blob: 6e836f22f276d86a5233a9bc7112605db649328e [file] [log] [blame]
Kent Overstreetcafe5632013-03-23 16:11:31 -07001#ifndef _BCACHE_H
2#define _BCACHE_H
3
4/*
5 * SOME HIGH LEVEL CODE DOCUMENTATION:
6 *
7 * Bcache mostly works with cache sets, cache devices, and backing devices.
8 *
9 * Support for multiple cache devices hasn't quite been finished off yet, but
10 * it's about 95% plumbed through. A cache set and its cache devices is sort of
11 * like a md raid array and its component devices. Most of the code doesn't care
12 * about individual cache devices, the main abstraction is the cache set.
13 *
14 * Multiple cache devices is intended to give us the ability to mirror dirty
15 * cached data and metadata, without mirroring clean cached data.
16 *
17 * Backing devices are different, in that they have a lifetime independent of a
18 * cache set. When you register a newly formatted backing device it'll come up
19 * in passthrough mode, and then you can attach and detach a backing device from
20 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21 * invalidates any cached data for that backing device.
22 *
23 * A cache set can have multiple (many) backing devices attached to it.
24 *
25 * There's also flash only volumes - this is the reason for the distinction
26 * between struct cached_dev and struct bcache_device. A flash only volume
27 * works much like a bcache device that has a backing device, except the
28 * "cached" data is always dirty. The end result is that we get thin
29 * provisioning with very little additional code.
30 *
31 * Flash only volumes work but they're not production ready because the moving
32 * garbage collector needs more work. More on that later.
33 *
34 * BUCKETS/ALLOCATION:
35 *
36 * Bcache is primarily designed for caching, which means that in normal
37 * operation all of our available space will be allocated. Thus, we need an
38 * efficient way of deleting things from the cache so we can write new things to
39 * it.
40 *
41 * To do this, we first divide the cache device up into buckets. A bucket is the
42 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43 * works efficiently.
44 *
45 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46 * it. The gens and priorities for all the buckets are stored contiguously and
47 * packed on disk (in a linked list of buckets - aside from the superblock, all
48 * of bcache's metadata is stored in buckets).
49 *
50 * The priority is used to implement an LRU. We reset a bucket's priority when
51 * we allocate it or on cache it, and every so often we decrement the priority
52 * of each bucket. It could be used to implement something more sophisticated,
53 * if anyone ever gets around to it.
54 *
55 * The generation is used for invalidating buckets. Each pointer also has an 8
56 * bit generation embedded in it; for a pointer to be considered valid, its gen
57 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
58 * we have to do is increment its gen (and write its new gen to disk; we batch
59 * this up).
60 *
61 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62 * contain metadata (including btree nodes).
63 *
64 * THE BTREE:
65 *
66 * Bcache is in large part design around the btree.
67 *
68 * At a high level, the btree is just an index of key -> ptr tuples.
69 *
70 * Keys represent extents, and thus have a size field. Keys also have a variable
71 * number of pointers attached to them (potentially zero, which is handy for
72 * invalidating the cache).
73 *
74 * The key itself is an inode:offset pair. The inode number corresponds to a
75 * backing device or a flash only volume. The offset is the ending offset of the
76 * extent within the inode - not the starting offset; this makes lookups
77 * slightly more convenient.
78 *
79 * Pointers contain the cache device id, the offset on that device, and an 8 bit
80 * generation number. More on the gen later.
81 *
82 * Index lookups are not fully abstracted - cache lookups in particular are
83 * still somewhat mixed in with the btree code, but things are headed in that
84 * direction.
85 *
86 * Updates are fairly well abstracted, though. There are two different ways of
87 * updating the btree; insert and replace.
88 *
89 * BTREE_INSERT will just take a list of keys and insert them into the btree -
90 * overwriting (possibly only partially) any extents they overlap with. This is
91 * used to update the index after a write.
92 *
93 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94 * overwriting a key that matches another given key. This is used for inserting
95 * data into the cache after a cache miss, and for background writeback, and for
96 * the moving garbage collector.
97 *
98 * There is no "delete" operation; deleting things from the index is
99 * accomplished by either by invalidating pointers (by incrementing a bucket's
100 * gen) or by inserting a key with 0 pointers - which will overwrite anything
101 * previously present at that location in the index.
102 *
103 * This means that there are always stale/invalid keys in the btree. They're
104 * filtered out by the code that iterates through a btree node, and removed when
105 * a btree node is rewritten.
106 *
107 * BTREE NODES:
108 *
109 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110 * free smaller than a bucket - so, that's how big our btree nodes are.
111 *
112 * (If buckets are really big we'll only use part of the bucket for a btree node
113 * - no less than 1/4th - but a bucket still contains no more than a single
114 * btree node. I'd actually like to change this, but for now we rely on the
115 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116 *
117 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118 * btree implementation.
119 *
120 * The way this is solved is that btree nodes are internally log structured; we
121 * can append new keys to an existing btree node without rewriting it. This
122 * means each set of keys we write is sorted, but the node is not.
123 *
124 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125 * be expensive, and we have to distinguish between the keys we have written and
126 * the keys we haven't. So to do a lookup in a btree node, we have to search
127 * each sorted set. But we do merge written sets together lazily, so the cost of
128 * these extra searches is quite low (normally most of the keys in a btree node
129 * will be in one big set, and then there'll be one or two sets that are much
130 * smaller).
131 *
132 * This log structure makes bcache's btree more of a hybrid between a
133 * conventional btree and a compacting data structure, with some of the
134 * advantages of both.
135 *
136 * GARBAGE COLLECTION:
137 *
138 * We can't just invalidate any bucket - it might contain dirty data or
139 * metadata. If it once contained dirty data, other writes might overwrite it
140 * later, leaving no valid pointers into that bucket in the index.
141 *
142 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143 * It also counts how much valid data it each bucket currently contains, so that
144 * allocation can reuse buckets sooner when they've been mostly overwritten.
145 *
146 * It also does some things that are really internal to the btree
147 * implementation. If a btree node contains pointers that are stale by more than
148 * some threshold, it rewrites the btree node to avoid the bucket's generation
149 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150 *
151 * THE JOURNAL:
152 *
153 * Bcache's journal is not necessary for consistency; we always strictly
154 * order metadata writes so that the btree and everything else is consistent on
155 * disk in the event of an unclean shutdown, and in fact bcache had writeback
156 * caching (with recovery from unclean shutdown) before journalling was
157 * implemented.
158 *
159 * Rather, the journal is purely a performance optimization; we can't complete a
160 * write until we've updated the index on disk, otherwise the cache would be
161 * inconsistent in the event of an unclean shutdown. This means that without the
162 * journal, on random write workloads we constantly have to update all the leaf
163 * nodes in the btree, and those writes will be mostly empty (appending at most
164 * a few keys each) - highly inefficient in terms of amount of metadata writes,
165 * and it puts more strain on the various btree resorting/compacting code.
166 *
167 * The journal is just a log of keys we've inserted; on startup we just reinsert
168 * all the keys in the open journal entries. That means that when we're updating
169 * a node in the btree, we can wait until a 4k block of keys fills up before
170 * writing them out.
171 *
172 * For simplicity, we only journal updates to leaf nodes; updates to parent
173 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174 * the complexity to deal with journalling them (in particular, journal replay)
175 * - updates to non leaf nodes just happen synchronously (see btree_split()).
176 */
177
178#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179
180#include <linux/bio.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700181#include <linux/kobject.h>
182#include <linux/list.h>
183#include <linux/mutex.h>
184#include <linux/rbtree.h>
185#include <linux/rwsem.h>
186#include <linux/types.h>
187#include <linux/workqueue.h>
188
189#include "util.h"
190#include "closure.h"
191
192struct bucket {
193 atomic_t pin;
194 uint16_t prio;
195 uint8_t gen;
196 uint8_t disk_gen;
197 uint8_t last_gc; /* Most out of date gen in the btree */
198 uint8_t gc_gen;
199 uint16_t gc_mark;
200};
201
202/*
203 * I'd use bitfields for these, but I don't trust the compiler not to screw me
204 * as multiple threads touch struct bucket without locking
205 */
206
207BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
208#define GC_MARK_RECLAIMABLE 0
209#define GC_MARK_DIRTY 1
210#define GC_MARK_METADATA 2
211BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14);
212
213struct bkey {
214 uint64_t high;
215 uint64_t low;
216 uint64_t ptr[];
217};
218
219/* Enough for a key with 6 pointers */
220#define BKEY_PAD 8
221
222#define BKEY_PADDED(key) \
223 union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; }
224
Kent Overstreet29033812013-04-11 15:14:35 -0700225/* Version 0: Cache device
226 * Version 1: Backing device
Kent Overstreetcafe5632013-03-23 16:11:31 -0700227 * Version 2: Seed pointer into btree node checksum
Kent Overstreet29033812013-04-11 15:14:35 -0700228 * Version 3: Cache device with new UUID format
229 * Version 4: Backing device with data offset
Kent Overstreetcafe5632013-03-23 16:11:31 -0700230 */
Kent Overstreet29033812013-04-11 15:14:35 -0700231#define BCACHE_SB_VERSION_CDEV 0
232#define BCACHE_SB_VERSION_BDEV 1
233#define BCACHE_SB_VERSION_CDEV_WITH_UUID 3
234#define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4
235#define BCACHE_SB_MAX_VERSION 4
Kent Overstreetcafe5632013-03-23 16:11:31 -0700236
237#define SB_SECTOR 8
238#define SB_SIZE 4096
239#define SB_LABEL_SIZE 32
240#define SB_JOURNAL_BUCKETS 256U
241/* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */
242#define MAX_CACHES_PER_SET 8
243
Kent Overstreet29033812013-04-11 15:14:35 -0700244#define BDEV_DATA_START_DEFAULT 16 /* sectors */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700245
246struct cache_sb {
247 uint64_t csum;
248 uint64_t offset; /* sector where this sb was written */
249 uint64_t version;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700250
251 uint8_t magic[16];
252
253 uint8_t uuid[16];
254 union {
255 uint8_t set_uuid[16];
256 uint64_t set_magic;
257 };
258 uint8_t label[SB_LABEL_SIZE];
259
260 uint64_t flags;
261 uint64_t seq;
262 uint64_t pad[8];
263
Kent Overstreet29033812013-04-11 15:14:35 -0700264 union {
265 struct {
266 /* Cache devices */
267 uint64_t nbuckets; /* device size */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700268
Kent Overstreet29033812013-04-11 15:14:35 -0700269 uint16_t block_size; /* sectors */
270 uint16_t bucket_size; /* sectors */
271
272 uint16_t nr_in_set;
273 uint16_t nr_this_dev;
274 };
275 struct {
276 /* Backing devices */
277 uint64_t data_offset;
278
279 /*
280 * block_size from the cache device section is still used by
281 * backing devices, so don't add anything here until we fix
282 * things to not need it for backing devices anymore
283 */
284 };
285 };
Kent Overstreetcafe5632013-03-23 16:11:31 -0700286
287 uint32_t last_mount; /* time_t */
288
289 uint16_t first_bucket;
290 union {
291 uint16_t njournal_buckets;
292 uint16_t keys;
293 };
294 uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */
295};
296
297BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1);
298BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1);
299BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3);
300#define CACHE_REPLACEMENT_LRU 0U
301#define CACHE_REPLACEMENT_FIFO 1U
302#define CACHE_REPLACEMENT_RANDOM 2U
303
304BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4);
305#define CACHE_MODE_WRITETHROUGH 0U
306#define CACHE_MODE_WRITEBACK 1U
307#define CACHE_MODE_WRITEAROUND 2U
308#define CACHE_MODE_NONE 3U
309BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2);
310#define BDEV_STATE_NONE 0U
311#define BDEV_STATE_CLEAN 1U
312#define BDEV_STATE_DIRTY 2U
313#define BDEV_STATE_STALE 3U
314
315/* Version 1: Seed pointer into btree node checksum
316 */
317#define BCACHE_BSET_VERSION 1
318
319/*
320 * This is the on disk format for btree nodes - a btree node on disk is a list
321 * of these; within each set the keys are sorted
322 */
323struct bset {
324 uint64_t csum;
325 uint64_t magic;
326 uint64_t seq;
327 uint32_t version;
328 uint32_t keys;
329
330 union {
331 struct bkey start[0];
332 uint64_t d[0];
333 };
334};
335
336/*
337 * On disk format for priorities and gens - see super.c near prio_write() for
338 * more.
339 */
340struct prio_set {
341 uint64_t csum;
342 uint64_t magic;
343 uint64_t seq;
344 uint32_t version;
345 uint32_t pad;
346
347 uint64_t next_bucket;
348
349 struct bucket_disk {
350 uint16_t prio;
351 uint8_t gen;
352 } __attribute((packed)) data[];
353};
354
355struct uuid_entry {
356 union {
357 struct {
358 uint8_t uuid[16];
359 uint8_t label[32];
360 uint32_t first_reg;
361 uint32_t last_reg;
362 uint32_t invalidated;
363
364 uint32_t flags;
365 /* Size of flash only volumes */
366 uint64_t sectors;
367 };
368
369 uint8_t pad[128];
370 };
371};
372
373BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1);
374
375#include "journal.h"
376#include "stats.h"
377struct search;
378struct btree;
379struct keybuf;
380
381struct keybuf_key {
382 struct rb_node node;
383 BKEY_PADDED(key);
384 void *private;
385};
386
387typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *);
388
389struct keybuf {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700390 struct bkey last_scanned;
391 spinlock_t lock;
392
393 /*
394 * Beginning and end of range in rb tree - so that we can skip taking
395 * lock and checking the rb tree when we need to check for overlapping
396 * keys.
397 */
398 struct bkey start;
399 struct bkey end;
400
401 struct rb_root keys;
402
403#define KEYBUF_NR 100
404 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
405};
406
407struct bio_split_pool {
408 struct bio_set *bio_split;
409 mempool_t *bio_split_hook;
410};
411
412struct bio_split_hook {
413 struct closure cl;
414 struct bio_split_pool *p;
415 struct bio *bio;
416 bio_end_io_t *bi_end_io;
417 void *bi_private;
418};
419
420struct bcache_device {
421 struct closure cl;
422
423 struct kobject kobj;
424
425 struct cache_set *c;
426 unsigned id;
427#define BCACHEDEVNAME_SIZE 12
428 char name[BCACHEDEVNAME_SIZE];
429
430 struct gendisk *disk;
431
432 /* If nonzero, we're closing */
433 atomic_t closing;
434
435 /* If nonzero, we're detaching/unregistering from cache set */
436 atomic_t detaching;
Kent Overstreetc9502ea2013-07-10 21:25:02 -0700437 int flush_done;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700438
Kent Overstreet279afba2013-06-05 06:21:07 -0700439 uint64_t nr_stripes;
Kent Overstreet2d679fc2013-08-17 02:13:15 -0700440 unsigned stripe_size;
Kent Overstreet279afba2013-06-05 06:21:07 -0700441 atomic_t *stripe_sectors_dirty;
442
Kent Overstreetcafe5632013-03-23 16:11:31 -0700443 unsigned long sectors_dirty_last;
444 long sectors_dirty_derivative;
445
446 mempool_t *unaligned_bvec;
447 struct bio_set *bio_split;
448
449 unsigned data_csum:1;
450
451 int (*cache_miss)(struct btree *, struct search *,
452 struct bio *, unsigned);
453 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
454
455 struct bio_split_pool bio_split_hook;
456};
457
458struct io {
459 /* Used to track sequential IO so it can be skipped */
460 struct hlist_node hash;
461 struct list_head lru;
462
463 unsigned long jiffies;
464 unsigned sequential;
465 sector_t last;
466};
467
468struct cached_dev {
469 struct list_head list;
470 struct bcache_device disk;
471 struct block_device *bdev;
472
473 struct cache_sb sb;
474 struct bio sb_bio;
475 struct bio_vec sb_bv[1];
476 struct closure_with_waitlist sb_write;
477
478 /* Refcount on the cache set. Always nonzero when we're caching. */
479 atomic_t count;
480 struct work_struct detach;
481
482 /*
483 * Device might not be running if it's dirty and the cache set hasn't
484 * showed up yet.
485 */
486 atomic_t running;
487
488 /*
489 * Writes take a shared lock from start to finish; scanning for dirty
490 * data to refill the rb tree requires an exclusive lock.
491 */
492 struct rw_semaphore writeback_lock;
493
494 /*
495 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
496 * data in the cache. Protected by writeback_lock; must have an
497 * shared lock to set and exclusive lock to clear.
498 */
499 atomic_t has_dirty;
500
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700501 struct bch_ratelimit writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700502 struct delayed_work writeback_rate_update;
503
504 /*
505 * Internal to the writeback code, so read_dirty() can keep track of
506 * where it's at.
507 */
508 sector_t last_read;
509
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700510 /* Limit number of writeback bios in flight */
511 struct semaphore in_flight;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700512 struct closure_with_timer writeback;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700513
514 struct keybuf writeback_keys;
515
516 /* For tracking sequential IO */
517#define RECENT_IO_BITS 7
518#define RECENT_IO (1 << RECENT_IO_BITS)
519 struct io io[RECENT_IO];
520 struct hlist_head io_hash[RECENT_IO + 1];
521 struct list_head io_lru;
522 spinlock_t io_lock;
523
524 struct cache_accounting accounting;
525
526 /* The rest of this all shows up in sysfs */
527 unsigned sequential_cutoff;
528 unsigned readahead;
529
530 unsigned sequential_merge:1;
531 unsigned verify:1;
532
Kent Overstreet72c27062013-06-05 06:24:39 -0700533 unsigned partial_stripes_expensive:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700534 unsigned writeback_metadata:1;
535 unsigned writeback_running:1;
536 unsigned char writeback_percent;
537 unsigned writeback_delay;
538
539 int writeback_rate_change;
540 int64_t writeback_rate_derivative;
541 uint64_t writeback_rate_target;
542
543 unsigned writeback_rate_update_seconds;
544 unsigned writeback_rate_d_term;
545 unsigned writeback_rate_p_term_inverse;
546 unsigned writeback_rate_d_smooth;
547};
548
549enum alloc_watermarks {
550 WATERMARK_PRIO,
551 WATERMARK_METADATA,
552 WATERMARK_MOVINGGC,
553 WATERMARK_NONE,
554 WATERMARK_MAX
555};
556
557struct cache {
558 struct cache_set *set;
559 struct cache_sb sb;
560 struct bio sb_bio;
561 struct bio_vec sb_bv[1];
562
563 struct kobject kobj;
564 struct block_device *bdev;
565
566 unsigned watermark[WATERMARK_MAX];
567
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700568 struct task_struct *alloc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700569
570 struct closure prio;
571 struct prio_set *disk_buckets;
572
573 /*
574 * When allocating new buckets, prio_write() gets first dibs - since we
575 * may not be allocate at all without writing priorities and gens.
576 * prio_buckets[] contains the last buckets we wrote priorities to (so
577 * gc can mark them as metadata), prio_next[] contains the buckets
578 * allocated for the next prio write.
579 */
580 uint64_t *prio_buckets;
581 uint64_t *prio_last_buckets;
582
583 /*
584 * free: Buckets that are ready to be used
585 *
586 * free_inc: Incoming buckets - these are buckets that currently have
587 * cached data in them, and we can't reuse them until after we write
588 * their new gen to disk. After prio_write() finishes writing the new
589 * gens/prios, they'll be moved to the free list (and possibly discarded
590 * in the process)
591 *
592 * unused: GC found nothing pointing into these buckets (possibly
593 * because all the data they contained was overwritten), so we only
594 * need to discard them before they can be moved to the free list.
595 */
596 DECLARE_FIFO(long, free);
597 DECLARE_FIFO(long, free_inc);
598 DECLARE_FIFO(long, unused);
599
600 size_t fifo_last_bucket;
601
602 /* Allocation stuff: */
603 struct bucket *buckets;
604
605 DECLARE_HEAP(struct bucket *, heap);
606
607 /*
608 * max(gen - disk_gen) for all buckets. When it gets too big we have to
609 * call prio_write() to keep gens from wrapping.
610 */
611 uint8_t need_save_prio;
612 unsigned gc_move_threshold;
613
614 /*
615 * If nonzero, we know we aren't going to find any buckets to invalidate
616 * until a gc finishes - otherwise we could pointlessly burn a ton of
617 * cpu
618 */
619 unsigned invalidate_needs_gc:1;
620
621 bool discard; /* Get rid of? */
622
Kent Overstreetcafe5632013-03-23 16:11:31 -0700623 struct journal_device journal;
624
625 /* The rest of this all shows up in sysfs */
626#define IO_ERROR_SHIFT 20
627 atomic_t io_errors;
628 atomic_t io_count;
629
630 atomic_long_t meta_sectors_written;
631 atomic_long_t btree_sectors_written;
632 atomic_long_t sectors_written;
633
634 struct bio_split_pool bio_split_hook;
635};
636
637struct gc_stat {
638 size_t nodes;
639 size_t key_bytes;
640
641 size_t nkeys;
642 uint64_t data; /* sectors */
643 uint64_t dirty; /* sectors */
644 unsigned in_use; /* percent */
645};
646
647/*
648 * Flag bits, for how the cache set is shutting down, and what phase it's at:
649 *
650 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
651 * all the backing devices first (their cached data gets invalidated, and they
652 * won't automatically reattach).
653 *
654 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
655 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
656 * flushing dirty data).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700657 */
658#define CACHE_SET_UNREGISTERING 0
659#define CACHE_SET_STOPPING 1
Kent Overstreetcafe5632013-03-23 16:11:31 -0700660
661struct cache_set {
662 struct closure cl;
663
664 struct list_head list;
665 struct kobject kobj;
666 struct kobject internal;
667 struct dentry *debug;
668 struct cache_accounting accounting;
669
670 unsigned long flags;
671
672 struct cache_sb sb;
673
674 struct cache *cache[MAX_CACHES_PER_SET];
675 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
676 int caches_loaded;
677
678 struct bcache_device **devices;
679 struct list_head cached_devs;
680 uint64_t cached_dev_sectors;
681 struct closure caching;
682
683 struct closure_with_waitlist sb_write;
684
685 mempool_t *search;
686 mempool_t *bio_meta;
687 struct bio_set *bio_split;
688
689 /* For the btree cache */
690 struct shrinker shrink;
691
Kent Overstreetcafe5632013-03-23 16:11:31 -0700692 /* For the btree cache and anything allocation related */
693 struct mutex bucket_lock;
694
695 /* log2(bucket_size), in sectors */
696 unsigned short bucket_bits;
697
698 /* log2(block_size), in sectors */
699 unsigned short block_bits;
700
701 /*
702 * Default number of pages for a new btree node - may be less than a
703 * full bucket
704 */
705 unsigned btree_pages;
706
707 /*
708 * Lists of struct btrees; lru is the list for structs that have memory
709 * allocated for actual btree node, freed is for structs that do not.
710 *
711 * We never free a struct btree, except on shutdown - we just put it on
712 * the btree_cache_freed list and reuse it later. This simplifies the
713 * code, and it doesn't cost us much memory as the memory usage is
714 * dominated by buffers that hold the actual btree node data and those
715 * can be freed - and the number of struct btrees allocated is
716 * effectively bounded.
717 *
718 * btree_cache_freeable effectively is a small cache - we use it because
719 * high order page allocations can be rather expensive, and it's quite
720 * common to delete and allocate btree nodes in quick succession. It
721 * should never grow past ~2-3 nodes in practice.
722 */
723 struct list_head btree_cache;
724 struct list_head btree_cache_freeable;
725 struct list_head btree_cache_freed;
726
727 /* Number of elements in btree_cache + btree_cache_freeable lists */
728 unsigned bucket_cache_used;
729
730 /*
731 * If we need to allocate memory for a new btree node and that
732 * allocation fails, we can cannibalize another node in the btree cache
733 * to satisfy the allocation. However, only one thread can be doing this
734 * at a time, for obvious reasons - try_harder and try_wait are
735 * basically a lock for this that we can wait on asynchronously. The
736 * btree_root() macro releases the lock when it returns.
737 */
738 struct closure *try_harder;
739 struct closure_waitlist try_wait;
740 uint64_t try_harder_start;
741
742 /*
743 * When we free a btree node, we increment the gen of the bucket the
744 * node is in - but we can't rewrite the prios and gens until we
745 * finished whatever it is we were doing, otherwise after a crash the
746 * btree node would be freed but for say a split, we might not have the
747 * pointers to the new nodes inserted into the btree yet.
748 *
749 * This is a refcount that blocks prio_write() until the new keys are
750 * written.
751 */
752 atomic_t prio_blocked;
753 struct closure_waitlist bucket_wait;
754
755 /*
756 * For any bio we don't skip we subtract the number of sectors from
757 * rescale; when it hits 0 we rescale all the bucket priorities.
758 */
759 atomic_t rescale;
760 /*
761 * When we invalidate buckets, we use both the priority and the amount
762 * of good data to determine which buckets to reuse first - to weight
763 * those together consistently we keep track of the smallest nonzero
764 * priority of any bucket.
765 */
766 uint16_t min_prio;
767
768 /*
769 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
770 * to keep gens from wrapping around.
771 */
772 uint8_t need_gc;
773 struct gc_stat gc_stats;
774 size_t nbuckets;
775
776 struct closure_with_waitlist gc;
777 /* Where in the btree gc currently is */
778 struct bkey gc_done;
779
780 /*
781 * The allocation code needs gc_mark in struct bucket to be correct, but
782 * it's not while a gc is in progress. Protected by bucket_lock.
783 */
784 int gc_mark_valid;
785
786 /* Counts how many sectors bio_insert has added to the cache */
787 atomic_t sectors_to_gc;
788
789 struct closure moving_gc;
790 struct closure_waitlist moving_gc_wait;
791 struct keybuf moving_gc_keys;
792 /* Number of moving GC bios in flight */
793 atomic_t in_flight;
794
795 struct btree *root;
796
797#ifdef CONFIG_BCACHE_DEBUG
798 struct btree *verify_data;
799 struct mutex verify_lock;
800#endif
801
802 unsigned nr_uuids;
803 struct uuid_entry *uuids;
804 BKEY_PADDED(uuid_bucket);
805 struct closure_with_waitlist uuid_write;
806
807 /*
808 * A btree node on disk could have too many bsets for an iterator to fit
Kent Overstreet57943512013-04-25 13:58:35 -0700809 * on the stack - have to dynamically allocate them
Kent Overstreetcafe5632013-03-23 16:11:31 -0700810 */
Kent Overstreet57943512013-04-25 13:58:35 -0700811 mempool_t *fill_iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700812
813 /*
814 * btree_sort() is a merge sort and requires temporary space - single
815 * element mempool
816 */
817 struct mutex sort_lock;
818 struct bset *sort;
Kent Overstreet6ded34d2013-05-11 15:59:37 -0700819 unsigned sort_crit_factor;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700820
821 /* List of buckets we're currently writing data to */
822 struct list_head data_buckets;
823 spinlock_t data_bucket_lock;
824
825 struct journal journal;
826
827#define CONGESTED_MAX 1024
828 unsigned congested_last_us;
829 atomic_t congested;
830
831 /* The rest of this all shows up in sysfs */
832 unsigned congested_read_threshold_us;
833 unsigned congested_write_threshold_us;
834
835 spinlock_t sort_time_lock;
836 struct time_stats sort_time;
837 struct time_stats btree_gc_time;
838 struct time_stats btree_split_time;
839 spinlock_t btree_read_time_lock;
840 struct time_stats btree_read_time;
841 struct time_stats try_harder_time;
842
843 atomic_long_t cache_read_races;
844 atomic_long_t writeback_keys_done;
845 atomic_long_t writeback_keys_failed;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700846
847 enum {
848 ON_ERROR_UNREGISTER,
849 ON_ERROR_PANIC,
850 } on_error;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700851 unsigned error_limit;
852 unsigned error_decay;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700853
Kent Overstreetcafe5632013-03-23 16:11:31 -0700854 unsigned short journal_delay_ms;
855 unsigned verify:1;
856 unsigned key_merging_disabled:1;
857 unsigned gc_always_rewrite:1;
858 unsigned shrinker_disabled:1;
859 unsigned copy_gc_enabled:1;
860
861#define BUCKET_HASH_BITS 12
862 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
863};
864
865static inline bool key_merging_disabled(struct cache_set *c)
866{
867#ifdef CONFIG_BCACHE_DEBUG
868 return c->key_merging_disabled;
869#else
870 return 0;
871#endif
872}
873
Kent Overstreet29033812013-04-11 15:14:35 -0700874static inline bool SB_IS_BDEV(const struct cache_sb *sb)
875{
876 return sb->version == BCACHE_SB_VERSION_BDEV
877 || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET;
878}
879
Kent Overstreetcafe5632013-03-23 16:11:31 -0700880struct bbio {
881 unsigned submit_time_us;
882 union {
883 struct bkey key;
884 uint64_t _pad[3];
885 /*
886 * We only need pad = 3 here because we only ever carry around a
887 * single pointer - i.e. the pointer we're doing io to/from.
888 */
889 };
890 struct bio bio;
891};
892
893static inline unsigned local_clock_us(void)
894{
895 return local_clock() >> 10;
896}
897
Kent Overstreetcafe5632013-03-23 16:11:31 -0700898#define BTREE_PRIO USHRT_MAX
899#define INITIAL_PRIO 32768
900
901#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
902#define btree_blocks(b) \
903 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
904
905#define btree_default_blocks(c) \
906 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
907
908#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
909#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
910#define block_bytes(c) ((c)->sb.block_size << 9)
911
912#define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t))
913#define set_bytes(i) __set_bytes(i, i->keys)
914
915#define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c))
916#define set_blocks(i, c) __set_blocks(i, (i)->keys, c)
917
918#define node(i, j) ((struct bkey *) ((i)->d + (j)))
919#define end(i) node(i, (i)->keys)
920
921#define index(i, b) \
922 ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \
923 block_bytes(b->c)))
924
925#define btree_data_space(b) (PAGE_SIZE << (b)->page_order)
926
927#define prios_per_bucket(c) \
928 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
929 sizeof(struct bucket_disk))
930#define prio_buckets(c) \
931 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
932
933#define JSET_MAGIC 0x245235c1a3625032ULL
934#define PSET_MAGIC 0x6750e15f87337f91ULL
935#define BSET_MAGIC 0x90135c78b99e07f5ULL
936
937#define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC)
938#define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC)
939#define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC)
940
941/* Bkey fields: all units are in sectors */
942
943#define KEY_FIELD(name, field, offset, size) \
944 BITMASK(name, struct bkey, field, offset, size)
945
946#define PTR_FIELD(name, offset, size) \
947 static inline uint64_t name(const struct bkey *k, unsigned i) \
948 { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \
949 \
950 static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\
951 { \
952 k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \
953 k->ptr[i] |= v << offset; \
954 }
955
956KEY_FIELD(KEY_PTRS, high, 60, 3)
957KEY_FIELD(HEADER_SIZE, high, 58, 2)
958KEY_FIELD(KEY_CSUM, high, 56, 2)
959KEY_FIELD(KEY_PINNED, high, 55, 1)
960KEY_FIELD(KEY_DIRTY, high, 36, 1)
961
962KEY_FIELD(KEY_SIZE, high, 20, 16)
963KEY_FIELD(KEY_INODE, high, 0, 20)
964
965/* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */
966
967static inline uint64_t KEY_OFFSET(const struct bkey *k)
968{
969 return k->low;
970}
971
972static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v)
973{
974 k->low = v;
975}
976
977PTR_FIELD(PTR_DEV, 51, 12)
978PTR_FIELD(PTR_OFFSET, 8, 43)
979PTR_FIELD(PTR_GEN, 0, 8)
980
981#define PTR_CHECK_DEV ((1 << 12) - 1)
982
983#define PTR(gen, offset, dev) \
984 ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen)
985
986static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
987{
988 return s >> c->bucket_bits;
989}
990
991static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
992{
993 return ((sector_t) b) << c->bucket_bits;
994}
995
996static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
997{
998 return s & (c->sb.bucket_size - 1);
999}
1000
1001static inline struct cache *PTR_CACHE(struct cache_set *c,
1002 const struct bkey *k,
1003 unsigned ptr)
1004{
1005 return c->cache[PTR_DEV(k, ptr)];
1006}
1007
1008static inline size_t PTR_BUCKET_NR(struct cache_set *c,
1009 const struct bkey *k,
1010 unsigned ptr)
1011{
1012 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
1013}
1014
1015static inline struct bucket *PTR_BUCKET(struct cache_set *c,
1016 const struct bkey *k,
1017 unsigned ptr)
1018{
1019 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
1020}
1021
1022/* Btree key macros */
1023
1024/*
1025 * The high bit being set is a relic from when we used it to do binary
1026 * searches - it told you where a key started. It's not used anymore,
1027 * and can probably be safely dropped.
1028 */
Kent Overstreetb1a67b02013-03-25 11:46:44 -07001029#define KEY(dev, sector, len) \
1030((struct bkey) { \
Kent Overstreetcafe5632013-03-23 16:11:31 -07001031 .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \
1032 .low = (sector) \
Kent Overstreetb1a67b02013-03-25 11:46:44 -07001033})
Kent Overstreetcafe5632013-03-23 16:11:31 -07001034
1035static inline void bkey_init(struct bkey *k)
1036{
1037 *k = KEY(0, 0, 0);
1038}
1039
1040#define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k))
1041#define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0)
1042#define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0)
1043#define ZERO_KEY KEY(0, 0, 0)
1044
1045/*
1046 * This is used for various on disk data structures - cache_sb, prio_set, bset,
1047 * jset: The checksum is _always_ the first 8 bytes of these structs
1048 */
1049#define csum_set(i) \
Kent Overstreet169ef1c2013-03-28 12:50:55 -06001050 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
Kent Overstreetcafe5632013-03-23 16:11:31 -07001051 ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t)))
1052
1053/* Error handling macros */
1054
1055#define btree_bug(b, ...) \
1056do { \
1057 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
1058 dump_stack(); \
1059} while (0)
1060
1061#define cache_bug(c, ...) \
1062do { \
1063 if (bch_cache_set_error(c, __VA_ARGS__)) \
1064 dump_stack(); \
1065} while (0)
1066
1067#define btree_bug_on(cond, b, ...) \
1068do { \
1069 if (cond) \
1070 btree_bug(b, __VA_ARGS__); \
1071} while (0)
1072
1073#define cache_bug_on(cond, c, ...) \
1074do { \
1075 if (cond) \
1076 cache_bug(c, __VA_ARGS__); \
1077} while (0)
1078
1079#define cache_set_err_on(cond, c, ...) \
1080do { \
1081 if (cond) \
1082 bch_cache_set_error(c, __VA_ARGS__); \
1083} while (0)
1084
1085/* Looping macros */
1086
1087#define for_each_cache(ca, cs, iter) \
1088 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
1089
1090#define for_each_bucket(b, ca) \
1091 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
1092 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
1093
1094static inline void __bkey_put(struct cache_set *c, struct bkey *k)
1095{
1096 unsigned i;
1097
1098 for (i = 0; i < KEY_PTRS(k); i++)
1099 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
1100}
1101
Kent Overstreetcafe5632013-03-23 16:11:31 -07001102static inline void cached_dev_put(struct cached_dev *dc)
1103{
1104 if (atomic_dec_and_test(&dc->count))
1105 schedule_work(&dc->detach);
1106}
1107
1108static inline bool cached_dev_get(struct cached_dev *dc)
1109{
1110 if (!atomic_inc_not_zero(&dc->count))
1111 return false;
1112
1113 /* Paired with the mb in cached_dev_attach */
1114 smp_mb__after_atomic_inc();
1115 return true;
1116}
1117
1118/*
1119 * bucket_gc_gen() returns the difference between the bucket's current gen and
1120 * the oldest gen of any pointer into that bucket in the btree (last_gc).
1121 *
1122 * bucket_disk_gen() returns the difference between the current gen and the gen
1123 * on disk; they're both used to make sure gens don't wrap around.
1124 */
1125
1126static inline uint8_t bucket_gc_gen(struct bucket *b)
1127{
1128 return b->gen - b->last_gc;
1129}
1130
1131static inline uint8_t bucket_disk_gen(struct bucket *b)
1132{
1133 return b->gen - b->disk_gen;
1134}
1135
1136#define BUCKET_GC_GEN_MAX 96U
1137#define BUCKET_DISK_GEN_MAX 64U
1138
1139#define kobj_attribute_write(n, fn) \
1140 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
1141
1142#define kobj_attribute_rw(n, show, store) \
1143 static struct kobj_attribute ksysfs_##n = \
1144 __ATTR(n, S_IWUSR|S_IRUSR, show, store)
1145
Kent Overstreet119ba0f2013-04-24 19:01:12 -07001146static inline void wake_up_allocators(struct cache_set *c)
1147{
1148 struct cache *ca;
1149 unsigned i;
1150
1151 for_each_cache(ca, c, i)
1152 wake_up_process(ca->alloc_thread);
1153}
1154
Kent Overstreetcafe5632013-03-23 16:11:31 -07001155/* Forward declarations */
1156
Kent Overstreetcafe5632013-03-23 16:11:31 -07001157void bch_count_io_errors(struct cache *, int, const char *);
1158void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
1159 int, const char *);
1160void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
1161void bch_bbio_free(struct bio *, struct cache_set *);
1162struct bio *bch_bbio_alloc(struct cache_set *);
1163
1164struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *);
1165void bch_generic_make_request(struct bio *, struct bio_split_pool *);
1166void __bch_submit_bbio(struct bio *, struct cache_set *);
1167void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
1168
1169uint8_t bch_inc_gen(struct cache *, struct bucket *);
1170void bch_rescale_priorities(struct cache_set *, int);
1171bool bch_bucket_add_unused(struct cache *, struct bucket *);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001172
1173long bch_bucket_alloc(struct cache *, unsigned, struct closure *);
1174void bch_bucket_free(struct cache_set *, struct bkey *);
1175
1176int __bch_bucket_alloc_set(struct cache_set *, unsigned,
1177 struct bkey *, int, struct closure *);
1178int bch_bucket_alloc_set(struct cache_set *, unsigned,
1179 struct bkey *, int, struct closure *);
1180
1181__printf(2, 3)
1182bool bch_cache_set_error(struct cache_set *, const char *, ...);
1183
1184void bch_prio_write(struct cache *);
1185void bch_write_bdev_super(struct cached_dev *, struct closure *);
1186
1187extern struct workqueue_struct *bcache_wq, *bch_gc_wq;
1188extern const char * const bch_cache_modes[];
1189extern struct mutex bch_register_lock;
1190extern struct list_head bch_cache_sets;
1191
1192extern struct kobj_type bch_cached_dev_ktype;
1193extern struct kobj_type bch_flash_dev_ktype;
1194extern struct kobj_type bch_cache_set_ktype;
1195extern struct kobj_type bch_cache_set_internal_ktype;
1196extern struct kobj_type bch_cache_ktype;
1197
1198void bch_cached_dev_release(struct kobject *);
1199void bch_flash_dev_release(struct kobject *);
1200void bch_cache_set_release(struct kobject *);
1201void bch_cache_release(struct kobject *);
1202
1203int bch_uuid_write(struct cache_set *);
1204void bcache_write_super(struct cache_set *);
1205
1206int bch_flash_dev_create(struct cache_set *c, uint64_t size);
1207
1208int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
1209void bch_cached_dev_detach(struct cached_dev *);
1210void bch_cached_dev_run(struct cached_dev *);
1211void bcache_device_stop(struct bcache_device *);
1212
1213void bch_cache_set_unregister(struct cache_set *);
1214void bch_cache_set_stop(struct cache_set *);
1215
1216struct cache_set *bch_cache_set_alloc(struct cache_sb *);
1217void bch_btree_cache_free(struct cache_set *);
1218int bch_btree_cache_alloc(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001219void bch_moving_init_cache_set(struct cache_set *);
1220
Kent Overstreet119ba0f2013-04-24 19:01:12 -07001221int bch_cache_allocator_start(struct cache *ca);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001222int bch_cache_allocator_init(struct cache *ca);
1223
1224void bch_debug_exit(void);
1225int bch_debug_init(struct kobject *);
1226void bch_writeback_exit(void);
1227int bch_writeback_init(void);
1228void bch_request_exit(void);
1229int bch_request_init(void);
1230void bch_btree_exit(void);
1231int bch_btree_init(void);
1232
1233#endif /* _BCACHE_H */