
772 e1000_phy_hw_reset(&adapter->hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700773
774 iounmap(adapter->hw.hw_addr);
775 pci_release_regions(pdev);
776
777 free_netdev(netdev);
778
779 pci_disable_device(pdev);
780}
781
782/**
783 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
784 * @adapter: board private structure to initialize
785 *
786 * e1000_sw_init initializes the Adapter private data structure.
787 * Fields are initialized based on PCI device information and
788 * OS network device settings (MTU size).
789 **/
790
791static int __devinit
792e1000_sw_init(struct e1000_adapter *adapter)
793{
794 struct e1000_hw *hw = &adapter->hw;
795 struct net_device *netdev = adapter->netdev;
796 struct pci_dev *pdev = adapter->pdev;
797
798 /* PCI config space info */
799
800 hw->vendor_id = pdev->vendor;
801 hw->device_id = pdev->device;
802 hw->subsystem_vendor_id = pdev->subsystem_vendor;
803 hw->subsystem_id = pdev->subsystem_device;
804
805 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
806
807 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
808
809 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700810 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811 hw->max_frame_size = netdev->mtu +
812 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
813 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
814
815 /* identify the MAC */
816
817 if(e1000_set_mac_type(hw)) {
818 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
819 return -EIO;
820 }
821
822 /* initialize eeprom parameters */
823
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700824 if(e1000_init_eeprom_params(hw)) {
825 E1000_ERR("EEPROM initialization failed\n");
826 return -EIO;
827 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700828
829 switch(hw->mac_type) {
830 default:
831 break;
832 case e1000_82541:
833 case e1000_82547:
834 case e1000_82541_rev_2:
835 case e1000_82547_rev_2:
836 hw->phy_init_script = 1;
837 break;
838 }
839
840 e1000_set_media_type(hw);
841
842 hw->wait_autoneg_complete = FALSE;
843 hw->tbi_compatibility_en = TRUE;
844 hw->adaptive_ifs = TRUE;
845
846 /* Copper options */
847
848 if(hw->media_type == e1000_media_type_copper) {
849 hw->mdix = AUTO_ALL_MODES;
850 hw->disable_polarity_correction = FALSE;
851 hw->master_slave = E1000_MASTER_SLAVE;
852 }
853
854 atomic_set(&adapter->irq_sem, 1);
855 spin_lock_init(&adapter->stats_lock);
856 spin_lock_init(&adapter->tx_lock);
857
858 return 0;
859}
860
861/**
862 * e1000_open - Called when a network interface is made active
863 * @netdev: network interface device structure
864 *
865 * Returns 0 on success, negative value on failure
866 *
867 * The open entry point is called when a network interface is made
868 * active by the system (IFF_UP). At this point all resources needed
869 * for transmit and receive operations are allocated, the interrupt
870 * handler is registered with the OS, the watchdog timer is started,
871 * and the stack is notified that the interface is ready.
872 **/
873
874static int
875e1000_open(struct net_device *netdev)
876{
877 struct e1000_adapter *adapter = netdev->priv;
878 int err;
879
880 /* allocate transmit descriptors */
881
882 if((err = e1000_setup_tx_resources(adapter)))
883 goto err_setup_tx;
884
885 /* allocate receive descriptors */
886
887 if((err = e1000_setup_rx_resources(adapter)))
888 goto err_setup_rx;
889
890 if((err = e1000_up(adapter)))
891 goto err_up;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700892 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
893 if((adapter->hw.mng_cookie.status &
894 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
895 e1000_update_mng_vlan(adapter);
896 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897
898 return E1000_SUCCESS;
899
900err_up:
901 e1000_free_rx_resources(adapter);
902err_setup_rx:
903 e1000_free_tx_resources(adapter);
904err_setup_tx:
905 e1000_reset(adapter);
906
907 return err;
908}
909
910/**
911 * e1000_close - Disables a network interface
912 * @netdev: network interface device structure
913 *
914 * Returns 0, this is not allowed to fail
915 *
916 * The close entry point is called when an interface is de-activated
917 * by the OS. The hardware is still under the drivers control, but
918 * needs to be disabled. A global MAC reset is issued to stop the
919 * hardware, and all transmit and receive resources are freed.
920 **/
921
922static int
923e1000_close(struct net_device *netdev)
924{
925 struct e1000_adapter *adapter = netdev->priv;
926
927 e1000_down(adapter);
928
929 e1000_free_tx_resources(adapter);
930 e1000_free_rx_resources(adapter);
931
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700932 if((adapter->hw.mng_cookie.status &
933 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
934 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
935 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700936 return 0;
937}
938
939/**
940 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
941 * @adapter: address of board private structure
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700942 * @start: address of beginning of memory
943 * @len: length of memory
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 **/
945static inline boolean_t
946e1000_check_64k_bound(struct e1000_adapter *adapter,
947 void *start, unsigned long len)
948{
949 unsigned long begin = (unsigned long) start;
950 unsigned long end = begin + len;
951
952 /* first rev 82545 and 82546 need to not allow any memory
953 * write location to cross a 64k boundary due to errata 23 */
954 if (adapter->hw.mac_type == e1000_82545 ||
955 adapter->hw.mac_type == e1000_82546 ) {
956
957 /* check buffer doesn't cross 64kB */
958 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
959 }
960
961 return TRUE;
962}
963
964/**
965 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
966 * @adapter: board private structure
967 *
968 * Return 0 on success, negative on failure
969 **/
970
971int
972e1000_setup_tx_resources(struct e1000_adapter *adapter)
973{
974 struct e1000_desc_ring *txdr = &adapter->tx_ring;
975 struct pci_dev *pdev = adapter->pdev;
976 int size;
977
978 size = sizeof(struct e1000_buffer) * txdr->count;
979 txdr->buffer_info = vmalloc(size);
980 if(!txdr->buffer_info) {
981 DPRINTK(PROBE, ERR,
982 "Unable to Allocate Memory for the Transmit descriptor ring\n");
983 return -ENOMEM;
984 }
985 memset(txdr->buffer_info, 0, size);
986
987 /* round up to nearest 4K */
988
989 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
990 E1000_ROUNDUP(txdr->size, 4096);
991
992 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
993 if(!txdr->desc) {
994setup_tx_desc_die:
995 DPRINTK(PROBE, ERR,
996 "Unable to Allocate Memory for the Transmit descriptor ring\n");
997 vfree(txdr->buffer_info);
998 return -ENOMEM;
999 }
1000
1001 /* fix for errata 23, cant cross 64kB boundary */
1002 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1003 void *olddesc = txdr->desc;
1004 dma_addr_t olddma = txdr->dma;
1005 DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
1006 txdr->size, txdr->desc);
1007 /* try again, without freeing the previous */
1008 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1009 /* failed allocation, critial failure */
1010 if(!txdr->desc) {
1011 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1012 goto setup_tx_desc_die;
1013 }
1014
1015 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1016 /* give up */
1017 pci_free_consistent(pdev, txdr->size,
1018 txdr->desc, txdr->dma);
1019 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1020 DPRINTK(PROBE, ERR,
1021 "Unable to Allocate aligned Memory for the Transmit"
1022 " descriptor ring\n");
1023 vfree(txdr->buffer_info);
1024 return -ENOMEM;
1025 } else {
1026 /* free old, move on with the new one since its okay */
1027 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1028 }
1029 }
1030 memset(txdr->desc, 0, txdr->size);
1031
1032 txdr->next_to_use = 0;
1033 txdr->next_to_clean = 0;
1034
1035 return 0;
1036}
1037
1038/**
1039 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1040 * @adapter: board private structure
1041 *
1042 * Configure the Tx unit of the MAC after a reset.
1043 **/
1044
1045static void
1046e1000_configure_tx(struct e1000_adapter *adapter)
1047{
1048 uint64_t tdba = adapter->tx_ring.dma;
1049 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1050 uint32_t tctl, tipg;
1051
1052 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1053 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1054
1055 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1056
1057 /* Setup the HW Tx Head and Tail descriptor pointers */
1058
1059 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1060 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1061
1062 /* Set the default values for the Tx Inter Packet Gap timer */
1063
1064 switch (adapter->hw.mac_type) {
1065 case e1000_82542_rev2_0:
1066 case e1000_82542_rev2_1:
1067 tipg = DEFAULT_82542_TIPG_IPGT;
1068 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1069 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1070 break;
1071 default:
1072 if(adapter->hw.media_type == e1000_media_type_fiber ||
1073 adapter->hw.media_type == e1000_media_type_internal_serdes)
1074 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1075 else
1076 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1077 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1078 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1079 }
1080 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1081
1082 /* Set the Tx Interrupt Delay register */
1083
1084 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1085 if(adapter->hw.mac_type >= e1000_82540)
1086 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1087
1088 /* Program the Transmit Control Register */
1089
1090 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1091
1092 tctl &= ~E1000_TCTL_CT;
1093 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1094 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1095
1096 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1097
1098 e1000_config_collision_dist(&adapter->hw);
1099
1100 /* Setup Transmit Descriptor Settings for eop descriptor */
1101 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1102 E1000_TXD_CMD_IFCS;
1103
1104 if(adapter->hw.mac_type < e1000_82543)
1105 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1106 else
1107 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1108
1109 /* Cache if we're 82544 running in PCI-X because we'll
1110 * need this to apply a workaround later in the send path. */
1111 if(adapter->hw.mac_type == e1000_82544 &&
1112 adapter->hw.bus_type == e1000_bus_type_pcix)
1113 adapter->pcix_82544 = 1;
1114}
1115
1116/**
1117 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1118 * @adapter: board private structure
1119 *
1120 * Returns 0 on success, negative on failure
1121 **/
1122
1123int
1124e1000_setup_rx_resources(struct e1000_adapter *adapter)
1125{
1126 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1127 struct pci_dev *pdev = adapter->pdev;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001128 int size, desc_len;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129
1130 size = sizeof(struct e1000_buffer) * rxdr->count;
1131 rxdr->buffer_info = vmalloc(size);
1132 if(!rxdr->buffer_info) {
1133 DPRINTK(PROBE, ERR,
1134 "Unable to Allocate Memory for the Recieve descriptor ring\n");
1135 return -ENOMEM;
1136 }
1137 memset(rxdr->buffer_info, 0, size);
1138
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001139 size = sizeof(struct e1000_ps_page) * rxdr->count;
1140 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1141 if(!rxdr->ps_page) {
1142 vfree(rxdr->buffer_info);
1143 DPRINTK(PROBE, ERR,
1144 "Unable to allocate memory for the receive descriptor ring\n");
1145 return -ENOMEM;
1146 }
1147 memset(rxdr->ps_page, 0, size);
1148
1149 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1150 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1151 if(!rxdr->ps_page_dma) {
1152 vfree(rxdr->buffer_info);
1153 kfree(rxdr->ps_page);
1154 DPRINTK(PROBE, ERR,
1155 "Unable to allocate memory for the receive descriptor ring\n");
1156 return -ENOMEM;
1157 }
1158 memset(rxdr->ps_page_dma, 0, size);
1159
1160 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1161 desc_len = sizeof(struct e1000_rx_desc);
1162 else
1163 desc_len = sizeof(union e1000_rx_desc_packet_split);
1164
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165 /* Round up to nearest 4K */
1166
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001167 rxdr->size = rxdr->count * desc_len;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168 E1000_ROUNDUP(rxdr->size, 4096);
1169
1170 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1171
1172 if(!rxdr->desc) {
1173setup_rx_desc_die:
1174 DPRINTK(PROBE, ERR,
1175 "Unble to Allocate Memory for the Recieve descriptor ring\n");
1176 vfree(rxdr->buffer_info);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001177 kfree(rxdr->ps_page);
1178 kfree(rxdr->ps_page_dma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179 return -ENOMEM;
1180 }
1181
1182 /* fix for errata 23, cant cross 64kB boundary */
1183 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1184 void *olddesc = rxdr->desc;
1185 dma_addr_t olddma = rxdr->dma;
1186 DPRINTK(RX_ERR,ERR,
1187 "rxdr align check failed: %u bytes at %p\n",
1188 rxdr->size, rxdr->desc);
1189 /* try again, without freeing the previous */
1190 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1191 /* failed allocation, critial failure */
1192 if(!rxdr->desc) {
1193 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1194 goto setup_rx_desc_die;
1195 }
1196
1197 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1198 /* give up */
1199 pci_free_consistent(pdev, rxdr->size,
1200 rxdr->desc, rxdr->dma);
1201 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1202 DPRINTK(PROBE, ERR,
1203 "Unable to Allocate aligned Memory for the"
1204 " Receive descriptor ring\n");
1205 vfree(rxdr->buffer_info);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001206 kfree(rxdr->ps_page);
1207 kfree(rxdr->ps_page_dma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001208 return -ENOMEM;
1209 } else {
1210 /* free old, move on with the new one since its okay */
1211 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1212 }
1213 }
1214 memset(rxdr->desc, 0, rxdr->size);
1215
1216 rxdr->next_to_clean = 0;
1217 rxdr->next_to_use = 0;
1218
1219 return 0;
1220}
1221
1222/**
1223 * e1000_setup_rctl - configure the receive control register
1224 * @adapter: Board private structure
1225 **/
1226
1227static void
1228e1000_setup_rctl(struct e1000_adapter *adapter)
1229{
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001230 uint32_t rctl, rfctl;
1231 uint32_t psrctl = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001232
1233 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1234
1235 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1236
1237 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1238 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1239 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1240
1241 if(adapter->hw.tbi_compatibility_on == 1)
1242 rctl |= E1000_RCTL_SBP;
1243 else
1244 rctl &= ~E1000_RCTL_SBP;
1245
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001246 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1247 rctl &= ~E1000_RCTL_LPE;
1248 else
1249 rctl |= E1000_RCTL_LPE;
1250
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 /* Setup buffer sizes */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001252 if(adapter->hw.mac_type == e1000_82573) {
1253 /* We can now specify buffers in 1K increments.
1254 * BSIZE and BSEX are ignored in this case. */
1255 rctl |= adapter->rx_buffer_len << 0x11;
1256 } else {
1257 rctl &= ~E1000_RCTL_SZ_4096;
1258 rctl |= E1000_RCTL_BSEX;
1259 switch (adapter->rx_buffer_len) {
1260 case E1000_RXBUFFER_2048:
1261 default:
1262 rctl |= E1000_RCTL_SZ_2048;
1263 rctl &= ~E1000_RCTL_BSEX;
1264 break;
1265 case E1000_RXBUFFER_4096:
1266 rctl |= E1000_RCTL_SZ_4096;
1267 break;
1268 case E1000_RXBUFFER_8192:
1269 rctl |= E1000_RCTL_SZ_8192;
1270 break;
1271 case E1000_RXBUFFER_16384:
1272 rctl |= E1000_RCTL_SZ_16384;
1273 break;
1274 }
1275 }
1276
1277#ifdef CONFIG_E1000_PACKET_SPLIT
1278 /* 82571 and greater support packet-split where the protocol
1279 * header is placed in skb->data and the packet data is
1280 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1281 * In the case of a non-split, skb->data is linearly filled,
1282 * followed by the page buffers. Therefore, skb->data is
1283 * sized to hold the largest protocol header.
1284 */
1285 adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
1286 && (adapter->netdev->mtu
1287 < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1288#endif
1289 if(adapter->rx_ps) {
1290 /* Configure extra packet-split registers */
1291 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1292 rfctl |= E1000_RFCTL_EXTEN;
1293 /* disable IPv6 packet split support */
1294 rfctl |= E1000_RFCTL_IPV6_DIS;
1295 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1296
1297 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1298
1299 psrctl |= adapter->rx_ps_bsize0 >>
1300 E1000_PSRCTL_BSIZE0_SHIFT;
1301 psrctl |= PAGE_SIZE >>
1302 E1000_PSRCTL_BSIZE1_SHIFT;
1303 psrctl |= PAGE_SIZE <<
1304 E1000_PSRCTL_BSIZE2_SHIFT;
1305 psrctl |= PAGE_SIZE <<
1306 E1000_PSRCTL_BSIZE3_SHIFT;
1307
1308 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001309 }
1310
1311 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1312}
1313
1314/**
1315 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1316 * @adapter: board private structure
1317 *
1318 * Configure the Rx unit of the MAC after a reset.
1319 **/
1320
1321static void
1322e1000_configure_rx(struct e1000_adapter *adapter)
1323{
1324 uint64_t rdba = adapter->rx_ring.dma;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001325 uint32_t rdlen, rctl, rxcsum;
1326
1327 if(adapter->rx_ps) {
1328 rdlen = adapter->rx_ring.count *
1329 sizeof(union e1000_rx_desc_packet_split);
1330 adapter->clean_rx = e1000_clean_rx_irq_ps;
1331 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1332 } else {
1333 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1334 adapter->clean_rx = e1000_clean_rx_irq;
1335 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1336 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337
1338 /* disable receives while setting up the descriptors */
1339 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1340 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1341
1342 /* set the Receive Delay Timer Register */
1343 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1344
1345 if(adapter->hw.mac_type >= e1000_82540) {
1346 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1347 if(adapter->itr > 1)
1348 E1000_WRITE_REG(&adapter->hw, ITR,
1349 1000000000 / (adapter->itr * 256));
1350 }
1351
1352 /* Setup the Base and Length of the Rx Descriptor Ring */
1353 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1354 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1355
1356 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1357
1358 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1359 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1360 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1361
1362 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001363 if(adapter->hw.mac_type >= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001364 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001365 if(adapter->rx_csum == TRUE) {
1366 rxcsum |= E1000_RXCSUM_TUOFL;
1367
1368 /* Enable 82573 IPv4 payload checksum for UDP fragments
1369 * Must be used in conjunction with packet-split. */
1370 if((adapter->hw.mac_type > e1000_82547_rev_2) &&
1371 (adapter->rx_ps)) {
1372 rxcsum |= E1000_RXCSUM_IPPCSE;
1373 }
1374 } else {
1375 rxcsum &= ~E1000_RXCSUM_TUOFL;
1376 /* don't need to clear IPPCSE as it defaults to 0 */
1377 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1379 }
1380
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001381 if (adapter->hw.mac_type == e1000_82573)
1382 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1383
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384 /* Enable Receives */
1385 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1386}
1387
1388/**
1389 * e1000_free_tx_resources - Free Tx Resources
1390 * @adapter: board private structure
1391 *
1392 * Free all transmit software resources
1393 **/
1394
1395void
1396e1000_free_tx_resources(struct e1000_adapter *adapter)
1397{
1398 struct pci_dev *pdev = adapter->pdev;
1399
1400 e1000_clean_tx_ring(adapter);
1401
1402 vfree(adapter->tx_ring.buffer_info);
1403 adapter->tx_ring.buffer_info = NULL;
1404
1405 pci_free_consistent(pdev, adapter->tx_ring.size,
1406 adapter->tx_ring.desc, adapter->tx_ring.dma);
1407
1408 adapter->tx_ring.desc = NULL;
1409}
1410
1411static inline void
1412e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1413 struct e1000_buffer *buffer_info)
1414{
1415 struct pci_dev *pdev = adapter->pdev;
1416
1417 if(buffer_info->dma) {
1418 pci_unmap_page(pdev,
1419 buffer_info->dma,
1420 buffer_info->length,
1421 PCI_DMA_TODEVICE);
1422 buffer_info->dma = 0;
1423 }
1424 if(buffer_info->skb) {
1425 dev_kfree_skb_any(buffer_info->skb);
1426 buffer_info->skb = NULL;
1427 }
1428}
1429
1430/**
1431 * e1000_clean_tx_ring - Free Tx Buffers
1432 * @adapter: board private structure
1433 **/
1434
1435static void
1436e1000_clean_tx_ring(struct e1000_adapter *adapter)
1437{
1438 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1439 struct e1000_buffer *buffer_info;
1440 unsigned long size;
1441 unsigned int i;
1442
1443 /* Free all the Tx ring sk_buffs */
1444
1445 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1446 e1000_unmap_and_free_tx_resource(adapter,
1447 &adapter->previous_buffer_info);
1448 }
1449
1450 for(i = 0; i < tx_ring->count; i++) {
1451 buffer_info = &tx_ring->buffer_info[i];
1452 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1453 }
1454
1455 size = sizeof(struct e1000_buffer) * tx_ring->count;
1456 memset(tx_ring->buffer_info, 0, size);
1457
1458 /* Zero out the descriptor ring */
1459
1460 memset(tx_ring->desc, 0, tx_ring->size);
1461
1462 tx_ring->next_to_use = 0;
1463 tx_ring->next_to_clean = 0;
1464
1465 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1466 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1467}
1468
1469/**
1470 * e1000_free_rx_resources - Free Rx Resources
1471 * @adapter: board private structure
1472 *
1473 * Free all receive software resources
1474 **/
1475
1476void
1477e1000_free_rx_resources(struct e1000_adapter *adapter)
1478{
1479 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1480 struct pci_dev *pdev = adapter->pdev;
1481
1482 e1000_clean_rx_ring(adapter);
1483
1484 vfree(rx_ring->buffer_info);
1485 rx_ring->buffer_info = NULL;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001486 kfree(rx_ring->ps_page);
1487 rx_ring->ps_page = NULL;
1488 kfree(rx_ring->ps_page_dma);
1489 rx_ring->ps_page_dma = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490
1491 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1492
1493 rx_ring->desc = NULL;
1494}
1495
1496/**
1497 * e1000_clean_rx_ring - Free Rx Buffers
1498 * @adapter: board private structure
1499 **/
1500
1501static void
1502e1000_clean_rx_ring(struct e1000_adapter *adapter)
1503{
1504 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1505 struct e1000_buffer *buffer_info;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001506 struct e1000_ps_page *ps_page;
1507 struct e1000_ps_page_dma *ps_page_dma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508 struct pci_dev *pdev = adapter->pdev;
1509 unsigned long size;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001510 unsigned int i, j;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511
1512 /* Free all the Rx ring sk_buffs */
1513
1514 for(i = 0; i < rx_ring->count; i++) {
1515 buffer_info = &rx_ring->buffer_info[i];
1516 if(buffer_info->skb) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001517 ps_page = &rx_ring->ps_page[i];
1518 ps_page_dma = &rx_ring->ps_page_dma[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 pci_unmap_single(pdev,
1520 buffer_info->dma,
1521 buffer_info->length,
1522 PCI_DMA_FROMDEVICE);
1523
1524 dev_kfree_skb(buffer_info->skb);
1525 buffer_info->skb = NULL;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001526
1527 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1528 if(!ps_page->ps_page[j]) break;
1529 pci_unmap_single(pdev,
1530 ps_page_dma->ps_page_dma[j],
1531 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1532 ps_page_dma->ps_page_dma[j] = 0;
1533 put_page(ps_page->ps_page[j]);
1534 ps_page->ps_page[j] = NULL;
1535 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001536 }
1537 }
1538
1539 size = sizeof(struct e1000_buffer) * rx_ring->count;
1540 memset(rx_ring->buffer_info, 0, size);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001541 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1542 memset(rx_ring->ps_page, 0, size);
1543 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1544 memset(rx_ring->ps_page_dma, 0, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545
1546 /* Zero out the descriptor ring */
1547
1548 memset(rx_ring->desc, 0, rx_ring->size);
1549
1550 rx_ring->next_to_clean = 0;
1551 rx_ring->next_to_use = 0;
1552
1553 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1554 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1555}
1556
1557/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1558 * and memory write and invalidate disabled for certain operations
1559 */
1560static void
1561e1000_enter_82542_rst(struct e1000_adapter *adapter)
1562{
1563 struct net_device *netdev = adapter->netdev;
1564 uint32_t rctl;
1565
1566 e1000_pci_clear_mwi(&adapter->hw);
1567
1568 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1569 rctl |= E1000_RCTL_RST;
1570 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1571 E1000_WRITE_FLUSH(&adapter->hw);
1572 mdelay(5);
1573
1574 if(netif_running(netdev))
1575 e1000_clean_rx_ring(adapter);
1576}
1577
1578static void
1579e1000_leave_82542_rst(struct e1000_adapter *adapter)
1580{
1581 struct net_device *netdev = adapter->netdev;
1582 uint32_t rctl;
1583
1584 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1585 rctl &= ~E1000_RCTL_RST;
1586 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1587 E1000_WRITE_FLUSH(&adapter->hw);
1588 mdelay(5);
1589
1590 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1591 e1000_pci_set_mwi(&adapter->hw);
1592
1593 if(netif_running(netdev)) {
1594 e1000_configure_rx(adapter);
1595 e1000_alloc_rx_buffers(adapter);
1596 }
1597}
1598
1599/**
1600 * e1000_set_mac - Change the Ethernet Address of the NIC
1601 * @netdev: network interface device structure
1602 * @p: pointer to an address structure
1603 *
1604 * Returns 0 on success, negative on failure
1605 **/
1606
1607static int
1608e1000_set_mac(struct net_device *netdev, void *p)
1609{
1610 struct e1000_adapter *adapter = netdev->priv;
1611 struct sockaddr *addr = p;
1612
1613 if(!is_valid_ether_addr(addr->sa_data))
1614 return -EADDRNOTAVAIL;
1615
1616 /* 82542 2.0 needs to be in reset to write receive address registers */
1617
1618 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1619 e1000_enter_82542_rst(adapter);
1620
1621 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1622 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1623
1624 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1625
1626 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1627 e1000_leave_82542_rst(adapter);
1628
1629 return 0;
1630}
1631
1632/**
1633 * e1000_set_multi - Multicast and Promiscuous mode set
1634 * @netdev: network interface device structure
1635 *
1636 * The set_multi entry point is called whenever the multicast address
1637 * list or the network interface flags are updated. This routine is
1638 * responsible for configuring the hardware for proper multicast,
1639 * promiscuous mode, and all-multi behavior.
1640 **/
1641
1642static void
1643e1000_set_multi(struct net_device *netdev)
1644{
1645 struct e1000_adapter *adapter = netdev->priv;
1646 struct e1000_hw *hw = &adapter->hw;
1647 struct dev_mc_list *mc_ptr;
1648 uint32_t rctl;
1649 uint32_t hash_value;
1650 int i;
1651 unsigned long flags;
1652
1653 /* Check for Promiscuous and All Multicast modes */
1654
1655 spin_lock_irqsave(&adapter->tx_lock, flags);
1656
1657 rctl = E1000_READ_REG(hw, RCTL);
1658
1659 if(netdev->flags & IFF_PROMISC) {
1660 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1661 } else if(netdev->flags & IFF_ALLMULTI) {
1662 rctl |= E1000_RCTL_MPE;
1663 rctl &= ~E1000_RCTL_UPE;
1664 } else {
1665 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1666 }
1667
1668 E1000_WRITE_REG(hw, RCTL, rctl);
1669
1670 /* 82542 2.0 needs to be in reset to write receive address registers */
1671
1672 if(hw->mac_type == e1000_82542_rev2_0)
1673 e1000_enter_82542_rst(adapter);
1674
1675 /* load the first 14 multicast address into the exact filters 1-14
1676 * RAR 0 is used for the station MAC adddress
1677 * if there are not 14 addresses, go ahead and clear the filters
1678 */
1679 mc_ptr = netdev->mc_list;
1680
1681 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1682 if(mc_ptr) {
1683 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1684 mc_ptr = mc_ptr->next;
1685 } else {
1686 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1687 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1688 }
1689 }
1690
1691 /* clear the old settings from the multicast hash table */
1692
1693 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1694 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1695
1696 /* load any remaining addresses into the hash table */
1697
1698 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1699 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1700 e1000_mta_set(hw, hash_value);
1701 }
1702
1703 if(hw->mac_type == e1000_82542_rev2_0)
1704 e1000_leave_82542_rst(adapter);
1705
1706 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1707}
1708
1709/* Need to wait a few seconds after link up to get diagnostic information from
1710 * the phy */
1711
1712static void
1713e1000_update_phy_info(unsigned long data)
1714{
1715 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1716 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1717}
1718
1719/**
1720 * e1000_82547_tx_fifo_stall - Timer Call-back
1721 * @data: pointer to adapter cast into an unsigned long
1722 **/
1723
1724static void
1725e1000_82547_tx_fifo_stall(unsigned long data)
1726{
1727 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1728 struct net_device *netdev = adapter->netdev;
1729 uint32_t tctl;
1730
1731 if(atomic_read(&adapter->tx_fifo_stall)) {
1732 if((E1000_READ_REG(&adapter->hw, TDT) ==
1733 E1000_READ_REG(&adapter->hw, TDH)) &&
1734 (E1000_READ_REG(&adapter->hw, TDFT) ==
1735 E1000_READ_REG(&adapter->hw, TDFH)) &&
1736 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1737 E1000_READ_REG(&adapter->hw, TDFHS))) {
1738 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1739 E1000_WRITE_REG(&adapter->hw, TCTL,
1740 tctl & ~E1000_TCTL_EN);
1741 E1000_WRITE_REG(&adapter->hw, TDFT,
1742 adapter->tx_head_addr);
1743 E1000_WRITE_REG(&adapter->hw, TDFH,
1744 adapter->tx_head_addr);
1745 E1000_WRITE_REG(&adapter->hw, TDFTS,
1746 adapter->tx_head_addr);
1747 E1000_WRITE_REG(&adapter->hw, TDFHS,
1748 adapter->tx_head_addr);
1749 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1750 E1000_WRITE_FLUSH(&adapter->hw);
1751
1752 adapter->tx_fifo_head = 0;
1753 atomic_set(&adapter->tx_fifo_stall, 0);
1754 netif_wake_queue(netdev);
1755 } else {
1756 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1757 }
1758 }
1759}
1760
1761/**
1762 * e1000_watchdog - Timer Call-back
1763 * @data: pointer to adapter cast into an unsigned long
1764 **/
1765static void
1766e1000_watchdog(unsigned long data)
1767{
1768 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1769
1770 /* Do the rest outside of interrupt context */
1771 schedule_work(&adapter->watchdog_task);
1772}
1773
1774static void
1775e1000_watchdog_task(struct e1000_adapter *adapter)
1776{
1777 struct net_device *netdev = adapter->netdev;
1778 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1779 uint32_t link;
1780
1781 e1000_check_for_link(&adapter->hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001782 if (adapter->hw.mac_type == e1000_82573) {
1783 e1000_enable_tx_pkt_filtering(&adapter->hw);
1784 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1785 e1000_update_mng_vlan(adapter);
1786 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787
1788 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1789 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1790 link = !adapter->hw.serdes_link_down;
1791 else
1792 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1793
1794 if(link) {
1795 if(!netif_carrier_ok(netdev)) {
1796 e1000_get_speed_and_duplex(&adapter->hw,
1797 &adapter->link_speed,
1798 &adapter->link_duplex);
1799
1800 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1801 adapter->link_speed,
1802 adapter->link_duplex == FULL_DUPLEX ?
1803 "Full Duplex" : "Half Duplex");
1804
1805 netif_carrier_on(netdev);
1806 netif_wake_queue(netdev);
1807 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1808 adapter->smartspeed = 0;
1809 }
1810 } else {
1811 if(netif_carrier_ok(netdev)) {
1812 adapter->link_speed = 0;
1813 adapter->link_duplex = 0;
1814 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1815 netif_carrier_off(netdev);
1816 netif_stop_queue(netdev);
1817 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1818 }
1819
1820 e1000_smartspeed(adapter);
1821 }
1822
1823 e1000_update_stats(adapter);
1824
1825 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1826 adapter->tpt_old = adapter->stats.tpt;
1827 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1828 adapter->colc_old = adapter->stats.colc;
1829
1830 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1831 adapter->gorcl_old = adapter->stats.gorcl;
1832 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1833 adapter->gotcl_old = adapter->stats.gotcl;
1834
1835 e1000_update_adaptive(&adapter->hw);
1836
1837 if(!netif_carrier_ok(netdev)) {
1838 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1839 /* We've lost link, so the controller stops DMA,
1840 * but we've got queued Tx work that's never going
1841 * to get done, so reset controller to flush Tx.
1842 * (Do the reset outside of interrupt context). */
1843 schedule_work(&adapter->tx_timeout_task);
1844 }
1845 }
1846
1847 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1848 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1849 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1850 * asymmetrical Tx or Rx gets ITR=8000; everyone
1851 * else is between 2000-8000. */
1852 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1853 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1854 adapter->gotcl - adapter->gorcl :
1855 adapter->gorcl - adapter->gotcl) / 10000;
1856 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1857 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1858 }
1859
1860 /* Cause software interrupt to ensure rx ring is cleaned */
1861 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1862
1863 /* Force detection of hung controller every watchdog period*/
1864 adapter->detect_tx_hung = TRUE;
1865
1866 /* Reset the timer */
1867 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1868}
1869
1870#define E1000_TX_FLAGS_CSUM 0x00000001
1871#define E1000_TX_FLAGS_VLAN 0x00000002
1872#define E1000_TX_FLAGS_TSO 0x00000004
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001873#define E1000_TX_FLAGS_IPV4 0x00000008
Linus Torvalds1da177e2005-04-16 15:20:36 -07001874#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1875#define E1000_TX_FLAGS_VLAN_SHIFT 16
1876
1877static inline int
1878e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1879{
1880#ifdef NETIF_F_TSO
1881 struct e1000_context_desc *context_desc;
1882 unsigned int i;
1883 uint32_t cmd_length = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001884 uint16_t ipcse = 0, tucse, mss;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1886 int err;
1887
1888 if(skb_shinfo(skb)->tso_size) {
1889 if (skb_header_cloned(skb)) {
1890 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1891 if (err)
1892 return err;
1893 }
1894
1895 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1896 mss = skb_shinfo(skb)->tso_size;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001897 if(skb->protocol == ntohs(ETH_P_IP)) {
1898 skb->nh.iph->tot_len = 0;
1899 skb->nh.iph->check = 0;
1900 skb->h.th->check =
1901 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1902 skb->nh.iph->daddr,
1903 0,
1904 IPPROTO_TCP,
1905 0);
1906 cmd_length = E1000_TXD_CMD_IP;
1907 ipcse = skb->h.raw - skb->data - 1;
1908#ifdef NETIF_F_TSO_IPV6
1909 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1910 skb->nh.ipv6h->payload_len = 0;
1911 skb->h.th->check =
1912 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1913 &skb->nh.ipv6h->daddr,
1914 0,
1915 IPPROTO_TCP,
1916 0);
1917 ipcse = 0;
1918#endif
1919 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001920 ipcss = skb->nh.raw - skb->data;
1921 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 tucss = skb->h.raw - skb->data;
1923 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1924 tucse = 0;
1925
1926 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001927 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928
1929 i = adapter->tx_ring.next_to_use;
1930 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1931
1932 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1933 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1934 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1935 context_desc->upper_setup.tcp_fields.tucss = tucss;
1936 context_desc->upper_setup.tcp_fields.tucso = tucso;
1937 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1938 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1939 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1940 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1941
1942 if(++i == adapter->tx_ring.count) i = 0;
1943 adapter->tx_ring.next_to_use = i;
1944
1945 return 1;
1946 }
1947#endif
1948
1949 return 0;
1950}
1951
1952static inline boolean_t
1953e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1954{
1955 struct e1000_context_desc *context_desc;
1956 unsigned int i;
1957 uint8_t css;
1958
1959 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1960 css = skb->h.raw - skb->data;
1961
1962 i = adapter->tx_ring.next_to_use;
1963 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1964
1965 context_desc->upper_setup.tcp_fields.tucss = css;
1966 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1967 context_desc->upper_setup.tcp_fields.tucse = 0;
1968 context_desc->tcp_seg_setup.data = 0;
1969 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1970
1971 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1972 adapter->tx_ring.next_to_use = i;
1973
1974 return TRUE;
1975 }
1976
1977 return FALSE;
1978}
1979
1980#define E1000_MAX_TXD_PWR 12
1981#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1982
1983static inline int
1984e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1985 unsigned int first, unsigned int max_per_txd,
1986 unsigned int nr_frags, unsigned int mss)
1987{
1988 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1989 struct e1000_buffer *buffer_info;
1990 unsigned int len = skb->len;
1991 unsigned int offset = 0, size, count = 0, i;
1992 unsigned int f;
1993 len -= skb->data_len;
1994
1995 i = tx_ring->next_to_use;
1996
1997 while(len) {
1998 buffer_info = &tx_ring->buffer_info[i];
1999 size = min(len, max_per_txd);
2000#ifdef NETIF_F_TSO
2001 /* Workaround for premature desc write-backs
2002 * in TSO mode. Append 4-byte sentinel desc */
2003 if(unlikely(mss && !nr_frags && size == len && size > 8))
2004 size -= 4;
2005#endif
Malli Chilakala97338bd2005-04-28 19:41:46 -07002006 /* work-around for errata 10 and it applies
2007 * to all controllers in PCI-X mode
2008 * The fix is to make sure that the first descriptor of a
2009 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2010 */
2011 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2012 (size > 2015) && count == 0))
2013 size = 2015;
2014
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 /* Workaround for potential 82544 hang in PCI-X. Avoid
2016 * terminating buffers within evenly-aligned dwords. */
2017 if(unlikely(adapter->pcix_82544 &&
2018 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2019 size > 4))
2020 size -= 4;
2021
2022 buffer_info->length = size;
2023 buffer_info->dma =
2024 pci_map_single(adapter->pdev,
2025 skb->data + offset,
2026 size,
2027 PCI_DMA_TODEVICE);
2028 buffer_info->time_stamp = jiffies;
2029
2030 len -= size;
2031 offset += size;
2032 count++;
2033 if(unlikely(++i == tx_ring->count)) i = 0;
2034 }
2035
2036 for(f = 0; f < nr_frags; f++) {
2037 struct skb_frag_struct *frag;
2038
2039 frag = &skb_shinfo(skb)->frags[f];
2040 len = frag->size;
2041 offset = frag->page_offset;
2042
2043 while(len) {
2044 buffer_info = &tx_ring->buffer_info[i];
2045 size = min(len, max_per_txd);
2046#ifdef NETIF_F_TSO
2047 /* Workaround for premature desc write-backs
2048 * in TSO mode. Append 4-byte sentinel desc */
2049 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2050 size -= 4;
2051#endif
2052 /* Workaround for potential 82544 hang in PCI-X.
2053 * Avoid terminating buffers within evenly-aligned
2054 * dwords. */
2055 if(unlikely(adapter->pcix_82544 &&
2056 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2057 size > 4))
2058 size -= 4;
2059
2060 buffer_info->length = size;
2061 buffer_info->dma =
2062 pci_map_page(adapter->pdev,
2063 frag->page,
2064 offset,
2065 size,
2066 PCI_DMA_TODEVICE);
2067 buffer_info->time_stamp = jiffies;
2068
2069 len -= size;
2070 offset += size;
2071 count++;
2072 if(unlikely(++i == tx_ring->count)) i = 0;
2073 }
2074 }
2075
2076 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2077 tx_ring->buffer_info[i].skb = skb;
2078 tx_ring->buffer_info[first].next_to_watch = i;
2079
2080 return count;
2081}
2082
2083static inline void
2084e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2085{
2086 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2087 struct e1000_tx_desc *tx_desc = NULL;
2088 struct e1000_buffer *buffer_info;
2089 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2090 unsigned int i;
2091
2092 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2093 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2094 E1000_TXD_CMD_TSE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002095 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2096
2097 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2098 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 }
2100
2101 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2102 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2103 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2104 }
2105
2106 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2107 txd_lower |= E1000_TXD_CMD_VLE;
2108 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2109 }
2110
2111 i = tx_ring->next_to_use;
2112
2113 while(count--) {
2114 buffer_info = &tx_ring->buffer_info[i];
2115 tx_desc = E1000_TX_DESC(*tx_ring, i);
2116 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2117 tx_desc->lower.data =
2118 cpu_to_le32(txd_lower | buffer_info->length);
2119 tx_desc->upper.data = cpu_to_le32(txd_upper);
2120 if(unlikely(++i == tx_ring->count)) i = 0;
2121 }
2122
2123 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2124
2125 /* Force memory writes to complete before letting h/w
2126 * know there are new descriptors to fetch. (Only
2127 * applicable for weak-ordered memory model archs,
2128 * such as IA-64). */
2129 wmb();
2130
2131 tx_ring->next_to_use = i;
2132 E1000_WRITE_REG(&adapter->hw, TDT, i);
2133}
2134
2135/**
2136 * 82547 workaround to avoid controller hang in half-duplex environment.
2137 * The workaround is to avoid queuing a large packet that would span
2138 * the internal Tx FIFO ring boundary by notifying the stack to resend
2139 * the packet at a later time. This gives the Tx FIFO an opportunity to
2140 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2141 * to the beginning of the Tx FIFO.
2142 **/
2143
2144#define E1000_FIFO_HDR 0x10
2145#define E1000_82547_PAD_LEN 0x3E0
2146
2147static inline int
2148e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2149{
2150 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2151 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2152
2153 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2154
2155 if(adapter->link_duplex != HALF_DUPLEX)
2156 goto no_fifo_stall_required;
2157
2158 if(atomic_read(&adapter->tx_fifo_stall))
2159 return 1;
2160
2161 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2162 atomic_set(&adapter->tx_fifo_stall, 1);
2163 return 1;
2164 }
2165
2166no_fifo_stall_required:
2167 adapter->tx_fifo_head += skb_fifo_len;
2168 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2169 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2170 return 0;
2171}
2172
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002173#define MINIMUM_DHCP_PACKET_SIZE 282
2174static inline int
2175e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2176{
2177 struct e1000_hw *hw = &adapter->hw;
2178 uint16_t length, offset;
2179 if(vlan_tx_tag_present(skb)) {
2180 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2181 ( adapter->hw.mng_cookie.status &
2182 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2183 return 0;
2184 }
2185 if(htons(ETH_P_IP) == skb->protocol) {
2186 const struct iphdr *ip = skb->nh.iph;
2187 if(IPPROTO_UDP == ip->protocol) {
2188 struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2189 if(ntohs(udp->dest) == 67) {
2190 offset = (uint8_t *)udp + 8 - skb->data;
2191 length = skb->len - offset;
2192
2193 return e1000_mng_write_dhcp_info(hw,
2194 (uint8_t *)udp + 8, length);
2195 }
2196 }
2197 } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2198 struct ethhdr *eth = (struct ethhdr *) skb->data;
2199 if((htons(ETH_P_IP) == eth->h_proto)) {
2200 const struct iphdr *ip =
2201 (struct iphdr *)((uint8_t *)skb->data+14);
2202 if(IPPROTO_UDP == ip->protocol) {
2203 struct udphdr *udp =
2204 (struct udphdr *)((uint8_t *)ip +
2205 (ip->ihl << 2));
2206 if(ntohs(udp->dest) == 67) {
2207 offset = (uint8_t *)udp + 8 - skb->data;
2208 length = skb->len - offset;
2209
2210 return e1000_mng_write_dhcp_info(hw,
2211 (uint8_t *)udp + 8,
2212 length);
2213 }
2214 }
2215 }
2216 }
2217 return 0;
2218}
2219
Linus Torvalds1da177e2005-04-16 15:20:36 -07002220#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2221static int
2222e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2223{
2224 struct e1000_adapter *adapter = netdev->priv;
2225 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2226 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2227 unsigned int tx_flags = 0;
2228 unsigned int len = skb->len;
2229 unsigned long flags;
2230 unsigned int nr_frags = 0;
2231 unsigned int mss = 0;
2232 int count = 0;
2233 int tso;
2234 unsigned int f;
2235 len -= skb->data_len;
2236
2237 if(unlikely(skb->len <= 0)) {
2238 dev_kfree_skb_any(skb);
2239 return NETDEV_TX_OK;
2240 }
2241
2242#ifdef NETIF_F_TSO
2243 mss = skb_shinfo(skb)->tso_size;
2244 /* The controller does a simple calculation to
2245 * make sure there is enough room in the FIFO before
2246 * initiating the DMA for each buffer. The calc is:
2247 * 4 = ceil(buffer len/mss). To make sure we don't
2248 * overrun the FIFO, adjust the max buffer len if mss
2249 * drops. */
2250 if(mss) {
2251 max_per_txd = min(mss << 2, max_per_txd);
2252 max_txd_pwr = fls(max_per_txd) - 1;
2253 }
2254
2255 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2256 count++;
2257 count++; /* for sentinel desc */
2258#else
2259 if(skb->ip_summed == CHECKSUM_HW)
2260 count++;
2261#endif
2262 count += TXD_USE_COUNT(len, max_txd_pwr);
2263
2264 if(adapter->pcix_82544)
2265 count++;
2266
Malli Chilakala97338bd2005-04-28 19:41:46 -07002267 /* work-around for errata 10 and it applies to all controllers
2268 * in PCI-X mode, so add one more descriptor to the count
2269 */
2270 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2271 (len > 2015)))
2272 count++;
2273
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 nr_frags = skb_shinfo(skb)->nr_frags;
2275 for(f = 0; f < nr_frags; f++)
2276 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2277 max_txd_pwr);
2278 if(adapter->pcix_82544)
2279 count += nr_frags;
2280
2281 local_irq_save(flags);
2282 if (!spin_trylock(&adapter->tx_lock)) {
2283 /* Collision - tell upper layer to requeue */
2284 local_irq_restore(flags);
2285 return NETDEV_TX_LOCKED;
2286 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002287 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2288 e1000_transfer_dhcp_info(adapter, skb);
2289
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290
2291 /* need: count + 2 desc gap to keep tail from touching
2292 * head, otherwise try next time */
2293 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2294 netif_stop_queue(netdev);
2295 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2296 return NETDEV_TX_BUSY;
2297 }
2298
2299 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2300 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2301 netif_stop_queue(netdev);
2302 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2303 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2304 return NETDEV_TX_BUSY;
2305 }
2306 }
2307
2308 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2309 tx_flags |= E1000_TX_FLAGS_VLAN;
2310 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2311 }
2312
2313 first = adapter->tx_ring.next_to_use;
2314
2315 tso = e1000_tso(adapter, skb);
2316 if (tso < 0) {
2317 dev_kfree_skb_any(skb);
2318 return NETDEV_TX_OK;
2319 }
2320
2321 if (likely(tso))
2322 tx_flags |= E1000_TX_FLAGS_TSO;
2323 else if(likely(e1000_tx_csum(adapter, skb)))
2324 tx_flags |= E1000_TX_FLAGS_CSUM;
2325
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002326 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2327 * 82573 hardware supports TSO capabilities for IPv6 as well...
2328 * no longer assume, we must. */
2329 if(likely(skb->protocol == ntohs(ETH_P_IP)))
2330 tx_flags |= E1000_TX_FLAGS_IPV4;
2331
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 e1000_tx_queue(adapter,
2333 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2334 tx_flags);
2335
2336 netdev->trans_start = jiffies;
2337
2338 /* Make sure there is space in the ring for the next send. */
2339 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2340 netif_stop_queue(netdev);
2341
2342 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2343 return NETDEV_TX_OK;
2344}
2345
2346/**
2347 * e1000_tx_timeout - Respond to a Tx Hang
2348 * @netdev: network interface device structure
2349 **/
2350
2351static void
2352e1000_tx_timeout(struct net_device *netdev)
2353{
2354 struct e1000_adapter *adapter = netdev->priv;
2355
2356 /* Do the reset outside of interrupt context */
2357 schedule_work(&adapter->tx_timeout_task);
2358}
2359
2360static void
2361e1000_tx_timeout_task(struct net_device *netdev)
2362{
2363 struct e1000_adapter *adapter = netdev->priv;
2364
2365 e1000_down(adapter);
2366 e1000_up(adapter);
2367}
2368
2369/**
2370 * e1000_get_stats - Get System Network Statistics
2371 * @netdev: network interface device structure
2372 *
2373 * Returns the address of the device statistics structure.
2374 * The statistics are actually updated from the timer callback.
2375 **/
2376
2377static struct net_device_stats *
2378e1000_get_stats(struct net_device *netdev)
2379{
2380 struct e1000_adapter *adapter = netdev->priv;
2381
2382 e1000_update_stats(adapter);
2383 return &adapter->net_stats;
2384}
2385
2386/**
2387 * e1000_change_mtu - Change the Maximum Transfer Unit
2388 * @netdev: network interface device structure
2389 * @new_mtu: new value for maximum frame size
2390 *
2391 * Returns 0 on success, negative on failure
2392 **/
2393
2394static int
2395e1000_change_mtu(struct net_device *netdev, int new_mtu)
2396{
2397 struct e1000_adapter *adapter = netdev->priv;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2399
2400 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2401 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2402 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2403 return -EINVAL;
2404 }
2405
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002406#define MAX_STD_JUMBO_FRAME_SIZE 9216
2407 /* might want this to be bigger enum check... */
2408 if (adapter->hw.mac_type == e1000_82573 &&
2409 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2410 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2411 "on 82573\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002412 return -EINVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002413 }
2414
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002415 if(adapter->hw.mac_type > e1000_82547_rev_2) {
2416 adapter->rx_buffer_len = max_frame;
2417 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2418 } else {
2419 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2420 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2421 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2422 "on 82542\n");
2423 return -EINVAL;
2424
2425 } else {
2426 if(max_frame <= E1000_RXBUFFER_2048) {
2427 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2428 } else if(max_frame <= E1000_RXBUFFER_4096) {
2429 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2430 } else if(max_frame <= E1000_RXBUFFER_8192) {
2431 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2432 } else if(max_frame <= E1000_RXBUFFER_16384) {
2433 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2434 }
2435 }
2436 }
2437
2438 netdev->mtu = new_mtu;
2439
2440 if(netif_running(netdev)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002441 e1000_down(adapter);
2442 e1000_up(adapter);
2443 }
2444
Linus Torvalds1da177e2005-04-16 15:20:36 -07002445 adapter->hw.max_frame_size = max_frame;
2446
2447 return 0;
2448}
2449
2450/**
2451 * e1000_update_stats - Update the board statistics counters
2452 * @adapter: board private structure
2453 **/
2454
2455void
2456e1000_update_stats(struct e1000_adapter *adapter)
2457{
2458 struct e1000_hw *hw = &adapter->hw;
2459 unsigned long flags;
2460 uint16_t phy_tmp;
2461
2462#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2463
2464 spin_lock_irqsave(&adapter->stats_lock, flags);
2465
2466 /* these counters are modified from e1000_adjust_tbi_stats,
2467 * called from the interrupt context, so they must only
2468 * be written while holding adapter->stats_lock
2469 */
2470
2471 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2472 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2473 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2474 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2475 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2476 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2477 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2478 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2479 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2480 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2481 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2482 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2483 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2484
2485 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2486 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2487 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2488 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2489 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2490 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2491 adapter->stats.dc += E1000_READ_REG(hw, DC);
2492 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2493 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2494 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2495 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2496 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2497 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2498 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2499 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2500 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2501 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2502 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2503 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2504 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2505 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2506 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2507 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2508 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2509 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2510 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2511 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2512 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2513 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2514 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2515 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2516 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2517 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2518 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2519
2520 /* used for adaptive IFS */
2521
2522 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2523 adapter->stats.tpt += hw->tx_packet_delta;
2524 hw->collision_delta = E1000_READ_REG(hw, COLC);
2525 adapter->stats.colc += hw->collision_delta;
2526
2527 if(hw->mac_type >= e1000_82543) {
2528 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2529 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2530 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2531 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2532 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2533 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2534 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002535 if(hw->mac_type > e1000_82547_rev_2) {
2536 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2537 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2538 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2539 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2540 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2541 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2542 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2543 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2544 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2545 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002546
2547 /* Fill out the OS statistics structure */
2548
2549 adapter->net_stats.rx_packets = adapter->stats.gprc;
2550 adapter->net_stats.tx_packets = adapter->stats.gptc;
2551 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2552 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2553 adapter->net_stats.multicast = adapter->stats.mprc;
2554 adapter->net_stats.collisions = adapter->stats.colc;
2555
2556 /* Rx Errors */
2557
2558 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2559 adapter->stats.crcerrs + adapter->stats.algnerrc +
Malli Chilakala6d915752005-04-28 19:41:11 -07002560 adapter->stats.rlec + adapter->stats.mpc +
2561 adapter->stats.cexterr;
2562 adapter->net_stats.rx_dropped = adapter->stats.mpc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2564 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2565 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2566 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2567 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2568
2569 /* Tx Errors */
2570
2571 adapter->net_stats.tx_errors = adapter->stats.ecol +
2572 adapter->stats.latecol;
2573 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2574 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2575 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2576
2577 /* Tx Dropped needs to be maintained elsewhere */
2578
2579 /* Phy Stats */
2580
2581 if(hw->media_type == e1000_media_type_copper) {
2582 if((adapter->link_speed == SPEED_1000) &&
2583 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2584 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2585 adapter->phy_stats.idle_errors += phy_tmp;
2586 }
2587
2588 if((hw->mac_type <= e1000_82546) &&
2589 (hw->phy_type == e1000_phy_m88) &&
2590 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2591 adapter->phy_stats.receive_errors += phy_tmp;
2592 }
2593
2594 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2595}
2596
2597/**
2598 * e1000_intr - Interrupt Handler
2599 * @irq: interrupt number
2600 * @data: pointer to a network interface device structure
2601 * @pt_regs: CPU registers structure
2602 **/
2603
2604static irqreturn_t
2605e1000_intr(int irq, void *data, struct pt_regs *regs)
2606{
2607 struct net_device *netdev = data;
2608 struct e1000_adapter *adapter = netdev->priv;
2609 struct e1000_hw *hw = &adapter->hw;
2610 uint32_t icr = E1000_READ_REG(hw, ICR);
2611#ifndef CONFIG_E1000_NAPI
2612 unsigned int i;
2613#endif
2614
2615 if(unlikely(!icr))
2616 return IRQ_NONE; /* Not our interrupt */
2617
2618 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2619 hw->get_link_status = 1;
2620 mod_timer(&adapter->watchdog_timer, jiffies);
2621 }
2622
2623#ifdef CONFIG_E1000_NAPI
2624 if(likely(netif_rx_schedule_prep(netdev))) {
2625
2626 /* Disable interrupts and register for poll. The flush
2627 of the posted write is intentionally left out.
2628 */
2629
2630 atomic_inc(&adapter->irq_sem);
2631 E1000_WRITE_REG(hw, IMC, ~0);
2632 __netif_rx_schedule(netdev);
2633 }
2634#else
2635 /* Writing IMC and IMS is needed for 82547.
2636 Due to Hub Link bus being occupied, an interrupt
2637 de-assertion message is not able to be sent.
2638 When an interrupt assertion message is generated later,
2639 two messages are re-ordered and sent out.
2640 That causes APIC to think 82547 is in de-assertion
2641 state, while 82547 is in assertion state, resulting
2642 in dead lock. Writing IMC forces 82547 into
2643 de-assertion state.
2644 */
2645 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2646 atomic_inc(&adapter->irq_sem);
2647 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
2648 }
2649
2650 for(i = 0; i < E1000_MAX_INTR; i++)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002651 if(unlikely(!adapter->clean_rx(adapter) &
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652 !e1000_clean_tx_irq(adapter)))
2653 break;
2654
2655 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2656 e1000_irq_enable(adapter);
2657#endif
2658
2659 return IRQ_HANDLED;
2660}
2661
2662#ifdef CONFIG_E1000_NAPI
2663/**
2664 * e1000_clean - NAPI Rx polling callback
2665 * @adapter: board private structure
2666 **/
2667
2668static int
2669e1000_clean(struct net_device *netdev, int *budget)
2670{
2671 struct e1000_adapter *adapter = netdev->priv;
2672 int work_to_do = min(*budget, netdev->quota);
2673 int tx_cleaned;
2674 int work_done = 0;
2675
2676 tx_cleaned = e1000_clean_tx_irq(adapter);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002677 adapter->clean_rx(adapter, &work_done, work_to_do);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678
2679 *budget -= work_done;
2680 netdev->quota -= work_done;
2681
Malli Chilakalaf0d11ed2005-04-28 19:43:28 -07002682 /* If no Tx and no Rx work done, exit the polling mode */
2683 if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002684 netif_rx_complete(netdev);
2685 e1000_irq_enable(adapter);
2686 return 0;
2687 }
2688
2689 return 1;
2690}
2691
2692#endif
2693/**
2694 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2695 * @adapter: board private structure
2696 **/
2697
2698static boolean_t
2699e1000_clean_tx_irq(struct e1000_adapter *adapter)
2700{
2701 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2702 struct net_device *netdev = adapter->netdev;
2703 struct e1000_tx_desc *tx_desc, *eop_desc;
2704 struct e1000_buffer *buffer_info;
2705 unsigned int i, eop;
2706 boolean_t cleaned = FALSE;
2707
2708 i = tx_ring->next_to_clean;
2709 eop = tx_ring->buffer_info[i].next_to_watch;
2710 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2711
2712 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
Malli Chilakala27012342005-04-28 19:40:28 -07002713 /* Premature writeback of Tx descriptors clear (free buffers
2714 * and unmap pci_mapping) previous_buffer_info */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715 if (likely(adapter->previous_buffer_info.skb != NULL)) {
Malli Chilakala27012342005-04-28 19:40:28 -07002716 e1000_unmap_and_free_tx_resource(adapter,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 &adapter->previous_buffer_info);
2718 }
2719
2720 for(cleaned = FALSE; !cleaned; ) {
2721 tx_desc = E1000_TX_DESC(*tx_ring, i);
2722 buffer_info = &tx_ring->buffer_info[i];
2723 cleaned = (i == eop);
2724
Malli Chilakala27012342005-04-28 19:40:28 -07002725#ifdef NETIF_F_TSO
2726 if (!(netdev->features & NETIF_F_TSO)) {
2727#endif
2728 e1000_unmap_and_free_tx_resource(adapter,
2729 buffer_info);
2730#ifdef NETIF_F_TSO
Linus Torvalds1da177e2005-04-16 15:20:36 -07002731 } else {
Malli Chilakala27012342005-04-28 19:40:28 -07002732 if (cleaned) {
2733 memcpy(&adapter->previous_buffer_info,
2734 buffer_info,
2735 sizeof(struct e1000_buffer));
2736 memset(buffer_info, 0,
2737 sizeof(struct e1000_buffer));
2738 } else {
2739 e1000_unmap_and_free_tx_resource(
2740 adapter, buffer_info);
2741 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 }
Malli Chilakala27012342005-04-28 19:40:28 -07002743#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002744
2745 tx_desc->buffer_addr = 0;
2746 tx_desc->lower.data = 0;
2747 tx_desc->upper.data = 0;
2748
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749 if(unlikely(++i == tx_ring->count)) i = 0;
2750 }
2751
2752 eop = tx_ring->buffer_info[i].next_to_watch;
2753 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2754 }
2755
2756 tx_ring->next_to_clean = i;
2757
2758 spin_lock(&adapter->tx_lock);
2759
2760 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2761 netif_carrier_ok(netdev)))
2762 netif_wake_queue(netdev);
2763
2764 spin_unlock(&adapter->tx_lock);
2765
2766 if(adapter->detect_tx_hung) {
2767 /* detect a transmit hang in hardware, this serializes the
2768 * check with the clearing of time_stamp and movement of i */
2769 adapter->detect_tx_hung = FALSE;
Malli Chilakala70b8f1e2005-04-28 19:40:40 -07002770 if (tx_ring->buffer_info[i].dma &&
2771 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2772 && !(E1000_READ_REG(&adapter->hw, STATUS) &
2773 E1000_STATUS_TXOFF)) {
2774
2775 /* detected Tx unit hang */
2776 i = tx_ring->next_to_clean;
2777 eop = tx_ring->buffer_info[i].next_to_watch;
2778 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2779 DPRINTK(TX_ERR, ERR, "Detected Tx Unit Hang\n"
2780 " TDH <%x>\n"
2781 " TDT <%x>\n"
2782 " next_to_use <%x>\n"
2783 " next_to_clean <%x>\n"
2784 "buffer_info[next_to_clean]\n"
2785 " dma <%llx>\n"
2786 " time_stamp <%lx>\n"
2787 " next_to_watch <%x>\n"
2788 " jiffies <%lx>\n"
2789 " next_to_watch.status <%x>\n",
2790 E1000_READ_REG(&adapter->hw, TDH),
2791 E1000_READ_REG(&adapter->hw, TDT),
2792 tx_ring->next_to_use,
2793 i,
2794 tx_ring->buffer_info[i].dma,
2795 tx_ring->buffer_info[i].time_stamp,
2796 eop,
2797 jiffies,
2798 eop_desc->upper.fields.status);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799 netif_stop_queue(netdev);
Malli Chilakala70b8f1e2005-04-28 19:40:40 -07002800 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801 }
Malli Chilakala27012342005-04-28 19:40:28 -07002802#ifdef NETIF_F_TSO
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803
Malli Chilakala27012342005-04-28 19:40:28 -07002804 if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2805 time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2806 e1000_unmap_and_free_tx_resource(
2807 adapter, &adapter->previous_buffer_info);
2808
2809#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810 return cleaned;
2811}
2812
2813/**
2814 * e1000_rx_checksum - Receive Checksum Offload for 82543
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002815 * @adapter: board private structure
2816 * @status_err: receive descriptor status and error fields
2817 * @csum: receive descriptor csum field
2818 * @sk_buff: socket buffer with received data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002819 **/
2820
2821static inline void
2822e1000_rx_checksum(struct e1000_adapter *adapter,
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002823 uint32_t status_err, uint32_t csum,
2824 struct sk_buff *skb)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002825{
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002826 uint16_t status = (uint16_t)status_err;
2827 uint8_t errors = (uint8_t)(status_err >> 24);
2828 skb->ip_summed = CHECKSUM_NONE;
2829
Linus Torvalds1da177e2005-04-16 15:20:36 -07002830 /* 82543 or newer only */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002831 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832 /* Ignore Checksum bit is set */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002833 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2834 /* TCP/UDP checksum error bit is set */
2835 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
2836 /* let the stack verify checksum errors */
2837 adapter->hw_csum_err++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002838 return;
2839 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002840 /* TCP/UDP Checksum has not been calculated */
2841 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2842 if(!(status & E1000_RXD_STAT_TCPCS))
2843 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002845 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2846 return;
2847 }
2848 /* It must be a TCP or UDP packet with a valid checksum */
2849 if (likely(status & E1000_RXD_STAT_TCPCS)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850 /* TCP checksum is good */
2851 skb->ip_summed = CHECKSUM_UNNECESSARY;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002852 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2853 /* IP fragment with UDP payload */
2854 /* Hardware complements the payload checksum, so we undo it
2855 * and then put the value in host order for further stack use.
2856 */
2857 csum = ntohl(csum ^ 0xFFFF);
2858 skb->csum = csum;
2859 skb->ip_summed = CHECKSUM_HW;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002861 adapter->hw_csum_good++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002862}
2863
2864/**
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002865 * e1000_clean_rx_irq - Send received data up the network stack; legacy
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866 * @adapter: board private structure
2867 **/
2868
2869static boolean_t
2870#ifdef CONFIG_E1000_NAPI
2871e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2872 int work_to_do)
2873#else
2874e1000_clean_rx_irq(struct e1000_adapter *adapter)
2875#endif
2876{
2877 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2878 struct net_device *netdev = adapter->netdev;
2879 struct pci_dev *pdev = adapter->pdev;
2880 struct e1000_rx_desc *rx_desc;
2881 struct e1000_buffer *buffer_info;
2882 struct sk_buff *skb;
2883 unsigned long flags;
2884 uint32_t length;
2885 uint8_t last_byte;
2886 unsigned int i;
2887 boolean_t cleaned = FALSE;
2888
2889 i = rx_ring->next_to_clean;
2890 rx_desc = E1000_RX_DESC(*rx_ring, i);
2891
2892 while(rx_desc->status & E1000_RXD_STAT_DD) {
2893 buffer_info = &rx_ring->buffer_info[i];
2894#ifdef CONFIG_E1000_NAPI
2895 if(*work_done >= work_to_do)
2896 break;
2897 (*work_done)++;
2898#endif
2899 cleaned = TRUE;
2900
2901 pci_unmap_single(pdev,
2902 buffer_info->dma,
2903 buffer_info->length,
2904 PCI_DMA_FROMDEVICE);
2905
2906 skb = buffer_info->skb;
2907 length = le16_to_cpu(rx_desc->length);
2908
2909 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2910 /* All receives must fit into a single buffer */
2911 E1000_DBG("%s: Receive packet consumed multiple"
2912 " buffers\n", netdev->name);
2913 dev_kfree_skb_irq(skb);
2914 goto next_desc;
2915 }
2916
2917 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2918 last_byte = *(skb->data + length - 1);
2919 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2920 rx_desc->errors, length, last_byte)) {
2921 spin_lock_irqsave(&adapter->stats_lock, flags);
2922 e1000_tbi_adjust_stats(&adapter->hw,
2923 &adapter->stats,
2924 length, skb->data);
2925 spin_unlock_irqrestore(&adapter->stats_lock,
2926 flags);
2927 length--;
2928 } else {
2929 dev_kfree_skb_irq(skb);
2930 goto next_desc;
2931 }
2932 }
2933
2934 /* Good Receive */
2935 skb_put(skb, length - ETHERNET_FCS_SIZE);
2936
2937 /* Receive Checksum Offload */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002938 e1000_rx_checksum(adapter,
2939 (uint32_t)(rx_desc->status) |
2940 ((uint32_t)(rx_desc->errors) << 24),
2941 rx_desc->csum, skb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942 skb->protocol = eth_type_trans(skb, netdev);
2943#ifdef CONFIG_E1000_NAPI
2944 if(unlikely(adapter->vlgrp &&
2945 (rx_desc->status & E1000_RXD_STAT_VP))) {
2946 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002947 le16_to_cpu(rx_desc->special) &
2948 E1000_RXD_SPC_VLAN_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949 } else {
2950 netif_receive_skb(skb);
2951 }
2952#else /* CONFIG_E1000_NAPI */
2953 if(unlikely(adapter->vlgrp &&
2954 (rx_desc->status & E1000_RXD_STAT_VP))) {
2955 vlan_hwaccel_rx(skb, adapter->vlgrp,
2956 le16_to_cpu(rx_desc->special) &
2957 E1000_RXD_SPC_VLAN_MASK);
2958 } else {
2959 netif_rx(skb);
2960 }
2961#endif /* CONFIG_E1000_NAPI */
2962 netdev->last_rx = jiffies;
2963
2964next_desc:
2965 rx_desc->status = 0;
2966 buffer_info->skb = NULL;
2967 if(unlikely(++i == rx_ring->count)) i = 0;
2968
2969 rx_desc = E1000_RX_DESC(*rx_ring, i);
2970 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002971 rx_ring->next_to_clean = i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002972 adapter->alloc_rx_buf(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002973
2974 return cleaned;
2975}
2976
2977/**
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002978 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
2979 * @adapter: board private structure
2980 **/
2981
2982static boolean_t
2983#ifdef CONFIG_E1000_NAPI
2984e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
2985 int work_to_do)
2986#else
2987e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
2988#endif
2989{
2990 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2991 union e1000_rx_desc_packet_split *rx_desc;
2992 struct net_device *netdev = adapter->netdev;
2993 struct pci_dev *pdev = adapter->pdev;
2994 struct e1000_buffer *buffer_info;
2995 struct e1000_ps_page *ps_page;
2996 struct e1000_ps_page_dma *ps_page_dma;
2997 struct sk_buff *skb;
2998 unsigned int i, j;
2999 uint32_t length, staterr;
3000 boolean_t cleaned = FALSE;
3001
3002 i = rx_ring->next_to_clean;
3003 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3004 staterr = rx_desc->wb.middle.status_error;
3005
3006 while(staterr & E1000_RXD_STAT_DD) {
3007 buffer_info = &rx_ring->buffer_info[i];
3008 ps_page = &rx_ring->ps_page[i];
3009 ps_page_dma = &rx_ring->ps_page_dma[i];
3010#ifdef CONFIG_E1000_NAPI
3011 if(unlikely(*work_done >= work_to_do))
3012 break;
3013 (*work_done)++;
3014#endif
3015 cleaned = TRUE;
3016 pci_unmap_single(pdev, buffer_info->dma,
3017 buffer_info->length,
3018 PCI_DMA_FROMDEVICE);
3019
3020 skb = buffer_info->skb;
3021
3022 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3023 E1000_DBG("%s: Packet Split buffers didn't pick up"
3024 " the full packet\n", netdev->name);
3025 dev_kfree_skb_irq(skb);
3026 goto next_desc;
3027 }
3028
3029 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3030 dev_kfree_skb_irq(skb);
3031 goto next_desc;
3032 }
3033
3034 length = le16_to_cpu(rx_desc->wb.middle.length0);
3035
3036 if(unlikely(!length)) {
3037 E1000_DBG("%s: Last part of the packet spanning"
3038 " multiple descriptors\n", netdev->name);
3039 dev_kfree_skb_irq(skb);
3040 goto next_desc;
3041 }
3042
3043 /* Good Receive */
3044 skb_put(skb, length);
3045
3046 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3047 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3048 break;
3049
3050 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3051 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3052 ps_page_dma->ps_page_dma[j] = 0;
3053 skb_shinfo(skb)->frags[j].page =
3054 ps_page->ps_page[j];
3055 ps_page->ps_page[j] = NULL;
3056 skb_shinfo(skb)->frags[j].page_offset = 0;
3057 skb_shinfo(skb)->frags[j].size = length;
3058 skb_shinfo(skb)->nr_frags++;
3059 skb->len += length;
3060 skb->data_len += length;
3061 }
3062
3063 e1000_rx_checksum(adapter, staterr,
3064 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3065 skb->protocol = eth_type_trans(skb, netdev);
3066
3067#ifdef HAVE_RX_ZERO_COPY
3068 if(likely(rx_desc->wb.upper.header_status &
3069 E1000_RXDPS_HDRSTAT_HDRSP))
3070 skb_shinfo(skb)->zero_copy = TRUE;
3071#endif
3072#ifdef CONFIG_E1000_NAPI
3073 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3074 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3075 le16_to_cpu(rx_desc->wb.middle.vlan &
3076 E1000_RXD_SPC_VLAN_MASK));
3077 } else {
3078 netif_receive_skb(skb);
3079 }
3080#else /* CONFIG_E1000_NAPI */
3081 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3082 vlan_hwaccel_rx(skb, adapter->vlgrp,
3083 le16_to_cpu(rx_desc->wb.middle.vlan &
3084 E1000_RXD_SPC_VLAN_MASK));
3085 } else {
3086 netif_rx(skb);
3087 }
3088#endif /* CONFIG_E1000_NAPI */
3089 netdev->last_rx = jiffies;
3090
3091next_desc:
3092 rx_desc->wb.middle.status_error &= ~0xFF;
3093 buffer_info->skb = NULL;
3094 if(unlikely(++i == rx_ring->count)) i = 0;
3095
3096 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3097 staterr = rx_desc->wb.middle.status_error;
3098 }
3099 rx_ring->next_to_clean = i;
3100 adapter->alloc_rx_buf(adapter);
3101
3102 return cleaned;
3103}
3104
3105/**
3106 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
Linus Torvalds1da177e2005-04-16 15:20:36 -07003107 * @adapter: address of board private structure
3108 **/
3109
3110static void
3111e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3112{
3113 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3114 struct net_device *netdev = adapter->netdev;
3115 struct pci_dev *pdev = adapter->pdev;
3116 struct e1000_rx_desc *rx_desc;
3117 struct e1000_buffer *buffer_info;
3118 struct sk_buff *skb;
3119 unsigned int i, bufsz;
3120
3121 i = rx_ring->next_to_use;
3122 buffer_info = &rx_ring->buffer_info[i];
3123
3124 while(!buffer_info->skb) {
3125 bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3126
3127 skb = dev_alloc_skb(bufsz);
3128 if(unlikely(!skb)) {
3129 /* Better luck next round */
3130 break;
3131 }
3132
3133 /* fix for errata 23, cant cross 64kB boundary */
3134 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3135 struct sk_buff *oldskb = skb;
3136 DPRINTK(RX_ERR,ERR,
3137 "skb align check failed: %u bytes at %p\n",
3138 bufsz, skb->data);
3139 /* try again, without freeing the previous */
3140 skb = dev_alloc_skb(bufsz);
3141 if (!skb) {
3142 dev_kfree_skb(oldskb);
3143 break;
3144 }
3145 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3146 /* give up */
3147 dev_kfree_skb(skb);
3148 dev_kfree_skb(oldskb);
3149 break; /* while !buffer_info->skb */
3150 } else {
3151 /* move on with the new one */
3152 dev_kfree_skb(oldskb);
3153 }
3154 }
3155
3156 /* Make buffer alignment 2 beyond a 16 byte boundary
3157 * this will result in a 16 byte aligned IP header after
3158 * the 14 byte MAC header is removed
3159 */
3160 skb_reserve(skb, NET_IP_ALIGN);
3161
3162 skb->dev = netdev;
3163
3164 buffer_info->skb = skb;
3165 buffer_info->length = adapter->rx_buffer_len;
3166 buffer_info->dma = pci_map_single(pdev,
3167 skb->data,
3168 adapter->rx_buffer_len,
3169 PCI_DMA_FROMDEVICE);
3170
3171 /* fix for errata 23, cant cross 64kB boundary */
3172 if(!e1000_check_64k_bound(adapter,
3173 (void *)(unsigned long)buffer_info->dma,
3174 adapter->rx_buffer_len)) {
3175 DPRINTK(RX_ERR,ERR,
3176 "dma align check failed: %u bytes at %ld\n",
3177 adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
3178
3179 dev_kfree_skb(skb);
3180 buffer_info->skb = NULL;
3181
3182 pci_unmap_single(pdev,
3183 buffer_info->dma,
3184 adapter->rx_buffer_len,
3185 PCI_DMA_FROMDEVICE);
3186
3187 break; /* while !buffer_info->skb */
3188 }
3189
3190 rx_desc = E1000_RX_DESC(*rx_ring, i);
3191 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3192
3193 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3194 /* Force memory writes to complete before letting h/w
3195 * know there are new descriptors to fetch. (Only
3196 * applicable for weak-ordered memory model archs,
3197 * such as IA-64). */
3198 wmb();
3199
3200 E1000_WRITE_REG(&adapter->hw, RDT, i);
3201 }
3202
3203 if(unlikely(++i == rx_ring->count)) i = 0;
3204 buffer_info = &rx_ring->buffer_info[i];
3205 }
3206
3207 rx_ring->next_to_use = i;
3208}
3209
3210/**
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003211 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3212 * @adapter: address of board private structure
3213 **/
3214
3215static void
3216e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
3217{
3218 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3219 struct net_device *netdev = adapter->netdev;
3220 struct pci_dev *pdev = adapter->pdev;
3221 union e1000_rx_desc_packet_split *rx_desc;
3222 struct e1000_buffer *buffer_info;
3223 struct e1000_ps_page *ps_page;
3224 struct e1000_ps_page_dma *ps_page_dma;
3225 struct sk_buff *skb;
3226 unsigned int i, j;
3227
3228 i = rx_ring->next_to_use;
3229 buffer_info = &rx_ring->buffer_info[i];
3230 ps_page = &rx_ring->ps_page[i];
3231 ps_page_dma = &rx_ring->ps_page_dma[i];
3232
3233 while(!buffer_info->skb) {
3234 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3235
3236 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3237 if(unlikely(!ps_page->ps_page[j])) {
3238 ps_page->ps_page[j] =
3239 alloc_page(GFP_ATOMIC);
3240 if(unlikely(!ps_page->ps_page[j]))
3241 goto no_buffers;
3242 ps_page_dma->ps_page_dma[j] =
3243 pci_map_page(pdev,
3244 ps_page->ps_page[j],
3245 0, PAGE_SIZE,
3246 PCI_DMA_FROMDEVICE);
3247 }
3248 /* Refresh the desc even if buffer_addrs didn't
3249 * change because each write-back erases this info.
3250 */
3251 rx_desc->read.buffer_addr[j+1] =
3252 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3253 }
3254
3255 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3256
3257 if(unlikely(!skb))
3258 break;
3259
3260 /* Make buffer alignment 2 beyond a 16 byte boundary
3261 * this will result in a 16 byte aligned IP header after
3262 * the 14 byte MAC header is removed
3263 */
3264 skb_reserve(skb, NET_IP_ALIGN);
3265
3266 skb->dev = netdev;
3267
3268 buffer_info->skb = skb;
3269 buffer_info->length = adapter->rx_ps_bsize0;
3270 buffer_info->dma = pci_map_single(pdev, skb->data,
3271 adapter->rx_ps_bsize0,
3272 PCI_DMA_FROMDEVICE);
3273
3274 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3275
3276 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3277 /* Force memory writes to complete before letting h/w
3278 * know there are new descriptors to fetch. (Only
3279 * applicable for weak-ordered memory model archs,
3280 * such as IA-64). */
3281 wmb();
3282 /* Hardware increments by 16 bytes, but packet split
3283 * descriptors are 32 bytes...so we increment tail
3284 * twice as much.
3285 */
3286 E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
3287 }
3288
3289 if(unlikely(++i == rx_ring->count)) i = 0;
3290 buffer_info = &rx_ring->buffer_info[i];
3291 ps_page = &rx_ring->ps_page[i];
3292 ps_page_dma = &rx_ring->ps_page_dma[i];
3293 }
3294
3295no_buffers:
3296 rx_ring->next_to_use = i;
3297}
3298
3299/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003300 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3301 * @adapter:
3302 **/
3303
3304static void
3305e1000_smartspeed(struct e1000_adapter *adapter)
3306{
3307 uint16_t phy_status;
3308 uint16_t phy_ctrl;
3309
3310 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3311 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3312 return;
3313
3314 if(adapter->smartspeed == 0) {
3315 /* If Master/Slave config fault is asserted twice,
3316 * we assume back-to-back */
3317 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3318 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3319 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3320 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3321 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3322 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3323 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3324 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3325 phy_ctrl);
3326 adapter->smartspeed++;
3327 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3328 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3329 &phy_ctrl)) {
3330 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3331 MII_CR_RESTART_AUTO_NEG);
3332 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3333 phy_ctrl);
3334 }
3335 }
3336 return;
3337 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3338 /* If still no link, perhaps using 2/3 pair cable */
3339 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3340 phy_ctrl |= CR_1000T_MS_ENABLE;
3341 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3342 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3343 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3344 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3345 MII_CR_RESTART_AUTO_NEG);
3346 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3347 }
3348 }
3349 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3350 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3351 adapter->smartspeed = 0;
3352}
3353
3354/**
3355 * e1000_ioctl -
3356 * @netdev:
3357 * @ifreq:
3358 * @cmd:
3359 **/
3360
3361static int
3362e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3363{
3364 switch (cmd) {
3365 case SIOCGMIIPHY:
3366 case SIOCGMIIREG:
3367 case SIOCSMIIREG:
3368 return e1000_mii_ioctl(netdev, ifr, cmd);
3369 default:
3370 return -EOPNOTSUPP;
3371 }
3372}
3373
3374/**
3375 * e1000_mii_ioctl -
3376 * @netdev:
3377 * @ifreq:
3378 * @cmd:
3379 **/
3380
3381static int
3382e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3383{
3384 struct e1000_adapter *adapter = netdev->priv;
3385 struct mii_ioctl_data *data = if_mii(ifr);
3386 int retval;
3387 uint16_t mii_reg;
3388 uint16_t spddplx;
3389
3390 if(adapter->hw.media_type != e1000_media_type_copper)
3391 return -EOPNOTSUPP;
3392
3393 switch (cmd) {
3394 case SIOCGMIIPHY:
3395 data->phy_id = adapter->hw.phy_addr;
3396 break;
3397 case SIOCGMIIREG:
3398 if (!capable(CAP_NET_ADMIN))
3399 return -EPERM;
3400 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3401 &data->val_out))
3402 return -EIO;
3403 break;
3404 case SIOCSMIIREG:
3405 if (!capable(CAP_NET_ADMIN))
3406 return -EPERM;
3407 if (data->reg_num & ~(0x1F))
3408 return -EFAULT;
3409 mii_reg = data->val_in;
3410 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
3411 mii_reg))
3412 return -EIO;
3413 if (adapter->hw.phy_type == e1000_phy_m88) {
3414 switch (data->reg_num) {
3415 case PHY_CTRL:
3416 if(mii_reg & MII_CR_POWER_DOWN)
3417 break;
3418 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3419 adapter->hw.autoneg = 1;
3420 adapter->hw.autoneg_advertised = 0x2F;
3421 } else {
3422 if (mii_reg & 0x40)
3423 spddplx = SPEED_1000;
3424 else if (mii_reg & 0x2000)
3425 spddplx = SPEED_100;
3426 else
3427 spddplx = SPEED_10;
3428 spddplx += (mii_reg & 0x100)
3429 ? FULL_DUPLEX :
3430 HALF_DUPLEX;
3431 retval = e1000_set_spd_dplx(adapter,
3432 spddplx);
3433 if(retval)
3434 return retval;
3435 }
3436 if(netif_running(adapter->netdev)) {
3437 e1000_down(adapter);
3438 e1000_up(adapter);
3439 } else
3440 e1000_reset(adapter);
3441 break;
3442 case M88E1000_PHY_SPEC_CTRL:
3443 case M88E1000_EXT_PHY_SPEC_CTRL:
3444 if (e1000_phy_reset(&adapter->hw))
3445 return -EIO;
3446 break;
3447 }
3448 } else {
3449 switch (data->reg_num) {
3450 case PHY_CTRL:
3451 if(mii_reg & MII_CR_POWER_DOWN)
3452 break;
3453 if(netif_running(adapter->netdev)) {
3454 e1000_down(adapter);
3455 e1000_up(adapter);
3456 } else
3457 e1000_reset(adapter);
3458 break;
3459 }
3460 }
3461 break;
3462 default:
3463 return -EOPNOTSUPP;
3464 }
3465 return E1000_SUCCESS;
3466}
3467
3468void
3469e1000_pci_set_mwi(struct e1000_hw *hw)
3470{
3471 struct e1000_adapter *adapter = hw->back;
3472
3473 int ret;
3474 ret = pci_set_mwi(adapter->pdev);
3475}
3476
3477void
3478e1000_pci_clear_mwi(struct e1000_hw *hw)
3479{
3480 struct e1000_adapter *adapter = hw->back;
3481
3482 pci_clear_mwi(adapter->pdev);
3483}
3484
3485void
3486e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3487{
3488 struct e1000_adapter *adapter = hw->back;
3489
3490 pci_read_config_word(adapter->pdev, reg, value);
3491}
3492
3493void
3494e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3495{
3496 struct e1000_adapter *adapter = hw->back;
3497
3498 pci_write_config_word(adapter->pdev, reg, *value);
3499}
3500
3501uint32_t
3502e1000_io_read(struct e1000_hw *hw, unsigned long port)
3503{
3504 return inl(port);
3505}
3506
3507void
3508e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
3509{
3510 outl(value, port);
3511}
3512
3513static void
3514e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
3515{
3516 struct e1000_adapter *adapter = netdev->priv;
3517 uint32_t ctrl, rctl;
3518
3519 e1000_irq_disable(adapter);
3520 adapter->vlgrp = grp;
3521
3522 if(grp) {
3523 /* enable VLAN tag insert/strip */
3524 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3525 ctrl |= E1000_CTRL_VME;
3526 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3527
3528 /* enable VLAN receive filtering */
3529 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3530 rctl |= E1000_RCTL_VFE;
3531 rctl &= ~E1000_RCTL_CFIEN;
3532 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003533 e1000_update_mng_vlan(adapter);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534 } else {
3535 /* disable VLAN tag insert/strip */
3536 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3537 ctrl &= ~E1000_CTRL_VME;
3538 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3539
3540 /* disable VLAN filtering */
3541 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3542 rctl &= ~E1000_RCTL_VFE;
3543 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003544 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
3545 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3546 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3547 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003548 }
3549
3550 e1000_irq_enable(adapter);
3551}
3552
3553static void
3554e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
3555{
3556 struct e1000_adapter *adapter = netdev->priv;
3557 uint32_t vfta, index;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003558 if((adapter->hw.mng_cookie.status &
3559 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3560 (vid == adapter->mng_vlan_id))
3561 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003562 /* add VID to filter table */
3563 index = (vid >> 5) & 0x7F;
3564 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3565 vfta |= (1 << (vid & 0x1F));
3566 e1000_write_vfta(&adapter->hw, index, vfta);
3567}
3568
3569static void
3570e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
3571{
3572 struct e1000_adapter *adapter = netdev->priv;
3573 uint32_t vfta, index;
3574
3575 e1000_irq_disable(adapter);
3576
3577 if(adapter->vlgrp)
3578 adapter->vlgrp->vlan_devices[vid] = NULL;
3579
3580 e1000_irq_enable(adapter);
3581
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003582 if((adapter->hw.mng_cookie.status &
3583 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3584 (vid == adapter->mng_vlan_id))
3585 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586 /* remove VID from filter table */
3587 index = (vid >> 5) & 0x7F;
3588 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3589 vfta &= ~(1 << (vid & 0x1F));
3590 e1000_write_vfta(&adapter->hw, index, vfta);
3591}
3592
3593static void
3594e1000_restore_vlan(struct e1000_adapter *adapter)
3595{
3596 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3597
3598 if(adapter->vlgrp) {
3599 uint16_t vid;
3600 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3601 if(!adapter->vlgrp->vlan_devices[vid])
3602 continue;
3603 e1000_vlan_rx_add_vid(adapter->netdev, vid);
3604 }
3605 }
3606}
3607
3608int
3609e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3610{
3611 adapter->hw.autoneg = 0;
3612
3613 switch(spddplx) {
3614 case SPEED_10 + DUPLEX_HALF:
3615 adapter->hw.forced_speed_duplex = e1000_10_half;
3616 break;
3617 case SPEED_10 + DUPLEX_FULL:
3618 adapter->hw.forced_speed_duplex = e1000_10_full;
3619 break;
3620 case SPEED_100 + DUPLEX_HALF:
3621 adapter->hw.forced_speed_duplex = e1000_100_half;
3622 break;
3623 case SPEED_100 + DUPLEX_FULL:
3624 adapter->hw.forced_speed_duplex = e1000_100_full;
3625 break;
3626 case SPEED_1000 + DUPLEX_FULL:
3627 adapter->hw.autoneg = 1;
3628 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3629 break;
3630 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3631 default:
3632 DPRINTK(PROBE, ERR,
3633 "Unsupported Speed/Duplexity configuration\n");
3634 return -EINVAL;
3635 }
3636 return 0;
3637}
3638
3639static int
3640e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
3641{
3642 struct pci_dev *pdev = NULL;
3643
3644 switch(event) {
3645 case SYS_DOWN:
3646 case SYS_HALT:
3647 case SYS_POWER_OFF:
3648 while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
3649 if(pci_dev_driver(pdev) == &e1000_driver)
3650 e1000_suspend(pdev, 3);
3651 }
3652 }
3653 return NOTIFY_DONE;
3654}
3655
3656static int
3657e1000_suspend(struct pci_dev *pdev, uint32_t state)
3658{
3659 struct net_device *netdev = pci_get_drvdata(pdev);
3660 struct e1000_adapter *adapter = netdev->priv;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003661 uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662 uint32_t wufc = adapter->wol;
3663
3664 netif_device_detach(netdev);
3665
3666 if(netif_running(netdev))
3667 e1000_down(adapter);
3668
3669 status = E1000_READ_REG(&adapter->hw, STATUS);
3670 if(status & E1000_STATUS_LU)
3671 wufc &= ~E1000_WUFC_LNKC;
3672
3673 if(wufc) {
3674 e1000_setup_rctl(adapter);
3675 e1000_set_multi(netdev);
3676
3677 /* turn on all-multi mode if wake on multicast is enabled */
3678 if(adapter->wol & E1000_WUFC_MC) {
3679 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3680 rctl |= E1000_RCTL_MPE;
3681 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3682 }
3683
3684 if(adapter->hw.mac_type >= e1000_82540) {
3685 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3686 /* advertise wake from D3Cold */
3687 #define E1000_CTRL_ADVD3WUC 0x00100000
3688 /* phy power management enable */
3689 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3690 ctrl |= E1000_CTRL_ADVD3WUC |
3691 E1000_CTRL_EN_PHY_PWR_MGMT;
3692 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3693 }
3694
3695 if(adapter->hw.media_type == e1000_media_type_fiber ||
3696 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3697 /* keep the laser running in D3 */
3698 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3699 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3700 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3701 }
3702
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003703 /* Allow time for pending master requests to run */
3704 e1000_disable_pciex_master(&adapter->hw);
3705
Linus Torvalds1da177e2005-04-16 15:20:36 -07003706 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3707 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3708 pci_enable_wake(pdev, 3, 1);
3709 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3710 } else {
3711 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3712 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3713 pci_enable_wake(pdev, 3, 0);
3714 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3715 }
3716
3717 pci_save_state(pdev);
3718
3719 if(adapter->hw.mac_type >= e1000_82540 &&
3720 adapter->hw.media_type == e1000_media_type_copper) {
3721 manc = E1000_READ_REG(&adapter->hw, MANC);
3722 if(manc & E1000_MANC_SMBUS_EN) {
3723 manc |= E1000_MANC_ARP_EN;
3724 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3725 pci_enable_wake(pdev, 3, 1);
3726 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3727 }
3728 }
3729
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003730 switch(adapter->hw.mac_type) {
3731 case e1000_82573:
3732 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3733 E1000_WRITE_REG(&adapter->hw, SWSM,
3734 swsm & ~E1000_SWSM_DRV_LOAD);
3735 break;
3736 default:
3737 break;
3738 }
3739
Linus Torvalds1da177e2005-04-16 15:20:36 -07003740 pci_disable_device(pdev);
3741
3742 state = (state > 0) ? 3 : 0;
3743 pci_set_power_state(pdev, state);
3744
3745 return 0;
3746}
3747
3748#ifdef CONFIG_PM
3749static int
3750e1000_resume(struct pci_dev *pdev)
3751{
3752 struct net_device *netdev = pci_get_drvdata(pdev);
3753 struct e1000_adapter *adapter = netdev->priv;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003754 uint32_t manc, ret, swsm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003755
3756 pci_set_power_state(pdev, 0);
3757 pci_restore_state(pdev);
3758 ret = pci_enable_device(pdev);
Malli Chilakalaa4cb8472005-04-28 19:41:28 -07003759 pci_set_master(pdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760
3761 pci_enable_wake(pdev, 3, 0);
3762 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3763
3764 e1000_reset(adapter);
3765 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3766
3767 if(netif_running(netdev))
3768 e1000_up(adapter);
3769
3770 netif_device_attach(netdev);
3771
3772 if(adapter->hw.mac_type >= e1000_82540 &&
3773 adapter->hw.media_type == e1000_media_type_copper) {
3774 manc = E1000_READ_REG(&adapter->hw, MANC);
3775 manc &= ~(E1000_MANC_ARP_EN);
3776 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3777 }
3778
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003779 switch(adapter->hw.mac_type) {
3780 case e1000_82573:
3781 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3782 E1000_WRITE_REG(&adapter->hw, SWSM,
3783 swsm | E1000_SWSM_DRV_LOAD);
3784 break;
3785 default:
3786 break;
3787 }
3788
Linus Torvalds1da177e2005-04-16 15:20:36 -07003789 return 0;
3790}
3791#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003792#ifdef CONFIG_NET_POLL_CONTROLLER
3793/*
3794 * Polling 'interrupt' - used by things like netconsole to send skbs
3795 * without having to re-enable interrupts. It's not called while
3796 * the interrupt routine is executing.
3797 */
3798static void
3799e1000_netpoll (struct net_device *netdev)
3800{
3801 struct e1000_adapter *adapter = netdev->priv;
3802 disable_irq(adapter->pdev->irq);
3803 e1000_intr(adapter->pdev->irq, netdev, NULL);
3804 enable_irq(adapter->pdev->irq);
3805}
3806#endif
3807
3808/* e1000_main.c */