Michael Halcrow | 237fead | 2006-10-04 02:16:22 -0700 | [diff] [blame^] | 1 | /** |
| 2 | * eCryptfs: Linux filesystem encryption layer |
| 3 | * In-kernel key management code. Includes functions to parse and |
| 4 | * write authentication token-related packets with the underlying |
| 5 | * file. |
| 6 | * |
| 7 | * Copyright (C) 2004-2006 International Business Machines Corp. |
| 8 | * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> |
| 9 | * Michael C. Thompson <mcthomps@us.ibm.com> |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or |
| 12 | * modify it under the terms of the GNU General Public License as |
| 13 | * published by the Free Software Foundation; either version 2 of the |
| 14 | * License, or (at your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 19 | * General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| 24 | * 02111-1307, USA. |
| 25 | */ |
| 26 | |
| 27 | #include <linux/string.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/syscalls.h> |
| 30 | #include <linux/pagemap.h> |
| 31 | #include <linux/key.h> |
| 32 | #include <linux/random.h> |
| 33 | #include <linux/crypto.h> |
| 34 | #include <linux/scatterlist.h> |
| 35 | #include "ecryptfs_kernel.h" |
| 36 | |
| 37 | /** |
| 38 | * request_key returned an error instead of a valid key address; |
| 39 | * determine the type of error, make appropriate log entries, and |
| 40 | * return an error code. |
| 41 | */ |
| 42 | int process_request_key_err(long err_code) |
| 43 | { |
| 44 | int rc = 0; |
| 45 | |
| 46 | switch (err_code) { |
| 47 | case ENOKEY: |
| 48 | ecryptfs_printk(KERN_WARNING, "No key\n"); |
| 49 | rc = -ENOENT; |
| 50 | break; |
| 51 | case EKEYEXPIRED: |
| 52 | ecryptfs_printk(KERN_WARNING, "Key expired\n"); |
| 53 | rc = -ETIME; |
| 54 | break; |
| 55 | case EKEYREVOKED: |
| 56 | ecryptfs_printk(KERN_WARNING, "Key revoked\n"); |
| 57 | rc = -EINVAL; |
| 58 | break; |
| 59 | default: |
| 60 | ecryptfs_printk(KERN_WARNING, "Unknown error code: " |
| 61 | "[0x%.16x]\n", err_code); |
| 62 | rc = -EINVAL; |
| 63 | } |
| 64 | return rc; |
| 65 | } |
| 66 | |
| 67 | static void wipe_auth_tok_list(struct list_head *auth_tok_list_head) |
| 68 | { |
| 69 | struct list_head *walker; |
| 70 | struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| 71 | |
| 72 | walker = auth_tok_list_head->next; |
| 73 | while (walker != auth_tok_list_head) { |
| 74 | auth_tok_list_item = |
| 75 | list_entry(walker, struct ecryptfs_auth_tok_list_item, |
| 76 | list); |
| 77 | walker = auth_tok_list_item->list.next; |
| 78 | memset(auth_tok_list_item, 0, |
| 79 | sizeof(struct ecryptfs_auth_tok_list_item)); |
| 80 | kmem_cache_free(ecryptfs_auth_tok_list_item_cache, |
| 81 | auth_tok_list_item); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | struct kmem_cache *ecryptfs_auth_tok_list_item_cache; |
| 86 | |
| 87 | /** |
| 88 | * parse_packet_length |
| 89 | * @data: Pointer to memory containing length at offset |
| 90 | * @size: This function writes the decoded size to this memory |
| 91 | * address; zero on error |
| 92 | * @length_size: The number of bytes occupied by the encoded length |
| 93 | * |
| 94 | * Returns Zero on success |
| 95 | */ |
| 96 | static int parse_packet_length(unsigned char *data, size_t *size, |
| 97 | size_t *length_size) |
| 98 | { |
| 99 | int rc = 0; |
| 100 | |
| 101 | (*length_size) = 0; |
| 102 | (*size) = 0; |
| 103 | if (data[0] < 192) { |
| 104 | /* One-byte length */ |
| 105 | (*size) = data[0]; |
| 106 | (*length_size) = 1; |
| 107 | } else if (data[0] < 224) { |
| 108 | /* Two-byte length */ |
| 109 | (*size) = ((data[0] - 192) * 256); |
| 110 | (*size) += (data[1] + 192); |
| 111 | (*length_size) = 2; |
| 112 | } else if (data[0] == 255) { |
| 113 | /* Five-byte length; we're not supposed to see this */ |
| 114 | ecryptfs_printk(KERN_ERR, "Five-byte packet length not " |
| 115 | "supported\n"); |
| 116 | rc = -EINVAL; |
| 117 | goto out; |
| 118 | } else { |
| 119 | ecryptfs_printk(KERN_ERR, "Error parsing packet length\n"); |
| 120 | rc = -EINVAL; |
| 121 | goto out; |
| 122 | } |
| 123 | out: |
| 124 | return rc; |
| 125 | } |
| 126 | |
| 127 | /** |
| 128 | * write_packet_length |
| 129 | * @dest: The byte array target into which to write the |
| 130 | * length. Must have at least 5 bytes allocated. |
| 131 | * @size: The length to write. |
| 132 | * @packet_size_length: The number of bytes used to encode the |
| 133 | * packet length is written to this address. |
| 134 | * |
| 135 | * Returns zero on success; non-zero on error. |
| 136 | */ |
| 137 | static int write_packet_length(char *dest, size_t size, |
| 138 | size_t *packet_size_length) |
| 139 | { |
| 140 | int rc = 0; |
| 141 | |
| 142 | if (size < 192) { |
| 143 | dest[0] = size; |
| 144 | (*packet_size_length) = 1; |
| 145 | } else if (size < 65536) { |
| 146 | dest[0] = (((size - 192) / 256) + 192); |
| 147 | dest[1] = ((size - 192) % 256); |
| 148 | (*packet_size_length) = 2; |
| 149 | } else { |
| 150 | rc = -EINVAL; |
| 151 | ecryptfs_printk(KERN_WARNING, |
| 152 | "Unsupported packet size: [%d]\n", size); |
| 153 | } |
| 154 | return rc; |
| 155 | } |
| 156 | |
| 157 | /** |
| 158 | * parse_tag_3_packet |
| 159 | * @crypt_stat: The cryptographic context to modify based on packet |
| 160 | * contents. |
| 161 | * @data: The raw bytes of the packet. |
| 162 | * @auth_tok_list: eCryptfs parses packets into authentication tokens; |
| 163 | * a new authentication token will be placed at the end |
| 164 | * of this list for this packet. |
| 165 | * @new_auth_tok: Pointer to a pointer to memory that this function |
| 166 | * allocates; sets the memory address of the pointer to |
| 167 | * NULL on error. This object is added to the |
| 168 | * auth_tok_list. |
| 169 | * @packet_size: This function writes the size of the parsed packet |
| 170 | * into this memory location; zero on error. |
| 171 | * @max_packet_size: maximum number of bytes to parse |
| 172 | * |
| 173 | * Returns zero on success; non-zero on error. |
| 174 | */ |
| 175 | static int |
| 176 | parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat, |
| 177 | unsigned char *data, struct list_head *auth_tok_list, |
| 178 | struct ecryptfs_auth_tok **new_auth_tok, |
| 179 | size_t *packet_size, size_t max_packet_size) |
| 180 | { |
| 181 | int rc = 0; |
| 182 | size_t body_size; |
| 183 | struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| 184 | size_t length_size; |
| 185 | |
| 186 | (*packet_size) = 0; |
| 187 | (*new_auth_tok) = NULL; |
| 188 | |
| 189 | /* we check that: |
| 190 | * one byte for the Tag 3 ID flag |
| 191 | * two bytes for the body size |
| 192 | * do not exceed the maximum_packet_size |
| 193 | */ |
| 194 | if (unlikely((*packet_size) + 3 > max_packet_size)) { |
| 195 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| 196 | rc = -EINVAL; |
| 197 | goto out; |
| 198 | } |
| 199 | |
| 200 | /* check for Tag 3 identifyer - one byte */ |
| 201 | if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) { |
| 202 | ecryptfs_printk(KERN_ERR, "Enter w/ first byte != 0x%.2x\n", |
| 203 | ECRYPTFS_TAG_3_PACKET_TYPE); |
| 204 | rc = -EINVAL; |
| 205 | goto out; |
| 206 | } |
| 207 | /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or |
| 208 | * at end of function upon failure */ |
| 209 | auth_tok_list_item = |
| 210 | kmem_cache_alloc(ecryptfs_auth_tok_list_item_cache, SLAB_KERNEL); |
| 211 | if (!auth_tok_list_item) { |
| 212 | ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); |
| 213 | rc = -ENOMEM; |
| 214 | goto out; |
| 215 | } |
| 216 | memset(auth_tok_list_item, 0, |
| 217 | sizeof(struct ecryptfs_auth_tok_list_item)); |
| 218 | (*new_auth_tok) = &auth_tok_list_item->auth_tok; |
| 219 | |
| 220 | /* check for body size - one to two bytes */ |
| 221 | rc = parse_packet_length(&data[(*packet_size)], &body_size, |
| 222 | &length_size); |
| 223 | if (rc) { |
| 224 | ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " |
| 225 | "rc = [%d]\n", rc); |
| 226 | goto out_free; |
| 227 | } |
| 228 | if (unlikely(body_size < (0x05 + ECRYPTFS_SALT_SIZE))) { |
| 229 | ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", |
| 230 | body_size); |
| 231 | rc = -EINVAL; |
| 232 | goto out_free; |
| 233 | } |
| 234 | (*packet_size) += length_size; |
| 235 | |
| 236 | /* now we know the length of the remainting Tag 3 packet size: |
| 237 | * 5 fix bytes for: version string, cipher, S2K ID, hash algo, |
| 238 | * number of hash iterations |
| 239 | * ECRYPTFS_SALT_SIZE bytes for salt |
| 240 | * body_size bytes minus the stuff above is the encrypted key size |
| 241 | */ |
| 242 | if (unlikely((*packet_size) + body_size > max_packet_size)) { |
| 243 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| 244 | rc = -EINVAL; |
| 245 | goto out_free; |
| 246 | } |
| 247 | |
| 248 | /* There are 5 characters of additional information in the |
| 249 | * packet */ |
| 250 | (*new_auth_tok)->session_key.encrypted_key_size = |
| 251 | body_size - (0x05 + ECRYPTFS_SALT_SIZE); |
| 252 | ecryptfs_printk(KERN_DEBUG, "Encrypted key size = [%d]\n", |
| 253 | (*new_auth_tok)->session_key.encrypted_key_size); |
| 254 | |
| 255 | /* Version 4 (from RFC2440) - one byte */ |
| 256 | if (unlikely(data[(*packet_size)++] != 0x04)) { |
| 257 | ecryptfs_printk(KERN_DEBUG, "Unknown version number " |
| 258 | "[%d]\n", data[(*packet_size) - 1]); |
| 259 | rc = -EINVAL; |
| 260 | goto out_free; |
| 261 | } |
| 262 | |
| 263 | /* cipher - one byte */ |
| 264 | ecryptfs_cipher_code_to_string(crypt_stat->cipher, |
| 265 | (u16)data[(*packet_size)]); |
| 266 | /* A little extra work to differentiate among the AES key |
| 267 | * sizes; see RFC2440 */ |
| 268 | switch(data[(*packet_size)++]) { |
| 269 | case RFC2440_CIPHER_AES_192: |
| 270 | crypt_stat->key_size = 24; |
| 271 | break; |
| 272 | default: |
| 273 | crypt_stat->key_size = |
| 274 | (*new_auth_tok)->session_key.encrypted_key_size; |
| 275 | } |
| 276 | ecryptfs_init_crypt_ctx(crypt_stat); |
| 277 | /* S2K identifier 3 (from RFC2440) */ |
| 278 | if (unlikely(data[(*packet_size)++] != 0x03)) { |
| 279 | ecryptfs_printk(KERN_ERR, "Only S2K ID 3 is currently " |
| 280 | "supported\n"); |
| 281 | rc = -ENOSYS; |
| 282 | goto out_free; |
| 283 | } |
| 284 | |
| 285 | /* TODO: finish the hash mapping */ |
| 286 | /* hash algorithm - one byte */ |
| 287 | switch (data[(*packet_size)++]) { |
| 288 | case 0x01: /* See RFC2440 for these numbers and their mappings */ |
| 289 | /* Choose MD5 */ |
| 290 | /* salt - ECRYPTFS_SALT_SIZE bytes */ |
| 291 | memcpy((*new_auth_tok)->token.password.salt, |
| 292 | &data[(*packet_size)], ECRYPTFS_SALT_SIZE); |
| 293 | (*packet_size) += ECRYPTFS_SALT_SIZE; |
| 294 | |
| 295 | /* This conversion was taken straight from RFC2440 */ |
| 296 | /* number of hash iterations - one byte */ |
| 297 | (*new_auth_tok)->token.password.hash_iterations = |
| 298 | ((u32) 16 + (data[(*packet_size)] & 15)) |
| 299 | << ((data[(*packet_size)] >> 4) + 6); |
| 300 | (*packet_size)++; |
| 301 | |
| 302 | /* encrypted session key - |
| 303 | * (body_size-5-ECRYPTFS_SALT_SIZE) bytes */ |
| 304 | memcpy((*new_auth_tok)->session_key.encrypted_key, |
| 305 | &data[(*packet_size)], |
| 306 | (*new_auth_tok)->session_key.encrypted_key_size); |
| 307 | (*packet_size) += |
| 308 | (*new_auth_tok)->session_key.encrypted_key_size; |
| 309 | (*new_auth_tok)->session_key.flags &= |
| 310 | ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; |
| 311 | (*new_auth_tok)->session_key.flags |= |
| 312 | ECRYPTFS_CONTAINS_ENCRYPTED_KEY; |
| 313 | (*new_auth_tok)->token.password.hash_algo = 0x01; |
| 314 | break; |
| 315 | default: |
| 316 | ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: " |
| 317 | "[%d]\n", data[(*packet_size) - 1]); |
| 318 | rc = -ENOSYS; |
| 319 | goto out_free; |
| 320 | } |
| 321 | (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD; |
| 322 | /* TODO: Parametarize; we might actually want userspace to |
| 323 | * decrypt the session key. */ |
| 324 | ECRYPTFS_CLEAR_FLAG((*new_auth_tok)->session_key.flags, |
| 325 | ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); |
| 326 | ECRYPTFS_CLEAR_FLAG((*new_auth_tok)->session_key.flags, |
| 327 | ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); |
| 328 | list_add(&auth_tok_list_item->list, auth_tok_list); |
| 329 | goto out; |
| 330 | out_free: |
| 331 | (*new_auth_tok) = NULL; |
| 332 | memset(auth_tok_list_item, 0, |
| 333 | sizeof(struct ecryptfs_auth_tok_list_item)); |
| 334 | kmem_cache_free(ecryptfs_auth_tok_list_item_cache, |
| 335 | auth_tok_list_item); |
| 336 | out: |
| 337 | if (rc) |
| 338 | (*packet_size) = 0; |
| 339 | return rc; |
| 340 | } |
| 341 | |
| 342 | /** |
| 343 | * parse_tag_11_packet |
| 344 | * @data: The raw bytes of the packet |
| 345 | * @contents: This function writes the data contents of the literal |
| 346 | * packet into this memory location |
| 347 | * @max_contents_bytes: The maximum number of bytes that this function |
| 348 | * is allowed to write into contents |
| 349 | * @tag_11_contents_size: This function writes the size of the parsed |
| 350 | * contents into this memory location; zero on |
| 351 | * error |
| 352 | * @packet_size: This function writes the size of the parsed packet |
| 353 | * into this memory location; zero on error |
| 354 | * @max_packet_size: maximum number of bytes to parse |
| 355 | * |
| 356 | * Returns zero on success; non-zero on error. |
| 357 | */ |
| 358 | static int |
| 359 | parse_tag_11_packet(unsigned char *data, unsigned char *contents, |
| 360 | size_t max_contents_bytes, size_t *tag_11_contents_size, |
| 361 | size_t *packet_size, size_t max_packet_size) |
| 362 | { |
| 363 | int rc = 0; |
| 364 | size_t body_size; |
| 365 | size_t length_size; |
| 366 | |
| 367 | (*packet_size) = 0; |
| 368 | (*tag_11_contents_size) = 0; |
| 369 | |
| 370 | /* check that: |
| 371 | * one byte for the Tag 11 ID flag |
| 372 | * two bytes for the Tag 11 length |
| 373 | * do not exceed the maximum_packet_size |
| 374 | */ |
| 375 | if (unlikely((*packet_size) + 3 > max_packet_size)) { |
| 376 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| 377 | rc = -EINVAL; |
| 378 | goto out; |
| 379 | } |
| 380 | |
| 381 | /* check for Tag 11 identifyer - one byte */ |
| 382 | if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) { |
| 383 | ecryptfs_printk(KERN_WARNING, |
| 384 | "Invalid tag 11 packet format\n"); |
| 385 | rc = -EINVAL; |
| 386 | goto out; |
| 387 | } |
| 388 | |
| 389 | /* get Tag 11 content length - one or two bytes */ |
| 390 | rc = parse_packet_length(&data[(*packet_size)], &body_size, |
| 391 | &length_size); |
| 392 | if (rc) { |
| 393 | ecryptfs_printk(KERN_WARNING, |
| 394 | "Invalid tag 11 packet format\n"); |
| 395 | goto out; |
| 396 | } |
| 397 | (*packet_size) += length_size; |
| 398 | |
| 399 | if (body_size < 13) { |
| 400 | ecryptfs_printk(KERN_WARNING, "Invalid body size ([%d])\n", |
| 401 | body_size); |
| 402 | rc = -EINVAL; |
| 403 | goto out; |
| 404 | } |
| 405 | /* We have 13 bytes of surrounding packet values */ |
| 406 | (*tag_11_contents_size) = (body_size - 13); |
| 407 | |
| 408 | /* now we know the length of the remainting Tag 11 packet size: |
| 409 | * 14 fix bytes for: special flag one, special flag two, |
| 410 | * 12 skipped bytes |
| 411 | * body_size bytes minus the stuff above is the Tag 11 content |
| 412 | */ |
| 413 | /* FIXME why is the body size one byte smaller than the actual |
| 414 | * size of the body? |
| 415 | * this seems to be an error here as well as in |
| 416 | * write_tag_11_packet() */ |
| 417 | if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) { |
| 418 | ecryptfs_printk(KERN_ERR, "Packet size exceeds max\n"); |
| 419 | rc = -EINVAL; |
| 420 | goto out; |
| 421 | } |
| 422 | |
| 423 | /* special flag one - one byte */ |
| 424 | if (data[(*packet_size)++] != 0x62) { |
| 425 | ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n"); |
| 426 | rc = -EINVAL; |
| 427 | goto out; |
| 428 | } |
| 429 | |
| 430 | /* special flag two - one byte */ |
| 431 | if (data[(*packet_size)++] != 0x08) { |
| 432 | ecryptfs_printk(KERN_WARNING, "Unrecognizable packet\n"); |
| 433 | rc = -EINVAL; |
| 434 | goto out; |
| 435 | } |
| 436 | |
| 437 | /* skip the next 12 bytes */ |
| 438 | (*packet_size) += 12; /* We don't care about the filename or |
| 439 | * the timestamp */ |
| 440 | |
| 441 | /* get the Tag 11 contents - tag_11_contents_size bytes */ |
| 442 | memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size)); |
| 443 | (*packet_size) += (*tag_11_contents_size); |
| 444 | |
| 445 | out: |
| 446 | if (rc) { |
| 447 | (*packet_size) = 0; |
| 448 | (*tag_11_contents_size) = 0; |
| 449 | } |
| 450 | return rc; |
| 451 | } |
| 452 | |
| 453 | /** |
| 454 | * decrypt_session_key - Decrypt the session key with the given auth_tok. |
| 455 | * |
| 456 | * Returns Zero on success; non-zero error otherwise. |
| 457 | */ |
| 458 | static int decrypt_session_key(struct ecryptfs_auth_tok *auth_tok, |
| 459 | struct ecryptfs_crypt_stat *crypt_stat) |
| 460 | { |
| 461 | int rc = 0; |
| 462 | struct ecryptfs_password *password_s_ptr; |
| 463 | struct crypto_tfm *tfm = NULL; |
| 464 | struct scatterlist src_sg[2], dst_sg[2]; |
| 465 | struct mutex *tfm_mutex = NULL; |
| 466 | /* TODO: Use virt_to_scatterlist for these */ |
| 467 | char *encrypted_session_key; |
| 468 | char *session_key; |
| 469 | |
| 470 | password_s_ptr = &auth_tok->token.password; |
| 471 | if (ECRYPTFS_CHECK_FLAG(password_s_ptr->flags, |
| 472 | ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET)) |
| 473 | ecryptfs_printk(KERN_DEBUG, "Session key encryption key " |
| 474 | "set; skipping key generation\n"); |
| 475 | ecryptfs_printk(KERN_DEBUG, "Session key encryption key (size [%d])" |
| 476 | ":\n", |
| 477 | password_s_ptr->session_key_encryption_key_bytes); |
| 478 | if (ecryptfs_verbosity > 0) |
| 479 | ecryptfs_dump_hex(password_s_ptr->session_key_encryption_key, |
| 480 | password_s_ptr-> |
| 481 | session_key_encryption_key_bytes); |
| 482 | if (!strcmp(crypt_stat->cipher, |
| 483 | crypt_stat->mount_crypt_stat->global_default_cipher_name) |
| 484 | && crypt_stat->mount_crypt_stat->global_key_tfm) { |
| 485 | tfm = crypt_stat->mount_crypt_stat->global_key_tfm; |
| 486 | tfm_mutex = &crypt_stat->mount_crypt_stat->global_key_tfm_mutex; |
| 487 | } else { |
| 488 | tfm = crypto_alloc_tfm(crypt_stat->cipher, |
| 489 | CRYPTO_TFM_REQ_WEAK_KEY); |
| 490 | if (!tfm) { |
| 491 | printk(KERN_ERR "Error allocating crypto context\n"); |
| 492 | rc = -ENOMEM; |
| 493 | goto out; |
| 494 | } |
| 495 | } |
| 496 | if (password_s_ptr->session_key_encryption_key_bytes |
| 497 | < crypto_tfm_alg_min_keysize(tfm)) { |
| 498 | printk(KERN_WARNING "Session key encryption key is [%d] bytes; " |
| 499 | "minimum keysize for selected cipher is [%d] bytes.\n", |
| 500 | password_s_ptr->session_key_encryption_key_bytes, |
| 501 | crypto_tfm_alg_min_keysize(tfm)); |
| 502 | rc = -EINVAL; |
| 503 | goto out; |
| 504 | } |
| 505 | if (tfm_mutex) |
| 506 | mutex_lock(tfm_mutex); |
| 507 | crypto_cipher_setkey(tfm, password_s_ptr->session_key_encryption_key, |
| 508 | crypt_stat->key_size); |
| 509 | /* TODO: virt_to_scatterlist */ |
| 510 | encrypted_session_key = (char *)__get_free_page(GFP_KERNEL); |
| 511 | if (!encrypted_session_key) { |
| 512 | ecryptfs_printk(KERN_ERR, "Out of memory\n"); |
| 513 | rc = -ENOMEM; |
| 514 | goto out_free_tfm; |
| 515 | } |
| 516 | session_key = (char *)__get_free_page(GFP_KERNEL); |
| 517 | if (!session_key) { |
| 518 | kfree(encrypted_session_key); |
| 519 | ecryptfs_printk(KERN_ERR, "Out of memory\n"); |
| 520 | rc = -ENOMEM; |
| 521 | goto out_free_tfm; |
| 522 | } |
| 523 | memcpy(encrypted_session_key, auth_tok->session_key.encrypted_key, |
| 524 | auth_tok->session_key.encrypted_key_size); |
| 525 | src_sg[0].page = virt_to_page(encrypted_session_key); |
| 526 | src_sg[0].offset = 0; |
| 527 | BUG_ON(auth_tok->session_key.encrypted_key_size > PAGE_CACHE_SIZE); |
| 528 | src_sg[0].length = auth_tok->session_key.encrypted_key_size; |
| 529 | dst_sg[0].page = virt_to_page(session_key); |
| 530 | dst_sg[0].offset = 0; |
| 531 | auth_tok->session_key.decrypted_key_size = |
| 532 | auth_tok->session_key.encrypted_key_size; |
| 533 | dst_sg[0].length = auth_tok->session_key.encrypted_key_size; |
| 534 | /* TODO: Handle error condition */ |
| 535 | crypto_cipher_decrypt(tfm, dst_sg, src_sg, |
| 536 | auth_tok->session_key.encrypted_key_size); |
| 537 | auth_tok->session_key.decrypted_key_size = |
| 538 | auth_tok->session_key.encrypted_key_size; |
| 539 | memcpy(auth_tok->session_key.decrypted_key, session_key, |
| 540 | auth_tok->session_key.decrypted_key_size); |
| 541 | auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; |
| 542 | memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, |
| 543 | auth_tok->session_key.decrypted_key_size); |
| 544 | ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_KEY_VALID); |
| 545 | ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n"); |
| 546 | if (ecryptfs_verbosity > 0) |
| 547 | ecryptfs_dump_hex(crypt_stat->key, |
| 548 | crypt_stat->key_size); |
| 549 | memset(encrypted_session_key, 0, PAGE_CACHE_SIZE); |
| 550 | free_page((unsigned long)encrypted_session_key); |
| 551 | memset(session_key, 0, PAGE_CACHE_SIZE); |
| 552 | free_page((unsigned long)session_key); |
| 553 | out_free_tfm: |
| 554 | if (tfm_mutex) |
| 555 | mutex_unlock(tfm_mutex); |
| 556 | else |
| 557 | crypto_free_tfm(tfm); |
| 558 | out: |
| 559 | return rc; |
| 560 | } |
| 561 | |
| 562 | /** |
| 563 | * ecryptfs_parse_packet_set |
| 564 | * @dest: The header page in memory |
| 565 | * @version: Version of file format, to guide parsing behavior |
| 566 | * |
| 567 | * Get crypt_stat to have the file's session key if the requisite key |
| 568 | * is available to decrypt the session key. |
| 569 | * |
| 570 | * Returns Zero if a valid authentication token was retrieved and |
| 571 | * processed; negative value for file not encrypted or for error |
| 572 | * conditions. |
| 573 | */ |
| 574 | int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat, |
| 575 | unsigned char *src, |
| 576 | struct dentry *ecryptfs_dentry) |
| 577 | { |
| 578 | size_t i = 0; |
| 579 | int rc = 0; |
| 580 | size_t found_auth_tok = 0; |
| 581 | size_t next_packet_is_auth_tok_packet; |
| 582 | char sig[ECRYPTFS_SIG_SIZE_HEX]; |
| 583 | struct list_head auth_tok_list; |
| 584 | struct list_head *walker; |
| 585 | struct ecryptfs_auth_tok *chosen_auth_tok = NULL; |
| 586 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| 587 | &ecryptfs_superblock_to_private( |
| 588 | ecryptfs_dentry->d_sb)->mount_crypt_stat; |
| 589 | struct ecryptfs_auth_tok *candidate_auth_tok = NULL; |
| 590 | size_t packet_size; |
| 591 | struct ecryptfs_auth_tok *new_auth_tok; |
| 592 | unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE]; |
| 593 | size_t tag_11_contents_size; |
| 594 | size_t tag_11_packet_size; |
| 595 | |
| 596 | INIT_LIST_HEAD(&auth_tok_list); |
| 597 | /* Parse the header to find as many packets as we can, these will be |
| 598 | * added the our &auth_tok_list */ |
| 599 | next_packet_is_auth_tok_packet = 1; |
| 600 | while (next_packet_is_auth_tok_packet) { |
| 601 | size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i); |
| 602 | |
| 603 | switch (src[i]) { |
| 604 | case ECRYPTFS_TAG_3_PACKET_TYPE: |
| 605 | rc = parse_tag_3_packet(crypt_stat, |
| 606 | (unsigned char *)&src[i], |
| 607 | &auth_tok_list, &new_auth_tok, |
| 608 | &packet_size, max_packet_size); |
| 609 | if (rc) { |
| 610 | ecryptfs_printk(KERN_ERR, "Error parsing " |
| 611 | "tag 3 packet\n"); |
| 612 | rc = -EIO; |
| 613 | goto out_wipe_list; |
| 614 | } |
| 615 | i += packet_size; |
| 616 | rc = parse_tag_11_packet((unsigned char *)&src[i], |
| 617 | sig_tmp_space, |
| 618 | ECRYPTFS_SIG_SIZE, |
| 619 | &tag_11_contents_size, |
| 620 | &tag_11_packet_size, |
| 621 | max_packet_size); |
| 622 | if (rc) { |
| 623 | ecryptfs_printk(KERN_ERR, "No valid " |
| 624 | "(ecryptfs-specific) literal " |
| 625 | "packet containing " |
| 626 | "authentication token " |
| 627 | "signature found after " |
| 628 | "tag 3 packet\n"); |
| 629 | rc = -EIO; |
| 630 | goto out_wipe_list; |
| 631 | } |
| 632 | i += tag_11_packet_size; |
| 633 | if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) { |
| 634 | ecryptfs_printk(KERN_ERR, "Expected " |
| 635 | "signature of size [%d]; " |
| 636 | "read size [%d]\n", |
| 637 | ECRYPTFS_SIG_SIZE, |
| 638 | tag_11_contents_size); |
| 639 | rc = -EIO; |
| 640 | goto out_wipe_list; |
| 641 | } |
| 642 | ecryptfs_to_hex(new_auth_tok->token.password.signature, |
| 643 | sig_tmp_space, tag_11_contents_size); |
| 644 | new_auth_tok->token.password.signature[ |
| 645 | ECRYPTFS_PASSWORD_SIG_SIZE] = '\0'; |
| 646 | ECRYPTFS_SET_FLAG(crypt_stat->flags, |
| 647 | ECRYPTFS_ENCRYPTED); |
| 648 | break; |
| 649 | case ECRYPTFS_TAG_11_PACKET_TYPE: |
| 650 | ecryptfs_printk(KERN_WARNING, "Invalid packet set " |
| 651 | "(Tag 11 not allowed by itself)\n"); |
| 652 | rc = -EIO; |
| 653 | goto out_wipe_list; |
| 654 | break; |
| 655 | default: |
| 656 | ecryptfs_printk(KERN_DEBUG, "No packet at offset " |
| 657 | "[%d] of the file header; hex value of " |
| 658 | "character is [0x%.2x]\n", i, src[i]); |
| 659 | next_packet_is_auth_tok_packet = 0; |
| 660 | } |
| 661 | } |
| 662 | if (list_empty(&auth_tok_list)) { |
| 663 | rc = -EINVAL; /* Do not support non-encrypted files in |
| 664 | * the 0.1 release */ |
| 665 | goto out; |
| 666 | } |
| 667 | /* If we have a global auth tok, then we should try to use |
| 668 | * it */ |
| 669 | if (mount_crypt_stat->global_auth_tok) { |
| 670 | memcpy(sig, mount_crypt_stat->global_auth_tok_sig, |
| 671 | ECRYPTFS_SIG_SIZE_HEX); |
| 672 | chosen_auth_tok = mount_crypt_stat->global_auth_tok; |
| 673 | } else |
| 674 | BUG(); /* We should always have a global auth tok in |
| 675 | * the 0.1 release */ |
| 676 | /* Scan list to see if our chosen_auth_tok works */ |
| 677 | list_for_each(walker, &auth_tok_list) { |
| 678 | struct ecryptfs_auth_tok_list_item *auth_tok_list_item; |
| 679 | auth_tok_list_item = |
| 680 | list_entry(walker, struct ecryptfs_auth_tok_list_item, |
| 681 | list); |
| 682 | candidate_auth_tok = &auth_tok_list_item->auth_tok; |
| 683 | if (unlikely(ecryptfs_verbosity > 0)) { |
| 684 | ecryptfs_printk(KERN_DEBUG, |
| 685 | "Considering cadidate auth tok:\n"); |
| 686 | ecryptfs_dump_auth_tok(candidate_auth_tok); |
| 687 | } |
| 688 | /* TODO: Replace ECRYPTFS_SIG_SIZE_HEX w/ dynamic value */ |
| 689 | if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD |
| 690 | && !strncmp(candidate_auth_tok->token.password.signature, |
| 691 | sig, ECRYPTFS_SIG_SIZE_HEX)) { |
| 692 | found_auth_tok = 1; |
| 693 | goto leave_list; |
| 694 | /* TODO: Transfer the common salt into the |
| 695 | * crypt_stat salt */ |
| 696 | } |
| 697 | } |
| 698 | leave_list: |
| 699 | if (!found_auth_tok) { |
| 700 | ecryptfs_printk(KERN_ERR, "Could not find authentication " |
| 701 | "token on temporary list for sig [%.*s]\n", |
| 702 | ECRYPTFS_SIG_SIZE_HEX, sig); |
| 703 | rc = -EIO; |
| 704 | goto out_wipe_list; |
| 705 | } else { |
| 706 | memcpy(&(candidate_auth_tok->token.password), |
| 707 | &(chosen_auth_tok->token.password), |
| 708 | sizeof(struct ecryptfs_password)); |
| 709 | rc = decrypt_session_key(candidate_auth_tok, crypt_stat); |
| 710 | if (rc) { |
| 711 | ecryptfs_printk(KERN_ERR, "Error decrypting the " |
| 712 | "session key\n"); |
| 713 | goto out_wipe_list; |
| 714 | } |
| 715 | rc = ecryptfs_compute_root_iv(crypt_stat); |
| 716 | if (rc) { |
| 717 | ecryptfs_printk(KERN_ERR, "Error computing " |
| 718 | "the root IV\n"); |
| 719 | goto out_wipe_list; |
| 720 | } |
| 721 | } |
| 722 | rc = ecryptfs_init_crypt_ctx(crypt_stat); |
| 723 | if (rc) { |
| 724 | ecryptfs_printk(KERN_ERR, "Error initializing crypto " |
| 725 | "context for cipher [%s]; rc = [%d]\n", |
| 726 | crypt_stat->cipher, rc); |
| 727 | } |
| 728 | out_wipe_list: |
| 729 | wipe_auth_tok_list(&auth_tok_list); |
| 730 | out: |
| 731 | return rc; |
| 732 | } |
| 733 | |
| 734 | /** |
| 735 | * write_tag_11_packet |
| 736 | * @dest: Target into which Tag 11 packet is to be written |
| 737 | * @max: Maximum packet length |
| 738 | * @contents: Byte array of contents to copy in |
| 739 | * @contents_length: Number of bytes in contents |
| 740 | * @packet_length: Length of the Tag 11 packet written; zero on error |
| 741 | * |
| 742 | * Returns zero on success; non-zero on error. |
| 743 | */ |
| 744 | static int |
| 745 | write_tag_11_packet(char *dest, int max, char *contents, size_t contents_length, |
| 746 | size_t *packet_length) |
| 747 | { |
| 748 | int rc = 0; |
| 749 | size_t packet_size_length; |
| 750 | |
| 751 | (*packet_length) = 0; |
| 752 | if ((13 + contents_length) > max) { |
| 753 | rc = -EINVAL; |
| 754 | ecryptfs_printk(KERN_ERR, "Packet length larger than " |
| 755 | "maximum allowable\n"); |
| 756 | goto out; |
| 757 | } |
| 758 | /* General packet header */ |
| 759 | /* Packet tag */ |
| 760 | dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE; |
| 761 | /* Packet length */ |
| 762 | rc = write_packet_length(&dest[(*packet_length)], |
| 763 | (13 + contents_length), &packet_size_length); |
| 764 | if (rc) { |
| 765 | ecryptfs_printk(KERN_ERR, "Error generating tag 11 packet " |
| 766 | "header; cannot generate packet length\n"); |
| 767 | goto out; |
| 768 | } |
| 769 | (*packet_length) += packet_size_length; |
| 770 | /* Tag 11 specific */ |
| 771 | /* One-octet field that describes how the data is formatted */ |
| 772 | dest[(*packet_length)++] = 0x62; /* binary data */ |
| 773 | /* One-octet filename length followed by filename */ |
| 774 | dest[(*packet_length)++] = 8; |
| 775 | memcpy(&dest[(*packet_length)], "_CONSOLE", 8); |
| 776 | (*packet_length) += 8; |
| 777 | /* Four-octet number indicating modification date */ |
| 778 | memset(&dest[(*packet_length)], 0x00, 4); |
| 779 | (*packet_length) += 4; |
| 780 | /* Remainder is literal data */ |
| 781 | memcpy(&dest[(*packet_length)], contents, contents_length); |
| 782 | (*packet_length) += contents_length; |
| 783 | out: |
| 784 | if (rc) |
| 785 | (*packet_length) = 0; |
| 786 | return rc; |
| 787 | } |
| 788 | |
| 789 | /** |
| 790 | * write_tag_3_packet |
| 791 | * @dest: Buffer into which to write the packet |
| 792 | * @max: Maximum number of bytes that can be written |
| 793 | * @auth_tok: Authentication token |
| 794 | * @crypt_stat: The cryptographic context |
| 795 | * @key_rec: encrypted key |
| 796 | * @packet_size: This function will write the number of bytes that end |
| 797 | * up constituting the packet; set to zero on error |
| 798 | * |
| 799 | * Returns zero on success; non-zero on error. |
| 800 | */ |
| 801 | static int |
| 802 | write_tag_3_packet(char *dest, size_t max, struct ecryptfs_auth_tok *auth_tok, |
| 803 | struct ecryptfs_crypt_stat *crypt_stat, |
| 804 | struct ecryptfs_key_record *key_rec, size_t *packet_size) |
| 805 | { |
| 806 | int rc = 0; |
| 807 | |
| 808 | size_t i; |
| 809 | size_t signature_is_valid = 0; |
| 810 | size_t encrypted_session_key_valid = 0; |
| 811 | char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES]; |
| 812 | struct scatterlist dest_sg[2]; |
| 813 | struct scatterlist src_sg[2]; |
| 814 | struct crypto_tfm *tfm = NULL; |
| 815 | struct mutex *tfm_mutex = NULL; |
| 816 | size_t key_rec_size; |
| 817 | size_t packet_size_length; |
| 818 | size_t cipher_code; |
| 819 | |
| 820 | (*packet_size) = 0; |
| 821 | /* Check for a valid signature on the auth_tok */ |
| 822 | for (i = 0; i < ECRYPTFS_SIG_SIZE_HEX; i++) |
| 823 | signature_is_valid |= auth_tok->token.password.signature[i]; |
| 824 | if (!signature_is_valid) |
| 825 | BUG(); |
| 826 | ecryptfs_from_hex((*key_rec).sig, auth_tok->token.password.signature, |
| 827 | ECRYPTFS_SIG_SIZE); |
| 828 | encrypted_session_key_valid = 0; |
| 829 | for (i = 0; i < crypt_stat->key_size; i++) |
| 830 | encrypted_session_key_valid |= |
| 831 | auth_tok->session_key.encrypted_key[i]; |
| 832 | if (encrypted_session_key_valid) { |
| 833 | memcpy((*key_rec).enc_key, |
| 834 | auth_tok->session_key.encrypted_key, |
| 835 | auth_tok->session_key.encrypted_key_size); |
| 836 | goto encrypted_session_key_set; |
| 837 | } |
| 838 | if (auth_tok->session_key.encrypted_key_size == 0) |
| 839 | auth_tok->session_key.encrypted_key_size = |
| 840 | crypt_stat->key_size; |
| 841 | if (crypt_stat->key_size == 24 |
| 842 | && strcmp("aes", crypt_stat->cipher) == 0) { |
| 843 | memset((crypt_stat->key + 24), 0, 8); |
| 844 | auth_tok->session_key.encrypted_key_size = 32; |
| 845 | } |
| 846 | (*key_rec).enc_key_size = |
| 847 | auth_tok->session_key.encrypted_key_size; |
| 848 | if (ECRYPTFS_CHECK_FLAG(auth_tok->token.password.flags, |
| 849 | ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET)) { |
| 850 | ecryptfs_printk(KERN_DEBUG, "Using previously generated " |
| 851 | "session key encryption key of size [%d]\n", |
| 852 | auth_tok->token.password. |
| 853 | session_key_encryption_key_bytes); |
| 854 | memcpy(session_key_encryption_key, |
| 855 | auth_tok->token.password.session_key_encryption_key, |
| 856 | crypt_stat->key_size); |
| 857 | ecryptfs_printk(KERN_DEBUG, |
| 858 | "Cached session key " "encryption key: \n"); |
| 859 | if (ecryptfs_verbosity > 0) |
| 860 | ecryptfs_dump_hex(session_key_encryption_key, 16); |
| 861 | } |
| 862 | if (unlikely(ecryptfs_verbosity > 0)) { |
| 863 | ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n"); |
| 864 | ecryptfs_dump_hex(session_key_encryption_key, 16); |
| 865 | } |
| 866 | rc = virt_to_scatterlist(crypt_stat->key, |
| 867 | (*key_rec).enc_key_size, src_sg, 2); |
| 868 | if (!rc) { |
| 869 | ecryptfs_printk(KERN_ERR, "Error generating scatterlist " |
| 870 | "for crypt_stat session key\n"); |
| 871 | rc = -ENOMEM; |
| 872 | goto out; |
| 873 | } |
| 874 | rc = virt_to_scatterlist((*key_rec).enc_key, |
| 875 | (*key_rec).enc_key_size, dest_sg, 2); |
| 876 | if (!rc) { |
| 877 | ecryptfs_printk(KERN_ERR, "Error generating scatterlist " |
| 878 | "for crypt_stat encrypted session key\n"); |
| 879 | rc = -ENOMEM; |
| 880 | goto out; |
| 881 | } |
| 882 | if (!strcmp(crypt_stat->cipher, |
| 883 | crypt_stat->mount_crypt_stat->global_default_cipher_name) |
| 884 | && crypt_stat->mount_crypt_stat->global_key_tfm) { |
| 885 | tfm = crypt_stat->mount_crypt_stat->global_key_tfm; |
| 886 | tfm_mutex = &crypt_stat->mount_crypt_stat->global_key_tfm_mutex; |
| 887 | } else |
| 888 | tfm = crypto_alloc_tfm(crypt_stat->cipher, 0); |
| 889 | if (!tfm) { |
| 890 | ecryptfs_printk(KERN_ERR, "Could not initialize crypto " |
| 891 | "context for cipher [%s]\n", |
| 892 | crypt_stat->cipher); |
| 893 | rc = -EINVAL; |
| 894 | goto out; |
| 895 | } |
| 896 | if (tfm_mutex) |
| 897 | mutex_lock(tfm_mutex); |
| 898 | rc = crypto_cipher_setkey(tfm, session_key_encryption_key, |
| 899 | crypt_stat->key_size); |
| 900 | if (rc < 0) { |
| 901 | if (tfm_mutex) |
| 902 | mutex_unlock(tfm_mutex); |
| 903 | ecryptfs_printk(KERN_ERR, "Error setting key for crypto " |
| 904 | "context\n"); |
| 905 | goto out; |
| 906 | } |
| 907 | rc = 0; |
| 908 | ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n", |
| 909 | crypt_stat->key_size); |
| 910 | crypto_cipher_encrypt(tfm, dest_sg, src_sg, |
| 911 | (*key_rec).enc_key_size); |
| 912 | if (tfm_mutex) |
| 913 | mutex_unlock(tfm_mutex); |
| 914 | ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n"); |
| 915 | if (ecryptfs_verbosity > 0) |
| 916 | ecryptfs_dump_hex((*key_rec).enc_key, |
| 917 | (*key_rec).enc_key_size); |
| 918 | encrypted_session_key_set: |
| 919 | /* Now we have a valid key_rec. Append it to the |
| 920 | * key_rec set. */ |
| 921 | key_rec_size = (sizeof(struct ecryptfs_key_record) |
| 922 | - ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES |
| 923 | + ((*key_rec).enc_key_size)); |
| 924 | /* TODO: Include a packet size limit as a parameter to this |
| 925 | * function once we have multi-packet headers (for versions |
| 926 | * later than 0.1 */ |
| 927 | if (key_rec_size >= ECRYPTFS_MAX_KEYSET_SIZE) { |
| 928 | ecryptfs_printk(KERN_ERR, "Keyset too large\n"); |
| 929 | rc = -EINVAL; |
| 930 | goto out; |
| 931 | } |
| 932 | /* TODO: Packet size limit */ |
| 933 | /* We have 5 bytes of surrounding packet data */ |
| 934 | if ((0x05 + ECRYPTFS_SALT_SIZE |
| 935 | + (*key_rec).enc_key_size) >= max) { |
| 936 | ecryptfs_printk(KERN_ERR, "Authentication token is too " |
| 937 | "large\n"); |
| 938 | rc = -EINVAL; |
| 939 | goto out; |
| 940 | } |
| 941 | /* This format is inspired by OpenPGP; see RFC 2440 |
| 942 | * packet tag 3 */ |
| 943 | dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE; |
| 944 | /* ver+cipher+s2k+hash+salt+iter+enc_key */ |
| 945 | rc = write_packet_length(&dest[(*packet_size)], |
| 946 | (0x05 + ECRYPTFS_SALT_SIZE |
| 947 | + (*key_rec).enc_key_size), |
| 948 | &packet_size_length); |
| 949 | if (rc) { |
| 950 | ecryptfs_printk(KERN_ERR, "Error generating tag 3 packet " |
| 951 | "header; cannot generate packet length\n"); |
| 952 | goto out; |
| 953 | } |
| 954 | (*packet_size) += packet_size_length; |
| 955 | dest[(*packet_size)++] = 0x04; /* version 4 */ |
| 956 | cipher_code = ecryptfs_code_for_cipher_string(crypt_stat); |
| 957 | if (cipher_code == 0) { |
| 958 | ecryptfs_printk(KERN_WARNING, "Unable to generate code for " |
| 959 | "cipher [%s]\n", crypt_stat->cipher); |
| 960 | rc = -EINVAL; |
| 961 | goto out; |
| 962 | } |
| 963 | dest[(*packet_size)++] = cipher_code; |
| 964 | dest[(*packet_size)++] = 0x03; /* S2K */ |
| 965 | dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */ |
| 966 | memcpy(&dest[(*packet_size)], auth_tok->token.password.salt, |
| 967 | ECRYPTFS_SALT_SIZE); |
| 968 | (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */ |
| 969 | dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */ |
| 970 | memcpy(&dest[(*packet_size)], (*key_rec).enc_key, |
| 971 | (*key_rec).enc_key_size); |
| 972 | (*packet_size) += (*key_rec).enc_key_size; |
| 973 | out: |
| 974 | if (tfm && !tfm_mutex) |
| 975 | crypto_free_tfm(tfm); |
| 976 | if (rc) |
| 977 | (*packet_size) = 0; |
| 978 | return rc; |
| 979 | } |
| 980 | |
| 981 | /** |
| 982 | * ecryptfs_generate_key_packet_set |
| 983 | * @dest: Virtual address from which to write the key record set |
| 984 | * @crypt_stat: The cryptographic context from which the |
| 985 | * authentication tokens will be retrieved |
| 986 | * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat |
| 987 | * for the global parameters |
| 988 | * @len: The amount written |
| 989 | * @max: The maximum amount of data allowed to be written |
| 990 | * |
| 991 | * Generates a key packet set and writes it to the virtual address |
| 992 | * passed in. |
| 993 | * |
| 994 | * Returns zero on success; non-zero on error. |
| 995 | */ |
| 996 | int |
| 997 | ecryptfs_generate_key_packet_set(char *dest_base, |
| 998 | struct ecryptfs_crypt_stat *crypt_stat, |
| 999 | struct dentry *ecryptfs_dentry, size_t *len, |
| 1000 | size_t max) |
| 1001 | { |
| 1002 | int rc = 0; |
| 1003 | struct ecryptfs_auth_tok *auth_tok; |
| 1004 | struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| 1005 | &ecryptfs_superblock_to_private( |
| 1006 | ecryptfs_dentry->d_sb)->mount_crypt_stat; |
| 1007 | size_t written; |
| 1008 | struct ecryptfs_key_record key_rec; |
| 1009 | |
| 1010 | (*len) = 0; |
| 1011 | if (mount_crypt_stat->global_auth_tok) { |
| 1012 | auth_tok = mount_crypt_stat->global_auth_tok; |
| 1013 | if (auth_tok->token_type == ECRYPTFS_PASSWORD) { |
| 1014 | rc = write_tag_3_packet((dest_base + (*len)), |
| 1015 | max, auth_tok, |
| 1016 | crypt_stat, &key_rec, |
| 1017 | &written); |
| 1018 | if (rc) { |
| 1019 | ecryptfs_printk(KERN_WARNING, "Error " |
| 1020 | "writing tag 3 packet\n"); |
| 1021 | goto out; |
| 1022 | } |
| 1023 | (*len) += written; |
| 1024 | /* Write auth tok signature packet */ |
| 1025 | rc = write_tag_11_packet( |
| 1026 | (dest_base + (*len)), |
| 1027 | (max - (*len)), |
| 1028 | key_rec.sig, ECRYPTFS_SIG_SIZE, &written); |
| 1029 | if (rc) { |
| 1030 | ecryptfs_printk(KERN_ERR, "Error writing " |
| 1031 | "auth tok signature packet\n"); |
| 1032 | goto out; |
| 1033 | } |
| 1034 | (*len) += written; |
| 1035 | } else { |
| 1036 | ecryptfs_printk(KERN_WARNING, "Unsupported " |
| 1037 | "authentication token type\n"); |
| 1038 | rc = -EINVAL; |
| 1039 | goto out; |
| 1040 | } |
| 1041 | if (rc) { |
| 1042 | ecryptfs_printk(KERN_WARNING, "Error writing " |
| 1043 | "authentication token packet with sig " |
| 1044 | "= [%s]\n", |
| 1045 | mount_crypt_stat->global_auth_tok_sig); |
| 1046 | rc = -EIO; |
| 1047 | goto out; |
| 1048 | } |
| 1049 | } else |
| 1050 | BUG(); |
| 1051 | if (likely((max - (*len)) > 0)) { |
| 1052 | dest_base[(*len)] = 0x00; |
| 1053 | } else { |
| 1054 | ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n"); |
| 1055 | rc = -EIO; |
| 1056 | } |
| 1057 | out: |
| 1058 | if (rc) |
| 1059 | (*len) = 0; |
| 1060 | return rc; |
| 1061 | } |