Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * net/sched/sch_red.c Random Early Detection queue. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| 10 | * |
| 11 | * Changes: |
| 12 | * J Hadi Salim <hadi@nortel.com> 980914: computation fixes |
| 13 | * Alexey Makarenko <makar@phoenix.kharkov.ua> 990814: qave on idle link was calculated incorrectly. |
| 14 | * J Hadi Salim <hadi@nortelnetworks.com> 980816: ECN support |
| 15 | */ |
| 16 | |
| 17 | #include <linux/config.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <asm/uaccess.h> |
| 20 | #include <asm/system.h> |
| 21 | #include <linux/bitops.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/kernel.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/string.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/socket.h> |
| 28 | #include <linux/sockios.h> |
| 29 | #include <linux/in.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/interrupt.h> |
| 32 | #include <linux/if_ether.h> |
| 33 | #include <linux/inet.h> |
| 34 | #include <linux/netdevice.h> |
| 35 | #include <linux/etherdevice.h> |
| 36 | #include <linux/notifier.h> |
| 37 | #include <net/ip.h> |
| 38 | #include <net/route.h> |
| 39 | #include <linux/skbuff.h> |
| 40 | #include <net/sock.h> |
| 41 | #include <net/pkt_sched.h> |
| 42 | #include <net/inet_ecn.h> |
| 43 | #include <net/dsfield.h> |
| 44 | |
| 45 | |
| 46 | /* Random Early Detection (RED) algorithm. |
| 47 | ======================================= |
| 48 | |
| 49 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways |
| 50 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. |
| 51 | |
| 52 | This file codes a "divisionless" version of RED algorithm |
| 53 | as written down in Fig.17 of the paper. |
| 54 | |
| 55 | Short description. |
| 56 | ------------------ |
| 57 | |
| 58 | When a new packet arrives we calculate the average queue length: |
| 59 | |
| 60 | avg = (1-W)*avg + W*current_queue_len, |
| 61 | |
| 62 | W is the filter time constant (chosen as 2^(-Wlog)), it controls |
| 63 | the inertia of the algorithm. To allow larger bursts, W should be |
| 64 | decreased. |
| 65 | |
| 66 | if (avg > th_max) -> packet marked (dropped). |
| 67 | if (avg < th_min) -> packet passes. |
| 68 | if (th_min < avg < th_max) we calculate probability: |
| 69 | |
| 70 | Pb = max_P * (avg - th_min)/(th_max-th_min) |
| 71 | |
| 72 | and mark (drop) packet with this probability. |
| 73 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). |
| 74 | max_P should be small (not 1), usually 0.01..0.02 is good value. |
| 75 | |
| 76 | max_P is chosen as a number, so that max_P/(th_max-th_min) |
| 77 | is a negative power of two in order arithmetics to contain |
| 78 | only shifts. |
| 79 | |
| 80 | |
| 81 | Parameters, settable by user: |
| 82 | ----------------------------- |
| 83 | |
| 84 | limit - bytes (must be > qth_max + burst) |
| 85 | |
| 86 | Hard limit on queue length, should be chosen >qth_max |
| 87 | to allow packet bursts. This parameter does not |
| 88 | affect the algorithms behaviour and can be chosen |
| 89 | arbitrarily high (well, less than ram size) |
| 90 | Really, this limit will never be reached |
| 91 | if RED works correctly. |
| 92 | |
| 93 | qth_min - bytes (should be < qth_max/2) |
| 94 | qth_max - bytes (should be at least 2*qth_min and less limit) |
| 95 | Wlog - bits (<32) log(1/W). |
| 96 | Plog - bits (<32) |
| 97 | |
| 98 | Plog is related to max_P by formula: |
| 99 | |
| 100 | max_P = (qth_max-qth_min)/2^Plog; |
| 101 | |
| 102 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 |
| 103 | corresponds to max_P=0.02 |
| 104 | |
| 105 | Scell_log |
| 106 | Stab |
| 107 | |
| 108 | Lookup table for log((1-W)^(t/t_ave). |
| 109 | |
| 110 | |
| 111 | NOTES: |
| 112 | |
| 113 | Upper bound on W. |
| 114 | ----------------- |
| 115 | |
| 116 | If you want to allow bursts of L packets of size S, |
| 117 | you should choose W: |
| 118 | |
| 119 | L + 1 - th_min/S < (1-(1-W)^L)/W |
| 120 | |
| 121 | th_min/S = 32 th_min/S = 4 |
| 122 | |
| 123 | log(W) L |
| 124 | -1 33 |
| 125 | -2 35 |
| 126 | -3 39 |
| 127 | -4 46 |
| 128 | -5 57 |
| 129 | -6 75 |
| 130 | -7 101 |
| 131 | -8 135 |
| 132 | -9 190 |
| 133 | etc. |
| 134 | */ |
| 135 | |
| 136 | struct red_sched_data |
| 137 | { |
| 138 | /* Parameters */ |
| 139 | u32 limit; /* HARD maximal queue length */ |
| 140 | u32 qth_min; /* Min average length threshold: A scaled */ |
| 141 | u32 qth_max; /* Max average length threshold: A scaled */ |
| 142 | u32 Rmask; |
| 143 | u32 Scell_max; |
| 144 | unsigned char flags; |
| 145 | char Wlog; /* log(W) */ |
| 146 | char Plog; /* random number bits */ |
| 147 | char Scell_log; |
| 148 | u8 Stab[256]; |
| 149 | |
| 150 | /* Variables */ |
| 151 | unsigned long qave; /* Average queue length: A scaled */ |
| 152 | int qcount; /* Packets since last random number generation */ |
| 153 | u32 qR; /* Cached random number */ |
| 154 | |
| 155 | psched_time_t qidlestart; /* Start of idle period */ |
| 156 | struct tc_red_xstats st; |
| 157 | }; |
| 158 | |
| 159 | static int red_ecn_mark(struct sk_buff *skb) |
| 160 | { |
| 161 | if (skb->nh.raw + 20 > skb->tail) |
| 162 | return 0; |
| 163 | |
| 164 | switch (skb->protocol) { |
| 165 | case __constant_htons(ETH_P_IP): |
| 166 | if (INET_ECN_is_not_ect(skb->nh.iph->tos)) |
| 167 | return 0; |
| 168 | IP_ECN_set_ce(skb->nh.iph); |
| 169 | return 1; |
| 170 | case __constant_htons(ETH_P_IPV6): |
| 171 | if (INET_ECN_is_not_ect(ipv6_get_dsfield(skb->nh.ipv6h))) |
| 172 | return 0; |
| 173 | IP6_ECN_set_ce(skb->nh.ipv6h); |
| 174 | return 1; |
| 175 | default: |
| 176 | return 0; |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | static int |
| 181 | red_enqueue(struct sk_buff *skb, struct Qdisc* sch) |
| 182 | { |
| 183 | struct red_sched_data *q = qdisc_priv(sch); |
| 184 | |
| 185 | psched_time_t now; |
| 186 | |
| 187 | if (!PSCHED_IS_PASTPERFECT(q->qidlestart)) { |
| 188 | long us_idle; |
| 189 | int shift; |
| 190 | |
| 191 | PSCHED_GET_TIME(now); |
| 192 | us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart, q->Scell_max); |
| 193 | PSCHED_SET_PASTPERFECT(q->qidlestart); |
| 194 | |
| 195 | /* |
| 196 | The problem: ideally, average length queue recalcultion should |
| 197 | be done over constant clock intervals. This is too expensive, so that |
| 198 | the calculation is driven by outgoing packets. |
| 199 | When the queue is idle we have to model this clock by hand. |
| 200 | |
| 201 | SF+VJ proposed to "generate" m = idletime/(average_pkt_size/bandwidth) |
| 202 | dummy packets as a burst after idle time, i.e. |
| 203 | |
| 204 | q->qave *= (1-W)^m |
| 205 | |
| 206 | This is an apparently overcomplicated solution (f.e. we have to precompute |
| 207 | a table to make this calculation in reasonable time) |
| 208 | I believe that a simpler model may be used here, |
| 209 | but it is field for experiments. |
| 210 | */ |
| 211 | shift = q->Stab[us_idle>>q->Scell_log]; |
| 212 | |
| 213 | if (shift) { |
| 214 | q->qave >>= shift; |
| 215 | } else { |
| 216 | /* Approximate initial part of exponent |
| 217 | with linear function: |
| 218 | (1-W)^m ~= 1-mW + ... |
| 219 | |
| 220 | Seems, it is the best solution to |
| 221 | problem of too coarce exponent tabulation. |
| 222 | */ |
| 223 | |
| 224 | us_idle = (q->qave * us_idle)>>q->Scell_log; |
| 225 | if (us_idle < q->qave/2) |
| 226 | q->qave -= us_idle; |
| 227 | else |
| 228 | q->qave >>= 1; |
| 229 | } |
| 230 | } else { |
| 231 | q->qave += sch->qstats.backlog - (q->qave >> q->Wlog); |
| 232 | /* NOTE: |
| 233 | q->qave is fixed point number with point at Wlog. |
| 234 | The formulae above is equvalent to floating point |
| 235 | version: |
| 236 | |
| 237 | qave = qave*(1-W) + sch->qstats.backlog*W; |
| 238 | --ANK (980924) |
| 239 | */ |
| 240 | } |
| 241 | |
| 242 | if (q->qave < q->qth_min) { |
| 243 | q->qcount = -1; |
| 244 | enqueue: |
| 245 | if (sch->qstats.backlog + skb->len <= q->limit) { |
| 246 | __skb_queue_tail(&sch->q, skb); |
| 247 | sch->qstats.backlog += skb->len; |
| 248 | sch->bstats.bytes += skb->len; |
| 249 | sch->bstats.packets++; |
| 250 | return NET_XMIT_SUCCESS; |
| 251 | } else { |
| 252 | q->st.pdrop++; |
| 253 | } |
| 254 | kfree_skb(skb); |
| 255 | sch->qstats.drops++; |
| 256 | return NET_XMIT_DROP; |
| 257 | } |
| 258 | if (q->qave >= q->qth_max) { |
| 259 | q->qcount = -1; |
| 260 | sch->qstats.overlimits++; |
| 261 | mark: |
| 262 | if (!(q->flags&TC_RED_ECN) || !red_ecn_mark(skb)) { |
| 263 | q->st.early++; |
| 264 | goto drop; |
| 265 | } |
| 266 | q->st.marked++; |
| 267 | goto enqueue; |
| 268 | } |
| 269 | |
| 270 | if (++q->qcount) { |
| 271 | /* The formula used below causes questions. |
| 272 | |
| 273 | OK. qR is random number in the interval 0..Rmask |
| 274 | i.e. 0..(2^Plog). If we used floating point |
| 275 | arithmetics, it would be: (2^Plog)*rnd_num, |
| 276 | where rnd_num is less 1. |
| 277 | |
| 278 | Taking into account, that qave have fixed |
| 279 | point at Wlog, and Plog is related to max_P by |
| 280 | max_P = (qth_max-qth_min)/2^Plog; two lines |
| 281 | below have the following floating point equivalent: |
| 282 | |
| 283 | max_P*(qave - qth_min)/(qth_max-qth_min) < rnd/qcount |
| 284 | |
| 285 | Any questions? --ANK (980924) |
| 286 | */ |
| 287 | if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) |
| 288 | goto enqueue; |
| 289 | q->qcount = 0; |
| 290 | q->qR = net_random()&q->Rmask; |
| 291 | sch->qstats.overlimits++; |
| 292 | goto mark; |
| 293 | } |
| 294 | q->qR = net_random()&q->Rmask; |
| 295 | goto enqueue; |
| 296 | |
| 297 | drop: |
| 298 | kfree_skb(skb); |
| 299 | sch->qstats.drops++; |
| 300 | return NET_XMIT_CN; |
| 301 | } |
| 302 | |
| 303 | static int |
| 304 | red_requeue(struct sk_buff *skb, struct Qdisc* sch) |
| 305 | { |
| 306 | struct red_sched_data *q = qdisc_priv(sch); |
| 307 | |
| 308 | PSCHED_SET_PASTPERFECT(q->qidlestart); |
| 309 | |
| 310 | __skb_queue_head(&sch->q, skb); |
| 311 | sch->qstats.backlog += skb->len; |
| 312 | sch->qstats.requeues++; |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | static struct sk_buff * |
| 317 | red_dequeue(struct Qdisc* sch) |
| 318 | { |
| 319 | struct sk_buff *skb; |
| 320 | struct red_sched_data *q = qdisc_priv(sch); |
| 321 | |
| 322 | skb = __skb_dequeue(&sch->q); |
| 323 | if (skb) { |
| 324 | sch->qstats.backlog -= skb->len; |
| 325 | return skb; |
| 326 | } |
| 327 | PSCHED_GET_TIME(q->qidlestart); |
| 328 | return NULL; |
| 329 | } |
| 330 | |
| 331 | static unsigned int red_drop(struct Qdisc* sch) |
| 332 | { |
| 333 | struct sk_buff *skb; |
| 334 | struct red_sched_data *q = qdisc_priv(sch); |
| 335 | |
| 336 | skb = __skb_dequeue_tail(&sch->q); |
| 337 | if (skb) { |
| 338 | unsigned int len = skb->len; |
| 339 | sch->qstats.backlog -= len; |
| 340 | sch->qstats.drops++; |
| 341 | q->st.other++; |
| 342 | kfree_skb(skb); |
| 343 | return len; |
| 344 | } |
| 345 | PSCHED_GET_TIME(q->qidlestart); |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | static void red_reset(struct Qdisc* sch) |
| 350 | { |
| 351 | struct red_sched_data *q = qdisc_priv(sch); |
| 352 | |
| 353 | __skb_queue_purge(&sch->q); |
| 354 | sch->qstats.backlog = 0; |
| 355 | PSCHED_SET_PASTPERFECT(q->qidlestart); |
| 356 | q->qave = 0; |
| 357 | q->qcount = -1; |
| 358 | } |
| 359 | |
| 360 | static int red_change(struct Qdisc *sch, struct rtattr *opt) |
| 361 | { |
| 362 | struct red_sched_data *q = qdisc_priv(sch); |
| 363 | struct rtattr *tb[TCA_RED_STAB]; |
| 364 | struct tc_red_qopt *ctl; |
| 365 | |
| 366 | if (opt == NULL || |
| 367 | rtattr_parse_nested(tb, TCA_RED_STAB, opt) || |
| 368 | tb[TCA_RED_PARMS-1] == 0 || tb[TCA_RED_STAB-1] == 0 || |
| 369 | RTA_PAYLOAD(tb[TCA_RED_PARMS-1]) < sizeof(*ctl) || |
| 370 | RTA_PAYLOAD(tb[TCA_RED_STAB-1]) < 256) |
| 371 | return -EINVAL; |
| 372 | |
| 373 | ctl = RTA_DATA(tb[TCA_RED_PARMS-1]); |
| 374 | |
| 375 | sch_tree_lock(sch); |
| 376 | q->flags = ctl->flags; |
| 377 | q->Wlog = ctl->Wlog; |
| 378 | q->Plog = ctl->Plog; |
| 379 | q->Rmask = ctl->Plog < 32 ? ((1<<ctl->Plog) - 1) : ~0UL; |
| 380 | q->Scell_log = ctl->Scell_log; |
| 381 | q->Scell_max = (255<<q->Scell_log); |
| 382 | q->qth_min = ctl->qth_min<<ctl->Wlog; |
| 383 | q->qth_max = ctl->qth_max<<ctl->Wlog; |
| 384 | q->limit = ctl->limit; |
| 385 | memcpy(q->Stab, RTA_DATA(tb[TCA_RED_STAB-1]), 256); |
| 386 | |
| 387 | q->qcount = -1; |
| 388 | if (skb_queue_len(&sch->q) == 0) |
| 389 | PSCHED_SET_PASTPERFECT(q->qidlestart); |
| 390 | sch_tree_unlock(sch); |
| 391 | return 0; |
| 392 | } |
| 393 | |
| 394 | static int red_init(struct Qdisc* sch, struct rtattr *opt) |
| 395 | { |
| 396 | return red_change(sch, opt); |
| 397 | } |
| 398 | |
| 399 | static int red_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 400 | { |
| 401 | struct red_sched_data *q = qdisc_priv(sch); |
| 402 | unsigned char *b = skb->tail; |
| 403 | struct rtattr *rta; |
| 404 | struct tc_red_qopt opt; |
| 405 | |
| 406 | rta = (struct rtattr*)b; |
| 407 | RTA_PUT(skb, TCA_OPTIONS, 0, NULL); |
| 408 | opt.limit = q->limit; |
| 409 | opt.qth_min = q->qth_min>>q->Wlog; |
| 410 | opt.qth_max = q->qth_max>>q->Wlog; |
| 411 | opt.Wlog = q->Wlog; |
| 412 | opt.Plog = q->Plog; |
| 413 | opt.Scell_log = q->Scell_log; |
| 414 | opt.flags = q->flags; |
| 415 | RTA_PUT(skb, TCA_RED_PARMS, sizeof(opt), &opt); |
| 416 | rta->rta_len = skb->tail - b; |
| 417 | |
| 418 | return skb->len; |
| 419 | |
| 420 | rtattr_failure: |
| 421 | skb_trim(skb, b - skb->data); |
| 422 | return -1; |
| 423 | } |
| 424 | |
| 425 | static int red_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| 426 | { |
| 427 | struct red_sched_data *q = qdisc_priv(sch); |
| 428 | |
| 429 | return gnet_stats_copy_app(d, &q->st, sizeof(q->st)); |
| 430 | } |
| 431 | |
| 432 | static struct Qdisc_ops red_qdisc_ops = { |
| 433 | .next = NULL, |
| 434 | .cl_ops = NULL, |
| 435 | .id = "red", |
| 436 | .priv_size = sizeof(struct red_sched_data), |
| 437 | .enqueue = red_enqueue, |
| 438 | .dequeue = red_dequeue, |
| 439 | .requeue = red_requeue, |
| 440 | .drop = red_drop, |
| 441 | .init = red_init, |
| 442 | .reset = red_reset, |
| 443 | .change = red_change, |
| 444 | .dump = red_dump, |
| 445 | .dump_stats = red_dump_stats, |
| 446 | .owner = THIS_MODULE, |
| 447 | }; |
| 448 | |
| 449 | static int __init red_module_init(void) |
| 450 | { |
| 451 | return register_qdisc(&red_qdisc_ops); |
| 452 | } |
| 453 | static void __exit red_module_exit(void) |
| 454 | { |
| 455 | unregister_qdisc(&red_qdisc_ops); |
| 456 | } |
| 457 | module_init(red_module_init) |
| 458 | module_exit(red_module_exit) |
| 459 | MODULE_LICENSE("GPL"); |