Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Perf support for the Statistical Profiling Extension, introduced as |
| 3 | * part of ARMv8.2. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 16 | * |
| 17 | * Copyright (C) 2016 ARM Limited |
| 18 | * |
| 19 | * Author: Will Deacon <will.deacon@arm.com> |
| 20 | */ |
| 21 | |
| 22 | #define PMUNAME "arm_spe" |
| 23 | #define DRVNAME PMUNAME "_pmu" |
| 24 | #define pr_fmt(fmt) DRVNAME ": " fmt |
| 25 | |
Arnd Bergmann | fcd9f83 | 2018-02-22 12:47:05 +0100 | [diff] [blame] | 26 | #include <linux/bitops.h> |
| 27 | #include <linux/bug.h> |
| 28 | #include <linux/capability.h> |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 29 | #include <linux/cpuhotplug.h> |
Arnd Bergmann | fcd9f83 | 2018-02-22 12:47:05 +0100 | [diff] [blame] | 30 | #include <linux/cpumask.h> |
| 31 | #include <linux/device.h> |
| 32 | #include <linux/errno.h> |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/irq.h> |
Arnd Bergmann | fcd9f83 | 2018-02-22 12:47:05 +0100 | [diff] [blame] | 35 | #include <linux/kernel.h> |
| 36 | #include <linux/list.h> |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 37 | #include <linux/module.h> |
| 38 | #include <linux/of_address.h> |
| 39 | #include <linux/of_device.h> |
| 40 | #include <linux/perf_event.h> |
| 41 | #include <linux/platform_device.h> |
Arnd Bergmann | fcd9f83 | 2018-02-22 12:47:05 +0100 | [diff] [blame] | 42 | #include <linux/printk.h> |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 43 | #include <linux/slab.h> |
Arnd Bergmann | fcd9f83 | 2018-02-22 12:47:05 +0100 | [diff] [blame] | 44 | #include <linux/smp.h> |
| 45 | #include <linux/vmalloc.h> |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 46 | |
Arnd Bergmann | fcd9f83 | 2018-02-22 12:47:05 +0100 | [diff] [blame] | 47 | #include <asm/barrier.h> |
| 48 | #include <asm/cpufeature.h> |
| 49 | #include <asm/mmu.h> |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 50 | #include <asm/sysreg.h> |
| 51 | |
| 52 | #define ARM_SPE_BUF_PAD_BYTE 0 |
| 53 | |
| 54 | struct arm_spe_pmu_buf { |
| 55 | int nr_pages; |
| 56 | bool snapshot; |
| 57 | void *base; |
| 58 | }; |
| 59 | |
| 60 | struct arm_spe_pmu { |
| 61 | struct pmu pmu; |
| 62 | struct platform_device *pdev; |
| 63 | cpumask_t supported_cpus; |
| 64 | struct hlist_node hotplug_node; |
| 65 | |
| 66 | int irq; /* PPI */ |
| 67 | |
| 68 | u16 min_period; |
| 69 | u16 counter_sz; |
| 70 | |
| 71 | #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) |
| 72 | #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) |
| 73 | #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) |
| 74 | #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) |
| 75 | #define SPE_PMU_FEAT_LDS (1UL << 4) |
| 76 | #define SPE_PMU_FEAT_ERND (1UL << 5) |
| 77 | #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) |
| 78 | u64 features; |
| 79 | |
| 80 | u16 max_record_sz; |
| 81 | u16 align; |
| 82 | struct perf_output_handle __percpu *handle; |
| 83 | }; |
| 84 | |
| 85 | #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) |
| 86 | |
| 87 | /* Convert a free-running index from perf into an SPE buffer offset */ |
| 88 | #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) |
| 89 | |
| 90 | /* Keep track of our dynamic hotplug state */ |
| 91 | static enum cpuhp_state arm_spe_pmu_online; |
| 92 | |
| 93 | enum arm_spe_pmu_buf_fault_action { |
| 94 | SPE_PMU_BUF_FAULT_ACT_SPURIOUS, |
| 95 | SPE_PMU_BUF_FAULT_ACT_FATAL, |
| 96 | SPE_PMU_BUF_FAULT_ACT_OK, |
| 97 | }; |
| 98 | |
| 99 | /* This sysfs gunk was really good fun to write. */ |
| 100 | enum arm_spe_pmu_capabilities { |
| 101 | SPE_PMU_CAP_ARCH_INST = 0, |
| 102 | SPE_PMU_CAP_ERND, |
| 103 | SPE_PMU_CAP_FEAT_MAX, |
| 104 | SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, |
| 105 | SPE_PMU_CAP_MIN_IVAL, |
| 106 | }; |
| 107 | |
| 108 | static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { |
| 109 | [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, |
| 110 | [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, |
| 111 | }; |
| 112 | |
| 113 | static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) |
| 114 | { |
| 115 | if (cap < SPE_PMU_CAP_FEAT_MAX) |
| 116 | return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); |
| 117 | |
| 118 | switch (cap) { |
| 119 | case SPE_PMU_CAP_CNT_SZ: |
| 120 | return spe_pmu->counter_sz; |
| 121 | case SPE_PMU_CAP_MIN_IVAL: |
| 122 | return spe_pmu->min_period; |
| 123 | default: |
| 124 | WARN(1, "unknown cap %d\n", cap); |
| 125 | } |
| 126 | |
| 127 | return 0; |
| 128 | } |
| 129 | |
| 130 | static ssize_t arm_spe_pmu_cap_show(struct device *dev, |
| 131 | struct device_attribute *attr, |
| 132 | char *buf) |
| 133 | { |
Wolfram Sang | d0f2e42 | 2018-04-19 16:06:07 +0200 | [diff] [blame] | 134 | struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 135 | struct dev_ext_attribute *ea = |
| 136 | container_of(attr, struct dev_ext_attribute, attr); |
| 137 | int cap = (long)ea->var; |
| 138 | |
| 139 | return snprintf(buf, PAGE_SIZE, "%u\n", |
| 140 | arm_spe_pmu_cap_get(spe_pmu, cap)); |
| 141 | } |
| 142 | |
| 143 | #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ |
| 144 | &((struct dev_ext_attribute[]) { \ |
| 145 | { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ |
| 146 | })[0].attr.attr |
| 147 | |
| 148 | #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ |
| 149 | SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) |
| 150 | |
| 151 | static struct attribute *arm_spe_pmu_cap_attr[] = { |
| 152 | SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), |
| 153 | SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), |
| 154 | SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), |
| 155 | SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), |
| 156 | NULL, |
| 157 | }; |
| 158 | |
| 159 | static struct attribute_group arm_spe_pmu_cap_group = { |
| 160 | .name = "caps", |
| 161 | .attrs = arm_spe_pmu_cap_attr, |
| 162 | }; |
| 163 | |
| 164 | /* User ABI */ |
| 165 | #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ |
| 166 | #define ATTR_CFG_FLD_ts_enable_LO 0 |
| 167 | #define ATTR_CFG_FLD_ts_enable_HI 0 |
| 168 | #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ |
| 169 | #define ATTR_CFG_FLD_pa_enable_LO 1 |
| 170 | #define ATTR_CFG_FLD_pa_enable_HI 1 |
| 171 | #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ |
| 172 | #define ATTR_CFG_FLD_pct_enable_LO 2 |
| 173 | #define ATTR_CFG_FLD_pct_enable_HI 2 |
| 174 | #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ |
| 175 | #define ATTR_CFG_FLD_jitter_LO 16 |
| 176 | #define ATTR_CFG_FLD_jitter_HI 16 |
| 177 | #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ |
| 178 | #define ATTR_CFG_FLD_branch_filter_LO 32 |
| 179 | #define ATTR_CFG_FLD_branch_filter_HI 32 |
| 180 | #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ |
| 181 | #define ATTR_CFG_FLD_load_filter_LO 33 |
| 182 | #define ATTR_CFG_FLD_load_filter_HI 33 |
| 183 | #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ |
| 184 | #define ATTR_CFG_FLD_store_filter_LO 34 |
| 185 | #define ATTR_CFG_FLD_store_filter_HI 34 |
| 186 | |
| 187 | #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ |
| 188 | #define ATTR_CFG_FLD_event_filter_LO 0 |
| 189 | #define ATTR_CFG_FLD_event_filter_HI 63 |
| 190 | |
| 191 | #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ |
| 192 | #define ATTR_CFG_FLD_min_latency_LO 0 |
| 193 | #define ATTR_CFG_FLD_min_latency_HI 11 |
| 194 | |
| 195 | /* Why does everything I do descend into this? */ |
| 196 | #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ |
| 197 | (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi |
| 198 | |
| 199 | #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ |
| 200 | __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) |
| 201 | |
| 202 | #define GEN_PMU_FORMAT_ATTR(name) \ |
| 203 | PMU_FORMAT_ATTR(name, \ |
| 204 | _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ |
| 205 | ATTR_CFG_FLD_##name##_LO, \ |
| 206 | ATTR_CFG_FLD_##name##_HI)) |
| 207 | |
| 208 | #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ |
| 209 | ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) |
| 210 | |
| 211 | #define ATTR_CFG_GET_FLD(attr, name) \ |
| 212 | _ATTR_CFG_GET_FLD(attr, \ |
| 213 | ATTR_CFG_FLD_##name##_CFG, \ |
| 214 | ATTR_CFG_FLD_##name##_LO, \ |
| 215 | ATTR_CFG_FLD_##name##_HI) |
| 216 | |
| 217 | GEN_PMU_FORMAT_ATTR(ts_enable); |
| 218 | GEN_PMU_FORMAT_ATTR(pa_enable); |
| 219 | GEN_PMU_FORMAT_ATTR(pct_enable); |
| 220 | GEN_PMU_FORMAT_ATTR(jitter); |
| 221 | GEN_PMU_FORMAT_ATTR(branch_filter); |
| 222 | GEN_PMU_FORMAT_ATTR(load_filter); |
| 223 | GEN_PMU_FORMAT_ATTR(store_filter); |
| 224 | GEN_PMU_FORMAT_ATTR(event_filter); |
| 225 | GEN_PMU_FORMAT_ATTR(min_latency); |
| 226 | |
| 227 | static struct attribute *arm_spe_pmu_formats_attr[] = { |
| 228 | &format_attr_ts_enable.attr, |
| 229 | &format_attr_pa_enable.attr, |
| 230 | &format_attr_pct_enable.attr, |
| 231 | &format_attr_jitter.attr, |
| 232 | &format_attr_branch_filter.attr, |
| 233 | &format_attr_load_filter.attr, |
| 234 | &format_attr_store_filter.attr, |
| 235 | &format_attr_event_filter.attr, |
| 236 | &format_attr_min_latency.attr, |
| 237 | NULL, |
| 238 | }; |
| 239 | |
| 240 | static struct attribute_group arm_spe_pmu_format_group = { |
| 241 | .name = "format", |
| 242 | .attrs = arm_spe_pmu_formats_attr, |
| 243 | }; |
| 244 | |
| 245 | static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, |
| 246 | struct device_attribute *attr, |
| 247 | char *buf) |
| 248 | { |
Wolfram Sang | d0f2e42 | 2018-04-19 16:06:07 +0200 | [diff] [blame] | 249 | struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 250 | |
| 251 | return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); |
| 252 | } |
| 253 | static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); |
| 254 | |
| 255 | static struct attribute *arm_spe_pmu_attrs[] = { |
| 256 | &dev_attr_cpumask.attr, |
| 257 | NULL, |
| 258 | }; |
| 259 | |
| 260 | static struct attribute_group arm_spe_pmu_group = { |
| 261 | .attrs = arm_spe_pmu_attrs, |
| 262 | }; |
| 263 | |
| 264 | static const struct attribute_group *arm_spe_pmu_attr_groups[] = { |
| 265 | &arm_spe_pmu_group, |
| 266 | &arm_spe_pmu_cap_group, |
| 267 | &arm_spe_pmu_format_group, |
| 268 | NULL, |
| 269 | }; |
| 270 | |
| 271 | /* Convert between user ABI and register values */ |
| 272 | static u64 arm_spe_event_to_pmscr(struct perf_event *event) |
| 273 | { |
| 274 | struct perf_event_attr *attr = &event->attr; |
| 275 | u64 reg = 0; |
| 276 | |
| 277 | reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; |
| 278 | reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; |
| 279 | reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; |
| 280 | |
| 281 | if (!attr->exclude_user) |
| 282 | reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); |
| 283 | |
| 284 | if (!attr->exclude_kernel) |
| 285 | reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); |
| 286 | |
| 287 | if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN)) |
| 288 | reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); |
| 289 | |
| 290 | return reg; |
| 291 | } |
| 292 | |
| 293 | static void arm_spe_event_sanitise_period(struct perf_event *event) |
| 294 | { |
| 295 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| 296 | u64 period = event->hw.sample_period; |
| 297 | u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK |
| 298 | << SYS_PMSIRR_EL1_INTERVAL_SHIFT; |
| 299 | |
| 300 | if (period < spe_pmu->min_period) |
| 301 | period = spe_pmu->min_period; |
| 302 | else if (period > max_period) |
| 303 | period = max_period; |
| 304 | else |
| 305 | period &= max_period; |
| 306 | |
| 307 | event->hw.sample_period = period; |
| 308 | } |
| 309 | |
| 310 | static u64 arm_spe_event_to_pmsirr(struct perf_event *event) |
| 311 | { |
| 312 | struct perf_event_attr *attr = &event->attr; |
| 313 | u64 reg = 0; |
| 314 | |
| 315 | arm_spe_event_sanitise_period(event); |
| 316 | |
| 317 | reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; |
| 318 | reg |= event->hw.sample_period; |
| 319 | |
| 320 | return reg; |
| 321 | } |
| 322 | |
| 323 | static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) |
| 324 | { |
| 325 | struct perf_event_attr *attr = &event->attr; |
| 326 | u64 reg = 0; |
| 327 | |
| 328 | reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; |
| 329 | reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; |
| 330 | reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; |
| 331 | |
| 332 | if (reg) |
| 333 | reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); |
| 334 | |
| 335 | if (ATTR_CFG_GET_FLD(attr, event_filter)) |
| 336 | reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); |
| 337 | |
| 338 | if (ATTR_CFG_GET_FLD(attr, min_latency)) |
| 339 | reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); |
| 340 | |
| 341 | return reg; |
| 342 | } |
| 343 | |
| 344 | static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) |
| 345 | { |
| 346 | struct perf_event_attr *attr = &event->attr; |
| 347 | return ATTR_CFG_GET_FLD(attr, event_filter); |
| 348 | } |
| 349 | |
| 350 | static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) |
| 351 | { |
| 352 | struct perf_event_attr *attr = &event->attr; |
| 353 | return ATTR_CFG_GET_FLD(attr, min_latency) |
| 354 | << SYS_PMSLATFR_EL1_MINLAT_SHIFT; |
| 355 | } |
| 356 | |
| 357 | static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) |
| 358 | { |
| 359 | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| 360 | u64 head = PERF_IDX2OFF(handle->head, buf); |
| 361 | |
| 362 | memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); |
| 363 | if (!buf->snapshot) |
| 364 | perf_aux_output_skip(handle, len); |
| 365 | } |
| 366 | |
| 367 | static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) |
| 368 | { |
| 369 | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| 370 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); |
| 371 | u64 head = PERF_IDX2OFF(handle->head, buf); |
| 372 | u64 limit = buf->nr_pages * PAGE_SIZE; |
| 373 | |
| 374 | /* |
| 375 | * The trace format isn't parseable in reverse, so clamp |
| 376 | * the limit to half of the buffer size in snapshot mode |
| 377 | * so that the worst case is half a buffer of records, as |
| 378 | * opposed to a single record. |
| 379 | */ |
| 380 | if (head < limit >> 1) |
| 381 | limit >>= 1; |
| 382 | |
| 383 | /* |
| 384 | * If we're within max_record_sz of the limit, we must |
| 385 | * pad, move the head index and recompute the limit. |
| 386 | */ |
| 387 | if (limit - head < spe_pmu->max_record_sz) { |
| 388 | arm_spe_pmu_pad_buf(handle, limit - head); |
| 389 | handle->head = PERF_IDX2OFF(limit, buf); |
| 390 | limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; |
| 391 | } |
| 392 | |
| 393 | return limit; |
| 394 | } |
| 395 | |
| 396 | static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) |
| 397 | { |
| 398 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); |
| 399 | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| 400 | const u64 bufsize = buf->nr_pages * PAGE_SIZE; |
| 401 | u64 limit = bufsize; |
| 402 | u64 head, tail, wakeup; |
| 403 | |
| 404 | /* |
| 405 | * The head can be misaligned for two reasons: |
| 406 | * |
| 407 | * 1. The hardware left PMBPTR pointing to the first byte after |
| 408 | * a record when generating a buffer management event. |
| 409 | * |
| 410 | * 2. We used perf_aux_output_skip to consume handle->size bytes |
| 411 | * and CIRC_SPACE was used to compute the size, which always |
| 412 | * leaves one entry free. |
| 413 | * |
| 414 | * Deal with this by padding to the next alignment boundary and |
| 415 | * moving the head index. If we run out of buffer space, we'll |
| 416 | * reduce handle->size to zero and end up reporting truncation. |
| 417 | */ |
| 418 | head = PERF_IDX2OFF(handle->head, buf); |
| 419 | if (!IS_ALIGNED(head, spe_pmu->align)) { |
| 420 | unsigned long delta = roundup(head, spe_pmu->align) - head; |
| 421 | |
| 422 | delta = min(delta, handle->size); |
| 423 | arm_spe_pmu_pad_buf(handle, delta); |
| 424 | head = PERF_IDX2OFF(handle->head, buf); |
| 425 | } |
| 426 | |
| 427 | /* If we've run out of free space, then nothing more to do */ |
| 428 | if (!handle->size) |
| 429 | goto no_space; |
| 430 | |
| 431 | /* Compute the tail and wakeup indices now that we've aligned head */ |
| 432 | tail = PERF_IDX2OFF(handle->head + handle->size, buf); |
| 433 | wakeup = PERF_IDX2OFF(handle->wakeup, buf); |
| 434 | |
| 435 | /* |
| 436 | * Avoid clobbering unconsumed data. We know we have space, so |
| 437 | * if we see head == tail we know that the buffer is empty. If |
| 438 | * head > tail, then there's nothing to clobber prior to |
| 439 | * wrapping. |
| 440 | */ |
| 441 | if (head < tail) |
| 442 | limit = round_down(tail, PAGE_SIZE); |
| 443 | |
| 444 | /* |
| 445 | * Wakeup may be arbitrarily far into the future. If it's not in |
| 446 | * the current generation, either we'll wrap before hitting it, |
| 447 | * or it's in the past and has been handled already. |
| 448 | * |
| 449 | * If there's a wakeup before we wrap, arrange to be woken up by |
| 450 | * the page boundary following it. Keep the tail boundary if |
| 451 | * that's lower. |
| 452 | */ |
| 453 | if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) |
| 454 | limit = min(limit, round_up(wakeup, PAGE_SIZE)); |
| 455 | |
| 456 | if (limit > head) |
| 457 | return limit; |
| 458 | |
| 459 | arm_spe_pmu_pad_buf(handle, handle->size); |
| 460 | no_space: |
| 461 | perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); |
| 462 | perf_aux_output_end(handle, 0); |
| 463 | return 0; |
| 464 | } |
| 465 | |
| 466 | static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) |
| 467 | { |
| 468 | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| 469 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); |
| 470 | u64 limit = __arm_spe_pmu_next_off(handle); |
| 471 | u64 head = PERF_IDX2OFF(handle->head, buf); |
| 472 | |
| 473 | /* |
| 474 | * If the head has come too close to the end of the buffer, |
| 475 | * then pad to the end and recompute the limit. |
| 476 | */ |
| 477 | if (limit && (limit - head < spe_pmu->max_record_sz)) { |
| 478 | arm_spe_pmu_pad_buf(handle, limit - head); |
| 479 | limit = __arm_spe_pmu_next_off(handle); |
| 480 | } |
| 481 | |
| 482 | return limit; |
| 483 | } |
| 484 | |
| 485 | static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, |
| 486 | struct perf_event *event) |
| 487 | { |
| 488 | u64 base, limit; |
| 489 | struct arm_spe_pmu_buf *buf; |
| 490 | |
| 491 | /* Start a new aux session */ |
| 492 | buf = perf_aux_output_begin(handle, event); |
| 493 | if (!buf) { |
| 494 | event->hw.state |= PERF_HES_STOPPED; |
| 495 | /* |
| 496 | * We still need to clear the limit pointer, since the |
| 497 | * profiler might only be disabled by virtue of a fault. |
| 498 | */ |
| 499 | limit = 0; |
| 500 | goto out_write_limit; |
| 501 | } |
| 502 | |
| 503 | limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) |
| 504 | : arm_spe_pmu_next_off(handle); |
| 505 | if (limit) |
| 506 | limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); |
| 507 | |
| 508 | limit += (u64)buf->base; |
| 509 | base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); |
| 510 | write_sysreg_s(base, SYS_PMBPTR_EL1); |
| 511 | |
| 512 | out_write_limit: |
| 513 | write_sysreg_s(limit, SYS_PMBLIMITR_EL1); |
| 514 | } |
| 515 | |
| 516 | static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) |
| 517 | { |
| 518 | struct arm_spe_pmu_buf *buf = perf_get_aux(handle); |
| 519 | u64 offset, size; |
| 520 | |
| 521 | offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; |
| 522 | size = offset - PERF_IDX2OFF(handle->head, buf); |
| 523 | |
| 524 | if (buf->snapshot) |
| 525 | handle->head = offset; |
| 526 | |
| 527 | perf_aux_output_end(handle, size); |
| 528 | } |
| 529 | |
| 530 | static void arm_spe_pmu_disable_and_drain_local(void) |
| 531 | { |
| 532 | /* Disable profiling at EL0 and EL1 */ |
| 533 | write_sysreg_s(0, SYS_PMSCR_EL1); |
| 534 | isb(); |
| 535 | |
| 536 | /* Drain any buffered data */ |
| 537 | psb_csync(); |
| 538 | dsb(nsh); |
| 539 | |
| 540 | /* Disable the profiling buffer */ |
| 541 | write_sysreg_s(0, SYS_PMBLIMITR_EL1); |
| 542 | isb(); |
| 543 | } |
| 544 | |
| 545 | /* IRQ handling */ |
| 546 | static enum arm_spe_pmu_buf_fault_action |
| 547 | arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) |
| 548 | { |
| 549 | const char *err_str; |
| 550 | u64 pmbsr; |
| 551 | enum arm_spe_pmu_buf_fault_action ret; |
| 552 | |
| 553 | /* |
| 554 | * Ensure new profiling data is visible to the CPU and any external |
| 555 | * aborts have been resolved. |
| 556 | */ |
| 557 | psb_csync(); |
| 558 | dsb(nsh); |
| 559 | |
| 560 | /* Ensure hardware updates to PMBPTR_EL1 are visible */ |
| 561 | isb(); |
| 562 | |
| 563 | /* Service required? */ |
| 564 | pmbsr = read_sysreg_s(SYS_PMBSR_EL1); |
| 565 | if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) |
| 566 | return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; |
| 567 | |
| 568 | /* |
| 569 | * If we've lost data, disable profiling and also set the PARTIAL |
| 570 | * flag to indicate that the last record is corrupted. |
| 571 | */ |
| 572 | if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) |
| 573 | perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | |
| 574 | PERF_AUX_FLAG_PARTIAL); |
| 575 | |
| 576 | /* Report collisions to userspace so that it can up the period */ |
| 577 | if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) |
| 578 | perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); |
| 579 | |
| 580 | /* We only expect buffer management events */ |
| 581 | switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { |
| 582 | case SYS_PMBSR_EL1_EC_BUF: |
| 583 | /* Handled below */ |
| 584 | break; |
| 585 | case SYS_PMBSR_EL1_EC_FAULT_S1: |
| 586 | case SYS_PMBSR_EL1_EC_FAULT_S2: |
| 587 | err_str = "Unexpected buffer fault"; |
| 588 | goto out_err; |
| 589 | default: |
| 590 | err_str = "Unknown error code"; |
| 591 | goto out_err; |
| 592 | } |
| 593 | |
| 594 | /* Buffer management event */ |
| 595 | switch (pmbsr & |
| 596 | (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { |
| 597 | case SYS_PMBSR_EL1_BUF_BSC_FULL: |
| 598 | ret = SPE_PMU_BUF_FAULT_ACT_OK; |
| 599 | goto out_stop; |
| 600 | default: |
| 601 | err_str = "Unknown buffer status code"; |
| 602 | } |
| 603 | |
| 604 | out_err: |
| 605 | pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", |
| 606 | err_str, smp_processor_id(), pmbsr, |
| 607 | read_sysreg_s(SYS_PMBPTR_EL1), |
| 608 | read_sysreg_s(SYS_PMBLIMITR_EL1)); |
| 609 | ret = SPE_PMU_BUF_FAULT_ACT_FATAL; |
| 610 | |
| 611 | out_stop: |
| 612 | arm_spe_perf_aux_output_end(handle); |
| 613 | return ret; |
| 614 | } |
| 615 | |
| 616 | static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) |
| 617 | { |
| 618 | struct perf_output_handle *handle = dev; |
| 619 | struct perf_event *event = handle->event; |
| 620 | enum arm_spe_pmu_buf_fault_action act; |
| 621 | |
| 622 | if (!perf_get_aux(handle)) |
| 623 | return IRQ_NONE; |
| 624 | |
| 625 | act = arm_spe_pmu_buf_get_fault_act(handle); |
| 626 | if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) |
| 627 | return IRQ_NONE; |
| 628 | |
| 629 | /* |
| 630 | * Ensure perf callbacks have completed, which may disable the |
| 631 | * profiling buffer in response to a TRUNCATION flag. |
| 632 | */ |
| 633 | irq_work_run(); |
| 634 | |
| 635 | switch (act) { |
| 636 | case SPE_PMU_BUF_FAULT_ACT_FATAL: |
| 637 | /* |
| 638 | * If a fatal exception occurred then leaving the profiling |
| 639 | * buffer enabled is a recipe waiting to happen. Since |
| 640 | * fatal faults don't always imply truncation, make sure |
| 641 | * that the profiling buffer is disabled explicitly before |
| 642 | * clearing the syndrome register. |
| 643 | */ |
| 644 | arm_spe_pmu_disable_and_drain_local(); |
| 645 | break; |
| 646 | case SPE_PMU_BUF_FAULT_ACT_OK: |
| 647 | /* |
| 648 | * We handled the fault (the buffer was full), so resume |
| 649 | * profiling as long as we didn't detect truncation. |
| 650 | * PMBPTR might be misaligned, but we'll burn that bridge |
| 651 | * when we get to it. |
| 652 | */ |
| 653 | if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { |
| 654 | arm_spe_perf_aux_output_begin(handle, event); |
| 655 | isb(); |
| 656 | } |
| 657 | break; |
| 658 | case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: |
| 659 | /* We've seen you before, but GCC has the memory of a sieve. */ |
| 660 | break; |
| 661 | } |
| 662 | |
| 663 | /* The buffer pointers are now sane, so resume profiling. */ |
| 664 | write_sysreg_s(0, SYS_PMBSR_EL1); |
| 665 | return IRQ_HANDLED; |
| 666 | } |
| 667 | |
| 668 | /* Perf callbacks */ |
| 669 | static int arm_spe_pmu_event_init(struct perf_event *event) |
| 670 | { |
| 671 | u64 reg; |
| 672 | struct perf_event_attr *attr = &event->attr; |
| 673 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| 674 | |
| 675 | /* This is, of course, deeply driver-specific */ |
| 676 | if (attr->type != event->pmu->type) |
| 677 | return -ENOENT; |
| 678 | |
| 679 | if (event->cpu >= 0 && |
| 680 | !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) |
| 681 | return -ENOENT; |
| 682 | |
| 683 | if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0) |
| 684 | return -EOPNOTSUPP; |
| 685 | |
| 686 | if (attr->exclude_idle) |
| 687 | return -EOPNOTSUPP; |
| 688 | |
| 689 | /* |
| 690 | * Feedback-directed frequency throttling doesn't work when we |
| 691 | * have a buffer of samples. We'd need to manually count the |
| 692 | * samples in the buffer when it fills up and adjust the event |
| 693 | * count to reflect that. Instead, just force the user to specify |
| 694 | * a sample period. |
| 695 | */ |
| 696 | if (attr->freq) |
| 697 | return -EINVAL; |
| 698 | |
| 699 | reg = arm_spe_event_to_pmsfcr(event); |
| 700 | if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && |
| 701 | !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) |
| 702 | return -EOPNOTSUPP; |
| 703 | |
| 704 | if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && |
| 705 | !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) |
| 706 | return -EOPNOTSUPP; |
| 707 | |
| 708 | if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && |
| 709 | !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) |
| 710 | return -EOPNOTSUPP; |
| 711 | |
| 712 | reg = arm_spe_event_to_pmscr(event); |
| 713 | if (!capable(CAP_SYS_ADMIN) && |
| 714 | (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | |
| 715 | BIT(SYS_PMSCR_EL1_CX_SHIFT) | |
| 716 | BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) |
| 717 | return -EACCES; |
| 718 | |
| 719 | return 0; |
| 720 | } |
| 721 | |
| 722 | static void arm_spe_pmu_start(struct perf_event *event, int flags) |
| 723 | { |
| 724 | u64 reg; |
| 725 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| 726 | struct hw_perf_event *hwc = &event->hw; |
| 727 | struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); |
| 728 | |
| 729 | hwc->state = 0; |
| 730 | arm_spe_perf_aux_output_begin(handle, event); |
| 731 | if (hwc->state) |
| 732 | return; |
| 733 | |
| 734 | reg = arm_spe_event_to_pmsfcr(event); |
| 735 | write_sysreg_s(reg, SYS_PMSFCR_EL1); |
| 736 | |
| 737 | reg = arm_spe_event_to_pmsevfr(event); |
| 738 | write_sysreg_s(reg, SYS_PMSEVFR_EL1); |
| 739 | |
| 740 | reg = arm_spe_event_to_pmslatfr(event); |
| 741 | write_sysreg_s(reg, SYS_PMSLATFR_EL1); |
| 742 | |
| 743 | if (flags & PERF_EF_RELOAD) { |
| 744 | reg = arm_spe_event_to_pmsirr(event); |
| 745 | write_sysreg_s(reg, SYS_PMSIRR_EL1); |
| 746 | isb(); |
| 747 | reg = local64_read(&hwc->period_left); |
| 748 | write_sysreg_s(reg, SYS_PMSICR_EL1); |
| 749 | } |
| 750 | |
| 751 | reg = arm_spe_event_to_pmscr(event); |
| 752 | isb(); |
| 753 | write_sysreg_s(reg, SYS_PMSCR_EL1); |
| 754 | } |
| 755 | |
| 756 | static void arm_spe_pmu_stop(struct perf_event *event, int flags) |
| 757 | { |
| 758 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| 759 | struct hw_perf_event *hwc = &event->hw; |
| 760 | struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); |
| 761 | |
| 762 | /* If we're already stopped, then nothing to do */ |
| 763 | if (hwc->state & PERF_HES_STOPPED) |
| 764 | return; |
| 765 | |
| 766 | /* Stop all trace generation */ |
| 767 | arm_spe_pmu_disable_and_drain_local(); |
| 768 | |
| 769 | if (flags & PERF_EF_UPDATE) { |
| 770 | /* |
| 771 | * If there's a fault pending then ensure we contain it |
| 772 | * to this buffer, since we might be on the context-switch |
| 773 | * path. |
| 774 | */ |
| 775 | if (perf_get_aux(handle)) { |
| 776 | enum arm_spe_pmu_buf_fault_action act; |
| 777 | |
| 778 | act = arm_spe_pmu_buf_get_fault_act(handle); |
| 779 | if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) |
| 780 | arm_spe_perf_aux_output_end(handle); |
| 781 | else |
| 782 | write_sysreg_s(0, SYS_PMBSR_EL1); |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * This may also contain ECOUNT, but nobody else should |
| 787 | * be looking at period_left, since we forbid frequency |
| 788 | * based sampling. |
| 789 | */ |
| 790 | local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); |
| 791 | hwc->state |= PERF_HES_UPTODATE; |
| 792 | } |
| 793 | |
| 794 | hwc->state |= PERF_HES_STOPPED; |
| 795 | } |
| 796 | |
| 797 | static int arm_spe_pmu_add(struct perf_event *event, int flags) |
| 798 | { |
| 799 | int ret = 0; |
| 800 | struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); |
| 801 | struct hw_perf_event *hwc = &event->hw; |
| 802 | int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; |
| 803 | |
| 804 | if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) |
| 805 | return -ENOENT; |
| 806 | |
| 807 | hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| 808 | |
| 809 | if (flags & PERF_EF_START) { |
| 810 | arm_spe_pmu_start(event, PERF_EF_RELOAD); |
| 811 | if (hwc->state & PERF_HES_STOPPED) |
| 812 | ret = -EINVAL; |
| 813 | } |
| 814 | |
| 815 | return ret; |
| 816 | } |
| 817 | |
| 818 | static void arm_spe_pmu_del(struct perf_event *event, int flags) |
| 819 | { |
| 820 | arm_spe_pmu_stop(event, PERF_EF_UPDATE); |
| 821 | } |
| 822 | |
| 823 | static void arm_spe_pmu_read(struct perf_event *event) |
| 824 | { |
| 825 | } |
| 826 | |
| 827 | static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages, |
| 828 | bool snapshot) |
| 829 | { |
| 830 | int i; |
| 831 | struct page **pglist; |
| 832 | struct arm_spe_pmu_buf *buf; |
| 833 | |
| 834 | /* We need at least two pages for this to work. */ |
| 835 | if (nr_pages < 2) |
| 836 | return NULL; |
| 837 | |
| 838 | /* |
| 839 | * We require an even number of pages for snapshot mode, so that |
| 840 | * we can effectively treat the buffer as consisting of two equal |
| 841 | * parts and give userspace a fighting chance of getting some |
| 842 | * useful data out of it. |
| 843 | */ |
| 844 | if (!nr_pages || (snapshot && (nr_pages & 1))) |
| 845 | return NULL; |
| 846 | |
| 847 | if (cpu == -1) |
| 848 | cpu = raw_smp_processor_id(); |
| 849 | |
| 850 | buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); |
| 851 | if (!buf) |
| 852 | return NULL; |
| 853 | |
| 854 | pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); |
| 855 | if (!pglist) |
| 856 | goto out_free_buf; |
| 857 | |
| 858 | for (i = 0; i < nr_pages; ++i) { |
| 859 | struct page *page = virt_to_page(pages[i]); |
| 860 | |
| 861 | if (PagePrivate(page)) { |
| 862 | pr_warn("unexpected high-order page for auxbuf!"); |
| 863 | goto out_free_pglist; |
| 864 | } |
| 865 | |
| 866 | pglist[i] = virt_to_page(pages[i]); |
| 867 | } |
| 868 | |
| 869 | buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); |
| 870 | if (!buf->base) |
| 871 | goto out_free_pglist; |
| 872 | |
| 873 | buf->nr_pages = nr_pages; |
| 874 | buf->snapshot = snapshot; |
| 875 | |
| 876 | kfree(pglist); |
| 877 | return buf; |
| 878 | |
| 879 | out_free_pglist: |
| 880 | kfree(pglist); |
| 881 | out_free_buf: |
| 882 | kfree(buf); |
| 883 | return NULL; |
| 884 | } |
| 885 | |
| 886 | static void arm_spe_pmu_free_aux(void *aux) |
| 887 | { |
| 888 | struct arm_spe_pmu_buf *buf = aux; |
| 889 | |
| 890 | vunmap(buf->base); |
| 891 | kfree(buf); |
| 892 | } |
| 893 | |
| 894 | /* Initialisation and teardown functions */ |
| 895 | static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) |
| 896 | { |
| 897 | static atomic_t pmu_idx = ATOMIC_INIT(-1); |
| 898 | |
| 899 | int idx; |
| 900 | char *name; |
| 901 | struct device *dev = &spe_pmu->pdev->dev; |
| 902 | |
| 903 | spe_pmu->pmu = (struct pmu) { |
Suzuki K Poulose | 19b4aff | 2017-11-03 11:45:17 +0000 | [diff] [blame] | 904 | .module = THIS_MODULE, |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 905 | .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, |
| 906 | .attr_groups = arm_spe_pmu_attr_groups, |
| 907 | /* |
| 908 | * We hitch a ride on the software context here, so that |
| 909 | * we can support per-task profiling (which is not possible |
| 910 | * with the invalid context as it doesn't get sched callbacks). |
| 911 | * This requires that userspace either uses a dummy event for |
| 912 | * perf_event_open, since the aux buffer is not setup until |
| 913 | * a subsequent mmap, or creates the profiling event in a |
| 914 | * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it |
| 915 | * once the buffer has been created. |
| 916 | */ |
| 917 | .task_ctx_nr = perf_sw_context, |
| 918 | .event_init = arm_spe_pmu_event_init, |
| 919 | .add = arm_spe_pmu_add, |
| 920 | .del = arm_spe_pmu_del, |
| 921 | .start = arm_spe_pmu_start, |
| 922 | .stop = arm_spe_pmu_stop, |
| 923 | .read = arm_spe_pmu_read, |
| 924 | .setup_aux = arm_spe_pmu_setup_aux, |
| 925 | .free_aux = arm_spe_pmu_free_aux, |
| 926 | }; |
| 927 | |
| 928 | idx = atomic_inc_return(&pmu_idx); |
| 929 | name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); |
| 930 | return perf_pmu_register(&spe_pmu->pmu, name, -1); |
| 931 | } |
| 932 | |
| 933 | static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) |
| 934 | { |
| 935 | perf_pmu_unregister(&spe_pmu->pmu); |
| 936 | } |
| 937 | |
| 938 | static void __arm_spe_pmu_dev_probe(void *info) |
| 939 | { |
| 940 | int fld; |
| 941 | u64 reg; |
| 942 | struct arm_spe_pmu *spe_pmu = info; |
| 943 | struct device *dev = &spe_pmu->pdev->dev; |
| 944 | |
| 945 | fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), |
| 946 | ID_AA64DFR0_PMSVER_SHIFT); |
| 947 | if (!fld) { |
| 948 | dev_err(dev, |
| 949 | "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", |
| 950 | fld, smp_processor_id()); |
| 951 | return; |
| 952 | } |
| 953 | |
| 954 | /* Read PMBIDR first to determine whether or not we have access */ |
| 955 | reg = read_sysreg_s(SYS_PMBIDR_EL1); |
| 956 | if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { |
| 957 | dev_err(dev, |
| 958 | "profiling buffer owned by higher exception level\n"); |
| 959 | return; |
| 960 | } |
| 961 | |
| 962 | /* Minimum alignment. If it's out-of-range, then fail the probe */ |
| 963 | fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; |
| 964 | spe_pmu->align = 1 << fld; |
| 965 | if (spe_pmu->align > SZ_2K) { |
| 966 | dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", |
| 967 | fld, smp_processor_id()); |
| 968 | return; |
| 969 | } |
| 970 | |
| 971 | /* It's now safe to read PMSIDR and figure out what we've got */ |
| 972 | reg = read_sysreg_s(SYS_PMSIDR_EL1); |
| 973 | if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) |
| 974 | spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; |
| 975 | |
| 976 | if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) |
| 977 | spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; |
| 978 | |
| 979 | if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) |
| 980 | spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; |
| 981 | |
| 982 | if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) |
| 983 | spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; |
| 984 | |
| 985 | if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) |
| 986 | spe_pmu->features |= SPE_PMU_FEAT_LDS; |
| 987 | |
| 988 | if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) |
| 989 | spe_pmu->features |= SPE_PMU_FEAT_ERND; |
| 990 | |
| 991 | /* This field has a spaced out encoding, so just use a look-up */ |
| 992 | fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; |
| 993 | switch (fld) { |
| 994 | case 0: |
| 995 | spe_pmu->min_period = 256; |
| 996 | break; |
| 997 | case 2: |
| 998 | spe_pmu->min_period = 512; |
| 999 | break; |
| 1000 | case 3: |
| 1001 | spe_pmu->min_period = 768; |
| 1002 | break; |
| 1003 | case 4: |
| 1004 | spe_pmu->min_period = 1024; |
| 1005 | break; |
| 1006 | case 5: |
| 1007 | spe_pmu->min_period = 1536; |
| 1008 | break; |
| 1009 | case 6: |
| 1010 | spe_pmu->min_period = 2048; |
| 1011 | break; |
| 1012 | case 7: |
| 1013 | spe_pmu->min_period = 3072; |
| 1014 | break; |
| 1015 | default: |
| 1016 | dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", |
| 1017 | fld); |
| 1018 | /* Fallthrough */ |
| 1019 | case 8: |
| 1020 | spe_pmu->min_period = 4096; |
| 1021 | } |
| 1022 | |
| 1023 | /* Maximum record size. If it's out-of-range, then fail the probe */ |
| 1024 | fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; |
| 1025 | spe_pmu->max_record_sz = 1 << fld; |
| 1026 | if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { |
| 1027 | dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", |
| 1028 | fld, smp_processor_id()); |
| 1029 | return; |
| 1030 | } |
| 1031 | |
| 1032 | fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; |
| 1033 | switch (fld) { |
| 1034 | default: |
| 1035 | dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", |
| 1036 | fld); |
| 1037 | /* Fallthrough */ |
| 1038 | case 2: |
| 1039 | spe_pmu->counter_sz = 12; |
| 1040 | } |
| 1041 | |
| 1042 | dev_info(dev, |
| 1043 | "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", |
| 1044 | cpumask_pr_args(&spe_pmu->supported_cpus), |
| 1045 | spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); |
| 1046 | |
| 1047 | spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; |
| 1048 | return; |
| 1049 | } |
| 1050 | |
| 1051 | static void __arm_spe_pmu_reset_local(void) |
| 1052 | { |
| 1053 | /* |
| 1054 | * This is probably overkill, as we have no idea where we're |
| 1055 | * draining any buffered data to... |
| 1056 | */ |
| 1057 | arm_spe_pmu_disable_and_drain_local(); |
| 1058 | |
| 1059 | /* Reset the buffer base pointer */ |
| 1060 | write_sysreg_s(0, SYS_PMBPTR_EL1); |
| 1061 | isb(); |
| 1062 | |
| 1063 | /* Clear any pending management interrupts */ |
| 1064 | write_sysreg_s(0, SYS_PMBSR_EL1); |
| 1065 | isb(); |
| 1066 | } |
| 1067 | |
| 1068 | static void __arm_spe_pmu_setup_one(void *info) |
| 1069 | { |
| 1070 | struct arm_spe_pmu *spe_pmu = info; |
| 1071 | |
| 1072 | __arm_spe_pmu_reset_local(); |
| 1073 | enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); |
| 1074 | } |
| 1075 | |
| 1076 | static void __arm_spe_pmu_stop_one(void *info) |
| 1077 | { |
| 1078 | struct arm_spe_pmu *spe_pmu = info; |
| 1079 | |
| 1080 | disable_percpu_irq(spe_pmu->irq); |
| 1081 | __arm_spe_pmu_reset_local(); |
| 1082 | } |
| 1083 | |
| 1084 | static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) |
| 1085 | { |
| 1086 | struct arm_spe_pmu *spe_pmu; |
| 1087 | |
| 1088 | spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); |
| 1089 | if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) |
| 1090 | return 0; |
| 1091 | |
| 1092 | __arm_spe_pmu_setup_one(spe_pmu); |
| 1093 | return 0; |
| 1094 | } |
| 1095 | |
| 1096 | static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) |
| 1097 | { |
| 1098 | struct arm_spe_pmu *spe_pmu; |
| 1099 | |
| 1100 | spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); |
| 1101 | if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) |
| 1102 | return 0; |
| 1103 | |
| 1104 | __arm_spe_pmu_stop_one(spe_pmu); |
| 1105 | return 0; |
| 1106 | } |
| 1107 | |
| 1108 | static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) |
| 1109 | { |
| 1110 | int ret; |
| 1111 | cpumask_t *mask = &spe_pmu->supported_cpus; |
| 1112 | |
| 1113 | /* Make sure we probe the hardware on a relevant CPU */ |
| 1114 | ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); |
| 1115 | if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) |
| 1116 | return -ENXIO; |
| 1117 | |
| 1118 | /* Request our PPIs (note that the IRQ is still disabled) */ |
| 1119 | ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, |
| 1120 | spe_pmu->handle); |
| 1121 | if (ret) |
| 1122 | return ret; |
| 1123 | |
| 1124 | /* |
| 1125 | * Register our hotplug notifier now so we don't miss any events. |
| 1126 | * This will enable the IRQ for any supported CPUs that are already |
| 1127 | * up. |
| 1128 | */ |
| 1129 | ret = cpuhp_state_add_instance(arm_spe_pmu_online, |
| 1130 | &spe_pmu->hotplug_node); |
| 1131 | if (ret) |
| 1132 | free_percpu_irq(spe_pmu->irq, spe_pmu->handle); |
| 1133 | |
| 1134 | return ret; |
| 1135 | } |
| 1136 | |
| 1137 | static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) |
| 1138 | { |
| 1139 | cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); |
| 1140 | free_percpu_irq(spe_pmu->irq, spe_pmu->handle); |
| 1141 | } |
| 1142 | |
| 1143 | /* Driver and device probing */ |
| 1144 | static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) |
| 1145 | { |
| 1146 | struct platform_device *pdev = spe_pmu->pdev; |
| 1147 | int irq = platform_get_irq(pdev, 0); |
| 1148 | |
| 1149 | if (irq < 0) { |
| 1150 | dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq); |
| 1151 | return -ENXIO; |
| 1152 | } |
| 1153 | |
| 1154 | if (!irq_is_percpu(irq)) { |
| 1155 | dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); |
| 1156 | return -EINVAL; |
| 1157 | } |
| 1158 | |
| 1159 | if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { |
| 1160 | dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); |
| 1161 | return -EINVAL; |
| 1162 | } |
| 1163 | |
| 1164 | spe_pmu->irq = irq; |
| 1165 | return 0; |
| 1166 | } |
| 1167 | |
| 1168 | static const struct of_device_id arm_spe_pmu_of_match[] = { |
| 1169 | { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, |
| 1170 | { /* Sentinel */ }, |
| 1171 | }; |
| 1172 | |
| 1173 | static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev) |
| 1174 | { |
| 1175 | int ret; |
| 1176 | struct arm_spe_pmu *spe_pmu; |
| 1177 | struct device *dev = &pdev->dev; |
| 1178 | |
Will Deacon | 7a4a0c1 | 2017-11-27 15:49:53 +0000 | [diff] [blame] | 1179 | /* |
| 1180 | * If kernelspace is unmapped when running at EL0, then the SPE |
| 1181 | * buffer will fault and prematurely terminate the AUX session. |
| 1182 | */ |
| 1183 | if (arm64_kernel_unmapped_at_el0()) { |
| 1184 | dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); |
| 1185 | return -EPERM; |
| 1186 | } |
| 1187 | |
Will Deacon | d5d9696 | 2016-09-22 11:36:32 +0100 | [diff] [blame] | 1188 | spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); |
| 1189 | if (!spe_pmu) { |
| 1190 | dev_err(dev, "failed to allocate spe_pmu\n"); |
| 1191 | return -ENOMEM; |
| 1192 | } |
| 1193 | |
| 1194 | spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); |
| 1195 | if (!spe_pmu->handle) |
| 1196 | return -ENOMEM; |
| 1197 | |
| 1198 | spe_pmu->pdev = pdev; |
| 1199 | platform_set_drvdata(pdev, spe_pmu); |
| 1200 | |
| 1201 | ret = arm_spe_pmu_irq_probe(spe_pmu); |
| 1202 | if (ret) |
| 1203 | goto out_free_handle; |
| 1204 | |
| 1205 | ret = arm_spe_pmu_dev_init(spe_pmu); |
| 1206 | if (ret) |
| 1207 | goto out_free_handle; |
| 1208 | |
| 1209 | ret = arm_spe_pmu_perf_init(spe_pmu); |
| 1210 | if (ret) |
| 1211 | goto out_teardown_dev; |
| 1212 | |
| 1213 | return 0; |
| 1214 | |
| 1215 | out_teardown_dev: |
| 1216 | arm_spe_pmu_dev_teardown(spe_pmu); |
| 1217 | out_free_handle: |
| 1218 | free_percpu(spe_pmu->handle); |
| 1219 | return ret; |
| 1220 | } |
| 1221 | |
| 1222 | static int arm_spe_pmu_device_remove(struct platform_device *pdev) |
| 1223 | { |
| 1224 | struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); |
| 1225 | |
| 1226 | arm_spe_pmu_perf_destroy(spe_pmu); |
| 1227 | arm_spe_pmu_dev_teardown(spe_pmu); |
| 1228 | free_percpu(spe_pmu->handle); |
| 1229 | return 0; |
| 1230 | } |
| 1231 | |
| 1232 | static struct platform_driver arm_spe_pmu_driver = { |
| 1233 | .driver = { |
| 1234 | .name = DRVNAME, |
| 1235 | .of_match_table = of_match_ptr(arm_spe_pmu_of_match), |
| 1236 | }, |
| 1237 | .probe = arm_spe_pmu_device_dt_probe, |
| 1238 | .remove = arm_spe_pmu_device_remove, |
| 1239 | }; |
| 1240 | |
| 1241 | static int __init arm_spe_pmu_init(void) |
| 1242 | { |
| 1243 | int ret; |
| 1244 | |
| 1245 | ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, |
| 1246 | arm_spe_pmu_cpu_startup, |
| 1247 | arm_spe_pmu_cpu_teardown); |
| 1248 | if (ret < 0) |
| 1249 | return ret; |
| 1250 | arm_spe_pmu_online = ret; |
| 1251 | |
| 1252 | ret = platform_driver_register(&arm_spe_pmu_driver); |
| 1253 | if (ret) |
| 1254 | cpuhp_remove_multi_state(arm_spe_pmu_online); |
| 1255 | |
| 1256 | return ret; |
| 1257 | } |
| 1258 | |
| 1259 | static void __exit arm_spe_pmu_exit(void) |
| 1260 | { |
| 1261 | platform_driver_unregister(&arm_spe_pmu_driver); |
| 1262 | cpuhp_remove_multi_state(arm_spe_pmu_online); |
| 1263 | } |
| 1264 | |
| 1265 | module_init(arm_spe_pmu_init); |
| 1266 | module_exit(arm_spe_pmu_exit); |
| 1267 | |
| 1268 | MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); |
| 1269 | MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); |
| 1270 | MODULE_LICENSE("GPL v2"); |