blob: 7be0ae10d69b196233c0f1f741f91aa328041a5f [file] [log] [blame]
Ramkrishna Vepa11324132009-04-01 18:14:58 +00001/******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14#include <linux/etherdevice.h>
15
16#include "vxge-traffic.h"
17#include "vxge-config.h"
18#include "vxge-main.h"
19
20/*
21 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
22 * @vp: Virtual Path handle.
23 *
24 * Enable vpath interrupts. The function is to be executed the last in
25 * vpath initialization sequence.
26 *
27 * See also: vxge_hw_vpath_intr_disable()
28 */
29enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
30{
31 u64 val64;
32
33 struct __vxge_hw_virtualpath *vpath;
34 struct vxge_hw_vpath_reg __iomem *vp_reg;
35 enum vxge_hw_status status = VXGE_HW_OK;
36 if (vp == NULL) {
37 status = VXGE_HW_ERR_INVALID_HANDLE;
38 goto exit;
39 }
40
41 vpath = vp->vpath;
42
43 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
44 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
45 goto exit;
46 }
47
48 vp_reg = vpath->vp_reg;
49
50 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
51
52 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
53 &vp_reg->general_errors_reg);
54
55 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
56 &vp_reg->pci_config_errors_reg);
57
58 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
59 &vp_reg->mrpcim_to_vpath_alarm_reg);
60
61 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
62 &vp_reg->srpcim_to_vpath_alarm_reg);
63
64 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
65 &vp_reg->vpath_ppif_int_status);
66
67 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
68 &vp_reg->srpcim_msg_to_vpath_reg);
69
70 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
71 &vp_reg->vpath_pcipif_int_status);
72
73 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
74 &vp_reg->prc_alarm_reg);
75
76 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
77 &vp_reg->wrdma_alarm_status);
78
79 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
80 &vp_reg->asic_ntwk_vp_err_reg);
81
82 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
83 &vp_reg->xgmac_vp_int_status);
84
85 val64 = readq(&vp_reg->vpath_general_int_status);
86
87 /* Mask unwanted interrupts */
88
89 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
90 &vp_reg->vpath_pcipif_int_mask);
91
92 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
93 &vp_reg->srpcim_msg_to_vpath_mask);
94
95 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
96 &vp_reg->srpcim_to_vpath_alarm_mask);
97
98 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
99 &vp_reg->mrpcim_to_vpath_alarm_mask);
100
101 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
102 &vp_reg->pci_config_errors_mask);
103
104 /* Unmask the individual interrupts */
105
106 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
107 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
110 &vp_reg->general_errors_mask);
111
112 __vxge_hw_pio_mem_write32_upper(
113 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
114 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR), 0, 32),
119 &vp_reg->kdfcctl_errors_mask);
120
121 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
122
123 __vxge_hw_pio_mem_write32_upper(
124 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
125 &vp_reg->prc_alarm_mask);
126
127 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
129
130 if (vpath->hldev->first_vp_id != vpath->vp_id)
131 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
132 &vp_reg->asic_ntwk_vp_err_mask);
133 else
134 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
135 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
137 &vp_reg->asic_ntwk_vp_err_mask);
138
139 __vxge_hw_pio_mem_write32_upper(0,
140 &vp_reg->vpath_general_int_mask);
141exit:
142 return status;
143
144}
145
146/*
147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
148 * @vp: Virtual Path handle.
149 *
150 * Disable vpath interrupts. The function is to be executed the last in
151 * vpath initialization sequence.
152 *
153 * See also: vxge_hw_vpath_intr_enable()
154 */
155enum vxge_hw_status vxge_hw_vpath_intr_disable(
156 struct __vxge_hw_vpath_handle *vp)
157{
158 u64 val64;
159
160 struct __vxge_hw_virtualpath *vpath;
161 enum vxge_hw_status status = VXGE_HW_OK;
162 struct vxge_hw_vpath_reg __iomem *vp_reg;
163 if (vp == NULL) {
164 status = VXGE_HW_ERR_INVALID_HANDLE;
165 goto exit;
166 }
167
168 vpath = vp->vpath;
169
170 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
171 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
172 goto exit;
173 }
174 vp_reg = vpath->vp_reg;
175
176 __vxge_hw_pio_mem_write32_upper(
177 (u32)VXGE_HW_INTR_MASK_ALL,
178 &vp_reg->vpath_general_int_mask);
179
180 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
181
182 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
183
184 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
185 &vp_reg->general_errors_mask);
186
187 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
188 &vp_reg->pci_config_errors_mask);
189
190 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
191 &vp_reg->mrpcim_to_vpath_alarm_mask);
192
193 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
194 &vp_reg->srpcim_to_vpath_alarm_mask);
195
196 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
197 &vp_reg->vpath_ppif_int_mask);
198
199 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
200 &vp_reg->srpcim_msg_to_vpath_mask);
201
202 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
203 &vp_reg->vpath_pcipif_int_mask);
204
205 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
206 &vp_reg->wrdma_alarm_mask);
207
208 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
209 &vp_reg->prc_alarm_mask);
210
211 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
212 &vp_reg->xgmac_vp_int_mask);
213
214 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
215 &vp_reg->asic_ntwk_vp_err_mask);
216
217exit:
218 return status;
219}
220
221/**
222 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
223 * @channeh: Channel for rx or tx handle
224 * @msix_id: MSIX ID
225 *
226 * The function masks the msix interrupt for the given msix_id
227 *
228 * Returns: 0
229 */
230void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
231{
232
233 __vxge_hw_pio_mem_write32_upper(
234 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
235 0, 32),
236 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
237
238 return;
239}
240
241/**
242 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
243 * @channeh: Channel for rx or tx handle
244 * @msix_id: MSI ID
245 *
246 * The function unmasks the msix interrupt for the given msix_id
247 *
248 * Returns: 0
249 */
250void
251vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
252{
253
254 __vxge_hw_pio_mem_write32_upper(
255 (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
256 0, 32),
257 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
258
259 return;
260}
261
262/**
263 * vxge_hw_device_set_intr_type - Updates the configuration
264 * with new interrupt type.
265 * @hldev: HW device handle.
266 * @intr_mode: New interrupt type
267 */
268u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
269{
270
271 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
272 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
273 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
274 (intr_mode != VXGE_HW_INTR_MODE_DEF))
275 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
276
277 hldev->config.intr_mode = intr_mode;
278 return intr_mode;
279}
280
281/**
282 * vxge_hw_device_intr_enable - Enable interrupts.
283 * @hldev: HW device handle.
284 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
285 * the type(s) of interrupts to enable.
286 *
287 * Enable Titan interrupts. The function is to be executed the last in
288 * Titan initialization sequence.
289 *
290 * See also: vxge_hw_device_intr_disable()
291 */
292void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
293{
294 u32 i;
295 u64 val64;
296 u32 val32;
297
298 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
299
300 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
301 continue;
302
303 vxge_hw_vpath_intr_enable(
304 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
305 }
306
307 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
308 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
309 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
310
311 if (val64 != 0) {
312 writeq(val64, &hldev->common_reg->tim_int_status0);
313
314 writeq(~val64, &hldev->common_reg->tim_int_mask0);
315 }
316
317 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
318 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
319
320 if (val32 != 0) {
321 __vxge_hw_pio_mem_write32_upper(val32,
322 &hldev->common_reg->tim_int_status1);
323
324 __vxge_hw_pio_mem_write32_upper(~val32,
325 &hldev->common_reg->tim_int_mask1);
326 }
327 }
328
329 val64 = readq(&hldev->common_reg->titan_general_int_status);
330
331 vxge_hw_device_unmask_all(hldev);
332
333 return;
334}
335
336/**
337 * vxge_hw_device_intr_disable - Disable Titan interrupts.
338 * @hldev: HW device handle.
339 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
340 * the type(s) of interrupts to disable.
341 *
342 * Disable Titan interrupts.
343 *
344 * See also: vxge_hw_device_intr_enable()
345 */
346void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
347{
348 u32 i;
349
350 vxge_hw_device_mask_all(hldev);
351
352 /* mask all the tim interrupts */
353 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
354 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
355 &hldev->common_reg->tim_int_mask1);
356
357 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
358
359 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
360 continue;
361
362 vxge_hw_vpath_intr_disable(
363 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
364 }
365
366 return;
367}
368
369/**
370 * vxge_hw_device_mask_all - Mask all device interrupts.
371 * @hldev: HW device handle.
372 *
373 * Mask all device interrupts.
374 *
375 * See also: vxge_hw_device_unmask_all()
376 */
377void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
378{
379 u64 val64;
380
381 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
382 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
383
384 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
385 &hldev->common_reg->titan_mask_all_int);
386
387 return;
388}
389
390/**
391 * vxge_hw_device_unmask_all - Unmask all device interrupts.
392 * @hldev: HW device handle.
393 *
394 * Unmask all device interrupts.
395 *
396 * See also: vxge_hw_device_mask_all()
397 */
398void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
399{
400 u64 val64 = 0;
401
402 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
403 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
404
405 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
406 &hldev->common_reg->titan_mask_all_int);
407
408 return;
409}
410
411/**
412 * vxge_hw_device_flush_io - Flush io writes.
413 * @hldev: HW device handle.
414 *
415 * The function performs a read operation to flush io writes.
416 *
417 * Returns: void
418 */
419void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
420{
421 u32 val32;
422
423 val32 = readl(&hldev->common_reg->titan_general_int_status);
424}
425
426/**
427 * vxge_hw_device_begin_irq - Begin IRQ processing.
428 * @hldev: HW device handle.
429 * @skip_alarms: Do not clear the alarms
430 * @reason: "Reason" for the interrupt, the value of Titan's
431 * general_int_status register.
432 *
433 * The function performs two actions, It first checks whether (shared IRQ) the
434 * interrupt was raised by the device. Next, it masks the device interrupts.
435 *
436 * Note:
437 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
438 * bridge. Therefore, two back-to-back interrupts are potentially possible.
439 *
440 * Returns: 0, if the interrupt is not "ours" (note that in this case the
441 * device remain enabled).
442 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
443 * status.
444 */
445enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
446 u32 skip_alarms, u64 *reason)
447{
448 u32 i;
449 u64 val64;
450 u64 adapter_status;
451 u64 vpath_mask;
452 enum vxge_hw_status ret = VXGE_HW_OK;
453
454 val64 = readq(&hldev->common_reg->titan_general_int_status);
455
456 if (unlikely(!val64)) {
457 /* not Titan interrupt */
458 *reason = 0;
459 ret = VXGE_HW_ERR_WRONG_IRQ;
460 goto exit;
461 }
462
463 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
464
465 adapter_status = readq(&hldev->common_reg->adapter_status);
466
467 if (adapter_status == VXGE_HW_ALL_FOXES) {
468
469 __vxge_hw_device_handle_error(hldev,
470 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
471 *reason = 0;
472 ret = VXGE_HW_ERR_SLOT_FREEZE;
473 goto exit;
474 }
475 }
476
477 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
478
479 *reason = val64;
480
481 vpath_mask = hldev->vpaths_deployed >>
482 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
483
484 if (val64 &
485 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
486 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
487
488 return VXGE_HW_OK;
489 }
490
491 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
492
493 if (unlikely(val64 &
494 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
495
496 enum vxge_hw_status error_level = VXGE_HW_OK;
497
498 hldev->stats.sw_dev_err_stats.vpath_alarms++;
499
500 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
501
502 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
503 continue;
504
505 ret = __vxge_hw_vpath_alarm_process(
506 &hldev->virtual_paths[i], skip_alarms);
507
508 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
509
510 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
511 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
512 break;
513 }
514
515 ret = error_level;
516 }
517exit:
518 return ret;
519}
520
521/*
522 * __vxge_hw_device_handle_link_up_ind
523 * @hldev: HW device handle.
524 *
525 * Link up indication handler. The function is invoked by HW when
526 * Titan indicates that the link is up for programmable amount of time.
527 */
528enum vxge_hw_status
529__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
530{
531 /*
532 * If the previous link state is not down, return.
533 */
534 if (hldev->link_state == VXGE_HW_LINK_UP)
535 goto exit;
536
537 hldev->link_state = VXGE_HW_LINK_UP;
538
539 /* notify driver */
540 if (hldev->uld_callbacks.link_up)
541 hldev->uld_callbacks.link_up(hldev);
542exit:
543 return VXGE_HW_OK;
544}
545
546/*
547 * __vxge_hw_device_handle_link_down_ind
548 * @hldev: HW device handle.
549 *
550 * Link down indication handler. The function is invoked by HW when
551 * Titan indicates that the link is down.
552 */
553enum vxge_hw_status
554__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
555{
556 /*
557 * If the previous link state is not down, return.
558 */
559 if (hldev->link_state == VXGE_HW_LINK_DOWN)
560 goto exit;
561
562 hldev->link_state = VXGE_HW_LINK_DOWN;
563
564 /* notify driver */
565 if (hldev->uld_callbacks.link_down)
566 hldev->uld_callbacks.link_down(hldev);
567exit:
568 return VXGE_HW_OK;
569}
570
571/**
572 * __vxge_hw_device_handle_error - Handle error
573 * @hldev: HW device
574 * @vp_id: Vpath Id
575 * @type: Error type. Please see enum vxge_hw_event{}
576 *
577 * Handle error.
578 */
579enum vxge_hw_status
580__vxge_hw_device_handle_error(
581 struct __vxge_hw_device *hldev,
582 u32 vp_id,
583 enum vxge_hw_event type)
584{
585 switch (type) {
586 case VXGE_HW_EVENT_UNKNOWN:
587 break;
588 case VXGE_HW_EVENT_RESET_START:
589 case VXGE_HW_EVENT_RESET_COMPLETE:
590 case VXGE_HW_EVENT_LINK_DOWN:
591 case VXGE_HW_EVENT_LINK_UP:
592 goto out;
593 case VXGE_HW_EVENT_ALARM_CLEARED:
594 goto out;
595 case VXGE_HW_EVENT_ECCERR:
596 case VXGE_HW_EVENT_MRPCIM_ECCERR:
597 goto out;
598 case VXGE_HW_EVENT_FIFO_ERR:
599 case VXGE_HW_EVENT_VPATH_ERR:
600 case VXGE_HW_EVENT_CRITICAL_ERR:
601 case VXGE_HW_EVENT_SERR:
602 break;
603 case VXGE_HW_EVENT_SRPCIM_SERR:
604 case VXGE_HW_EVENT_MRPCIM_SERR:
605 goto out;
606 case VXGE_HW_EVENT_SLOT_FREEZE:
607 break;
608 default:
609 vxge_assert(0);
610 goto out;
611 }
612
613 /* notify driver */
614 if (hldev->uld_callbacks.crit_err)
615 hldev->uld_callbacks.crit_err(
616 (struct __vxge_hw_device *)hldev,
617 type, vp_id);
618out:
619
620 return VXGE_HW_OK;
621}
622
623/**
624 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
625 * condition that has caused the Tx and RX interrupt.
626 * @hldev: HW device.
627 *
628 * Acknowledge (that is, clear) the condition that has caused
629 * the Tx and Rx interrupt.
630 * See also: vxge_hw_device_begin_irq(),
631 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
632 */
633void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
634{
635
636 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
637 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
638 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
639 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
640 &hldev->common_reg->tim_int_status0);
641 }
642
643 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
644 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
645 __vxge_hw_pio_mem_write32_upper(
646 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
647 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
648 &hldev->common_reg->tim_int_status1);
649 }
650
651 return;
652}
653
654/*
655 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
656 * @channel: Channel
657 * @dtrh: Buffer to return the DTR pointer
658 *
659 * Allocates a dtr from the reserve array. If the reserve array is empty,
660 * it swaps the reserve and free arrays.
661 *
662 */
663enum vxge_hw_status
664vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
665{
666 void **tmp_arr;
667
668 if (channel->reserve_ptr - channel->reserve_top > 0) {
669_alloc_after_swap:
670 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
671
672 return VXGE_HW_OK;
673 }
674
675 /* switch between empty and full arrays */
676
677 /* the idea behind such a design is that by having free and reserved
678 * arrays separated we basically separated irq and non-irq parts.
679 * i.e. no additional lock need to be done when we free a resource */
680
681 if (channel->length - channel->free_ptr > 0) {
682
683 tmp_arr = channel->reserve_arr;
684 channel->reserve_arr = channel->free_arr;
685 channel->free_arr = tmp_arr;
686 channel->reserve_ptr = channel->length;
687 channel->reserve_top = channel->free_ptr;
688 channel->free_ptr = channel->length;
689
690 channel->stats->reserve_free_swaps_cnt++;
691
692 goto _alloc_after_swap;
693 }
694
695 channel->stats->full_cnt++;
696
697 *dtrh = NULL;
698 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
699}
700
701/*
702 * vxge_hw_channel_dtr_post - Post a dtr to the channel
703 * @channelh: Channel
704 * @dtrh: DTR pointer
705 *
706 * Posts a dtr to work array.
707 *
708 */
709void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
710{
711 vxge_assert(channel->work_arr[channel->post_index] == NULL);
712
713 channel->work_arr[channel->post_index++] = dtrh;
714
715 /* wrap-around */
716 if (channel->post_index == channel->length)
717 channel->post_index = 0;
718}
719
720/*
721 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
722 * @channel: Channel
723 * @dtr: Buffer to return the next completed DTR pointer
724 *
725 * Returns the next completed dtr with out removing it from work array
726 *
727 */
728void
729vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
730{
731 vxge_assert(channel->compl_index < channel->length);
732
733 *dtrh = channel->work_arr[channel->compl_index];
734}
735
736/*
737 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
738 * @channel: Channel handle
739 *
740 * Removes the next completed dtr from work array
741 *
742 */
743void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
744{
745 channel->work_arr[channel->compl_index] = NULL;
746
747 /* wrap-around */
748 if (++channel->compl_index == channel->length)
749 channel->compl_index = 0;
750
751 channel->stats->total_compl_cnt++;
752}
753
754/*
755 * vxge_hw_channel_dtr_free - Frees a dtr
756 * @channel: Channel handle
757 * @dtr: DTR pointer
758 *
759 * Returns the dtr to free array
760 *
761 */
762void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
763{
764 channel->free_arr[--channel->free_ptr] = dtrh;
765}
766
767/*
768 * vxge_hw_channel_dtr_count
769 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
770 *
771 * Retreive number of DTRs available. This function can not be called
772 * from data path. ring_initial_replenishi() is the only user.
773 */
774int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
775{
776 return (channel->reserve_ptr - channel->reserve_top) +
777 (channel->length - channel->free_ptr);
778}
779
780/**
781 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
782 * @ring: Handle to the ring object used for receive
783 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
784 * with a valid handle.
785 *
786 * Reserve Rx descriptor for the subsequent filling-in driver
787 * and posting on the corresponding channel (@channelh)
788 * via vxge_hw_ring_rxd_post().
789 *
790 * Returns: VXGE_HW_OK - success.
791 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
792 *
793 */
794enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
795 void **rxdh)
796{
797 enum vxge_hw_status status;
798 struct __vxge_hw_channel *channel;
799
800 channel = &ring->channel;
801
802 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
803
804 if (status == VXGE_HW_OK) {
805 struct vxge_hw_ring_rxd_1 *rxdp =
806 (struct vxge_hw_ring_rxd_1 *)*rxdh;
807
808 rxdp->control_0 = rxdp->control_1 = 0;
809 }
810
811 return status;
812}
813
814/**
815 * vxge_hw_ring_rxd_free - Free descriptor.
816 * @ring: Handle to the ring object used for receive
817 * @rxdh: Descriptor handle.
818 *
819 * Free the reserved descriptor. This operation is "symmetrical" to
820 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
821 * lifecycle.
822 *
823 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
824 * be:
825 *
826 * - reserved (vxge_hw_ring_rxd_reserve);
827 *
828 * - posted (vxge_hw_ring_rxd_post);
829 *
830 * - completed (vxge_hw_ring_rxd_next_completed);
831 *
832 * - and recycled again (vxge_hw_ring_rxd_free).
833 *
834 * For alternative state transitions and more details please refer to
835 * the design doc.
836 *
837 */
838void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
839{
840 struct __vxge_hw_channel *channel;
841
842 channel = &ring->channel;
843
844 vxge_hw_channel_dtr_free(channel, rxdh);
845
846}
847
848/**
849 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
850 * @ring: Handle to the ring object used for receive
851 * @rxdh: Descriptor handle.
852 *
853 * This routine prepares a rxd and posts
854 */
855void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
856{
857 struct __vxge_hw_channel *channel;
858
859 channel = &ring->channel;
860
861 vxge_hw_channel_dtr_post(channel, rxdh);
862}
863
864/**
865 * vxge_hw_ring_rxd_post_post - Process rxd after post.
866 * @ring: Handle to the ring object used for receive
867 * @rxdh: Descriptor handle.
868 *
869 * Processes rxd after post
870 */
871void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
872{
873 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
874 struct __vxge_hw_channel *channel;
875
876 channel = &ring->channel;
877
878 rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
879
880 if (ring->stats->common_stats.usage_cnt > 0)
881 ring->stats->common_stats.usage_cnt--;
882}
883
884/**
885 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
886 * @ring: Handle to the ring object used for receive
887 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
888 *
889 * Post descriptor on the ring.
890 * Prior to posting the descriptor should be filled in accordance with
891 * Host/Titan interface specification for a given service (LL, etc.).
892 *
893 */
894void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
895{
896 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
897 struct __vxge_hw_channel *channel;
898
899 channel = &ring->channel;
900
901 wmb();
902 rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
903
904 vxge_hw_channel_dtr_post(channel, rxdh);
905
906 if (ring->stats->common_stats.usage_cnt > 0)
907 ring->stats->common_stats.usage_cnt--;
908}
909
910/**
911 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
912 * @ring: Handle to the ring object used for receive
913 * @rxdh: Descriptor handle.
914 *
915 * Processes rxd after post with memory barrier.
916 */
917void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
918{
919 struct __vxge_hw_channel *channel;
920
921 channel = &ring->channel;
922
923 wmb();
924 vxge_hw_ring_rxd_post_post(ring, rxdh);
925}
926
927/**
928 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
929 * @ring: Handle to the ring object used for receive
930 * @rxdh: Descriptor handle. Returned by HW.
931 * @t_code: Transfer code, as per Titan User Guide,
932 * Receive Descriptor Format. Returned by HW.
933 *
934 * Retrieve the _next_ completed descriptor.
935 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
936 * driver of new completed descriptors. After that
937 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
938 * completions (the very first completion is passed by HW via
939 * vxge_hw_ring_callback_f).
940 *
941 * Implementation-wise, the driver is free to call
942 * vxge_hw_ring_rxd_next_completed either immediately from inside the
943 * ring callback, or in a deferred fashion and separate (from HW)
944 * context.
945 *
946 * Non-zero @t_code means failure to fill-in receive buffer(s)
947 * of the descriptor.
948 * For instance, parity error detected during the data transfer.
949 * In this case Titan will complete the descriptor and indicate
950 * for the host that the received data is not to be used.
951 * For details please refer to Titan User Guide.
952 *
953 * Returns: VXGE_HW_OK - success.
954 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
955 * are currently available for processing.
956 *
957 * See also: vxge_hw_ring_callback_f{},
958 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
959 */
960enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
961 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
962{
963 struct __vxge_hw_channel *channel;
964 struct vxge_hw_ring_rxd_1 *rxdp;
965 enum vxge_hw_status status = VXGE_HW_OK;
966
967 channel = &ring->channel;
968
969 vxge_hw_channel_dtr_try_complete(channel, rxdh);
970
971 rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
972 if (rxdp == NULL) {
973 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
974 goto exit;
975 }
976
977 /* check whether it is not the end */
978 if (!(rxdp->control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER)) {
979
980 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
981 0);
982
983 ++ring->cmpl_cnt;
984 vxge_hw_channel_dtr_complete(channel);
985
986 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(rxdp->control_0);
987
988 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
989
990 ring->stats->common_stats.usage_cnt++;
991 if (ring->stats->common_stats.usage_max <
992 ring->stats->common_stats.usage_cnt)
993 ring->stats->common_stats.usage_max =
994 ring->stats->common_stats.usage_cnt;
995
996 status = VXGE_HW_OK;
997 goto exit;
998 }
999
1000 /* reset it. since we don't want to return
1001 * garbage to the driver */
1002 *rxdh = NULL;
1003 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1004exit:
1005 return status;
1006}
1007
1008/**
1009 * vxge_hw_ring_handle_tcode - Handle transfer code.
1010 * @ring: Handle to the ring object used for receive
1011 * @rxdh: Descriptor handle.
1012 * @t_code: One of the enumerated (and documented in the Titan user guide)
1013 * "transfer codes".
1014 *
1015 * Handle descriptor's transfer code. The latter comes with each completed
1016 * descriptor.
1017 *
1018 * Returns: one of the enum vxge_hw_status{} enumerated types.
1019 * VXGE_HW_OK - for success.
1020 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1021 */
1022enum vxge_hw_status vxge_hw_ring_handle_tcode(
1023 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1024{
1025 struct __vxge_hw_channel *channel;
1026 enum vxge_hw_status status = VXGE_HW_OK;
1027
1028 channel = &ring->channel;
1029
1030 /* If the t_code is not supported and if the
1031 * t_code is other than 0x5 (unparseable packet
1032 * such as unknown UPV6 header), Drop it !!!
1033 */
1034
1035 if (t_code == 0 || t_code == 5) {
1036 status = VXGE_HW_OK;
1037 goto exit;
1038 }
1039
1040 if (t_code > 0xF) {
1041 status = VXGE_HW_ERR_INVALID_TCODE;
1042 goto exit;
1043 }
1044
1045 ring->stats->rxd_t_code_err_cnt[t_code]++;
1046exit:
1047 return status;
1048}
1049
1050/**
1051 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1052 *
1053 * @fifo: fifohandle
1054 * @txdl_ptr: The starting location of the TxDL in host memory
1055 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1056 * @no_snoop: No snoop flags
1057 *
1058 * This function posts a non-offload doorbell to doorbell FIFO
1059 *
1060 */
1061static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1062 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1063{
1064 struct __vxge_hw_channel *channel;
1065
1066 channel = &fifo->channel;
1067
1068 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1069 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1070 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1071 &fifo->nofl_db->control_0);
1072
1073 wmb();
1074
1075 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1076 wmb();
1077
1078}
1079
1080/**
1081 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1082 * the fifo
1083 * @fifoh: Handle to the fifo object used for non offload send
1084 */
1085u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1086{
1087 return vxge_hw_channel_dtr_count(&fifoh->channel);
1088}
1089
1090/**
1091 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1092 * @fifoh: Handle to the fifo object used for non offload send
1093 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1094 * with a valid handle.
1095 * @txdl_priv: Buffer to return the pointer to per txdl space
1096 *
1097 * Reserve a single TxDL (that is, fifo descriptor)
1098 * for the subsequent filling-in by driver)
1099 * and posting on the corresponding channel (@channelh)
1100 * via vxge_hw_fifo_txdl_post().
1101 *
1102 * Note: it is the responsibility of driver to reserve multiple descriptors
1103 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1104 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1105 *
1106 * Returns: VXGE_HW_OK - success;
1107 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1108 *
1109 */
1110enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1111 struct __vxge_hw_fifo *fifo,
1112 void **txdlh, void **txdl_priv)
1113{
1114 struct __vxge_hw_channel *channel;
1115 enum vxge_hw_status status;
1116 int i;
1117
1118 channel = &fifo->channel;
1119
1120 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1121
1122 if (status == VXGE_HW_OK) {
1123 struct vxge_hw_fifo_txd *txdp =
1124 (struct vxge_hw_fifo_txd *)*txdlh;
1125 struct __vxge_hw_fifo_txdl_priv *priv;
1126
1127 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1128
1129 /* reset the TxDL's private */
1130 priv->align_dma_offset = 0;
1131 priv->align_vaddr_start = priv->align_vaddr;
1132 priv->align_used_frags = 0;
1133 priv->frags = 0;
1134 priv->alloc_frags = fifo->config->max_frags;
1135 priv->next_txdl_priv = NULL;
1136
1137 *txdl_priv = (void *)(size_t)txdp->host_control;
1138
1139 for (i = 0; i < fifo->config->max_frags; i++) {
1140 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1141 txdp->control_0 = txdp->control_1 = 0;
1142 }
1143 }
1144
1145 return status;
1146}
1147
1148/**
1149 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1150 * descriptor.
1151 * @fifo: Handle to the fifo object used for non offload send
1152 * @txdlh: Descriptor handle.
1153 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1154 * (of buffers).
1155 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1156 * @size: Size of the data buffer (in bytes).
1157 *
1158 * This API is part of the preparation of the transmit descriptor for posting
1159 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1160 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1161 * All three APIs fill in the fields of the fifo descriptor,
1162 * in accordance with the Titan specification.
1163 *
1164 */
1165void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1166 void *txdlh, u32 frag_idx,
1167 dma_addr_t dma_pointer, u32 size)
1168{
1169 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1170 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1171 struct __vxge_hw_channel *channel;
1172
1173 channel = &fifo->channel;
1174
1175 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1176 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1177
1178 if (frag_idx != 0)
1179 txdp->control_0 = txdp->control_1 = 0;
1180 else {
1181 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1182 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1183 txdp->control_1 |= fifo->interrupt_type;
1184 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1185 fifo->tx_intr_num);
1186 if (txdl_priv->frags) {
1187 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1188 (txdl_priv->frags - 1);
1189 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1190 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1191 }
1192 }
1193
1194 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1195
1196 txdp->buffer_pointer = (u64)dma_pointer;
1197 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1198 fifo->stats->total_buffers++;
1199 txdl_priv->frags++;
1200}
1201
1202/**
1203 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1204 * @fifo: Handle to the fifo object used for non offload send
1205 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1206 * @frags: Number of contiguous buffers that are part of a single
1207 * transmit operation.
1208 *
1209 * Post descriptor on the 'fifo' type channel for transmission.
1210 * Prior to posting the descriptor should be filled in accordance with
1211 * Host/Titan interface specification for a given service (LL, etc.).
1212 *
1213 */
1214void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1215{
1216 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1217 struct vxge_hw_fifo_txd *txdp_last;
1218 struct vxge_hw_fifo_txd *txdp_first;
1219 struct __vxge_hw_channel *channel;
1220
1221 channel = &fifo->channel;
1222
1223 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1224 txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
1225
1226 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1227 txdp_last->control_0 |=
1228 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1229 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1230
1231 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1232
1233 __vxge_hw_non_offload_db_post(fifo,
1234 (u64)(size_t)txdl_priv->dma_addr,
1235 txdl_priv->frags - 1,
1236 fifo->no_snoop_bits);
1237
1238 fifo->stats->total_posts++;
1239 fifo->stats->common_stats.usage_cnt++;
1240 if (fifo->stats->common_stats.usage_max <
1241 fifo->stats->common_stats.usage_cnt)
1242 fifo->stats->common_stats.usage_max =
1243 fifo->stats->common_stats.usage_cnt;
1244}
1245
1246/**
1247 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1248 * @fifo: Handle to the fifo object used for non offload send
1249 * @txdlh: Descriptor handle. Returned by HW.
1250 * @t_code: Transfer code, as per Titan User Guide,
1251 * Transmit Descriptor Format.
1252 * Returned by HW.
1253 *
1254 * Retrieve the _next_ completed descriptor.
1255 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1256 * driver of new completed descriptors. After that
1257 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1258 * completions (the very first completion is passed by HW via
1259 * vxge_hw_channel_callback_f).
1260 *
1261 * Implementation-wise, the driver is free to call
1262 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1263 * channel callback, or in a deferred fashion and separate (from HW)
1264 * context.
1265 *
1266 * Non-zero @t_code means failure to process the descriptor.
1267 * The failure could happen, for instance, when the link is
1268 * down, in which case Titan completes the descriptor because it
1269 * is not able to send the data out.
1270 *
1271 * For details please refer to Titan User Guide.
1272 *
1273 * Returns: VXGE_HW_OK - success.
1274 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1275 * are currently available for processing.
1276 *
1277 */
1278enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1279 struct __vxge_hw_fifo *fifo, void **txdlh,
1280 enum vxge_hw_fifo_tcode *t_code)
1281{
1282 struct __vxge_hw_channel *channel;
1283 struct vxge_hw_fifo_txd *txdp;
1284 enum vxge_hw_status status = VXGE_HW_OK;
1285
1286 channel = &fifo->channel;
1287
1288 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1289
1290 txdp = (struct vxge_hw_fifo_txd *)*txdlh;
1291 if (txdp == NULL) {
1292 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1293 goto exit;
1294 }
1295
1296 /* check whether host owns it */
1297 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1298
1299 vxge_assert(txdp->host_control != 0);
1300
1301 vxge_hw_channel_dtr_complete(channel);
1302
1303 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1304
1305 if (fifo->stats->common_stats.usage_cnt > 0)
1306 fifo->stats->common_stats.usage_cnt--;
1307
1308 status = VXGE_HW_OK;
1309 goto exit;
1310 }
1311
1312 /* no more completions */
1313 *txdlh = NULL;
1314 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1315exit:
1316 return status;
1317}
1318
1319/**
1320 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1321 * @fifo: Handle to the fifo object used for non offload send
1322 * @txdlh: Descriptor handle.
1323 * @t_code: One of the enumerated (and documented in the Titan user guide)
1324 * "transfer codes".
1325 *
1326 * Handle descriptor's transfer code. The latter comes with each completed
1327 * descriptor.
1328 *
1329 * Returns: one of the enum vxge_hw_status{} enumerated types.
1330 * VXGE_HW_OK - for success.
1331 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1332 */
1333enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1334 void *txdlh,
1335 enum vxge_hw_fifo_tcode t_code)
1336{
1337 struct __vxge_hw_channel *channel;
1338
1339 enum vxge_hw_status status = VXGE_HW_OK;
1340 channel = &fifo->channel;
1341
1342 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1343 status = VXGE_HW_ERR_INVALID_TCODE;
1344 goto exit;
1345 }
1346
1347 fifo->stats->txd_t_code_err_cnt[t_code]++;
1348exit:
1349 return status;
1350}
1351
1352/**
1353 * vxge_hw_fifo_txdl_free - Free descriptor.
1354 * @fifo: Handle to the fifo object used for non offload send
1355 * @txdlh: Descriptor handle.
1356 *
1357 * Free the reserved descriptor. This operation is "symmetrical" to
1358 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1359 * lifecycle.
1360 *
1361 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1362 * be:
1363 *
1364 * - reserved (vxge_hw_fifo_txdl_reserve);
1365 *
1366 * - posted (vxge_hw_fifo_txdl_post);
1367 *
1368 * - completed (vxge_hw_fifo_txdl_next_completed);
1369 *
1370 * - and recycled again (vxge_hw_fifo_txdl_free).
1371 *
1372 * For alternative state transitions and more details please refer to
1373 * the design doc.
1374 *
1375 */
1376void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1377{
1378 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1379 u32 max_frags;
1380 struct __vxge_hw_channel *channel;
1381
1382 channel = &fifo->channel;
1383
1384 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1385 (struct vxge_hw_fifo_txd *)txdlh);
1386
1387 max_frags = fifo->config->max_frags;
1388
1389 vxge_hw_channel_dtr_free(channel, txdlh);
1390}
1391
1392/**
1393 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1394 * to MAC address table.
1395 * @vp: Vpath handle.
1396 * @macaddr: MAC address to be added for this vpath into the list
1397 * @macaddr_mask: MAC address mask for macaddr
1398 * @duplicate_mode: Duplicate MAC address add mode. Please see
1399 * enum vxge_hw_vpath_mac_addr_add_mode{}
1400 *
1401 * Adds the given mac address and mac address mask into the list for this
1402 * vpath.
1403 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1404 * vxge_hw_vpath_mac_addr_get_next
1405 *
1406 */
1407enum vxge_hw_status
1408vxge_hw_vpath_mac_addr_add(
1409 struct __vxge_hw_vpath_handle *vp,
1410 u8 (macaddr)[ETH_ALEN],
1411 u8 (macaddr_mask)[ETH_ALEN],
1412 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1413{
1414 u32 i;
1415 u64 data1 = 0ULL;
1416 u64 data2 = 0ULL;
1417 enum vxge_hw_status status = VXGE_HW_OK;
1418
1419 if (vp == NULL) {
1420 status = VXGE_HW_ERR_INVALID_HANDLE;
1421 goto exit;
1422 }
1423
1424 for (i = 0; i < ETH_ALEN; i++) {
1425 data1 <<= 8;
1426 data1 |= (u8)macaddr[i];
1427
1428 data2 <<= 8;
1429 data2 |= (u8)macaddr_mask[i];
1430 }
1431
1432 switch (duplicate_mode) {
1433 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1434 i = 0;
1435 break;
1436 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1437 i = 1;
1438 break;
1439 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1440 i = 2;
1441 break;
1442 default:
1443 i = 0;
1444 break;
1445 }
1446
1447 status = __vxge_hw_vpath_rts_table_set(vp,
1448 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1449 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1450 0,
1451 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1452 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1453 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1454exit:
1455 return status;
1456}
1457
1458/**
1459 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1460 * from MAC address table.
1461 * @vp: Vpath handle.
1462 * @macaddr: First MAC address entry for this vpath in the list
1463 * @macaddr_mask: MAC address mask for macaddr
1464 *
1465 * Returns the first mac address and mac address mask in the list for this
1466 * vpath.
1467 * see also: vxge_hw_vpath_mac_addr_get_next
1468 *
1469 */
1470enum vxge_hw_status
1471vxge_hw_vpath_mac_addr_get(
1472 struct __vxge_hw_vpath_handle *vp,
1473 u8 (macaddr)[ETH_ALEN],
1474 u8 (macaddr_mask)[ETH_ALEN])
1475{
1476 u32 i;
1477 u64 data1 = 0ULL;
1478 u64 data2 = 0ULL;
1479 enum vxge_hw_status status = VXGE_HW_OK;
1480
1481 if (vp == NULL) {
1482 status = VXGE_HW_ERR_INVALID_HANDLE;
1483 goto exit;
1484 }
1485
1486 status = __vxge_hw_vpath_rts_table_get(vp,
1487 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1488 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1489 0, &data1, &data2);
1490
1491 if (status != VXGE_HW_OK)
1492 goto exit;
1493
1494 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1495
1496 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1497
1498 for (i = ETH_ALEN; i > 0; i--) {
1499 macaddr[i-1] = (u8)(data1 & 0xFF);
1500 data1 >>= 8;
1501
1502 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1503 data2 >>= 8;
1504 }
1505exit:
1506 return status;
1507}
1508
1509/**
1510 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1511 * vpath
1512 * from MAC address table.
1513 * @vp: Vpath handle.
1514 * @macaddr: Next MAC address entry for this vpath in the list
1515 * @macaddr_mask: MAC address mask for macaddr
1516 *
1517 * Returns the next mac address and mac address mask in the list for this
1518 * vpath.
1519 * see also: vxge_hw_vpath_mac_addr_get
1520 *
1521 */
1522enum vxge_hw_status
1523vxge_hw_vpath_mac_addr_get_next(
1524 struct __vxge_hw_vpath_handle *vp,
1525 u8 (macaddr)[ETH_ALEN],
1526 u8 (macaddr_mask)[ETH_ALEN])
1527{
1528 u32 i;
1529 u64 data1 = 0ULL;
1530 u64 data2 = 0ULL;
1531 enum vxge_hw_status status = VXGE_HW_OK;
1532
1533 if (vp == NULL) {
1534 status = VXGE_HW_ERR_INVALID_HANDLE;
1535 goto exit;
1536 }
1537
1538 status = __vxge_hw_vpath_rts_table_get(vp,
1539 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1540 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1541 0, &data1, &data2);
1542
1543 if (status != VXGE_HW_OK)
1544 goto exit;
1545
1546 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1547
1548 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1549
1550 for (i = ETH_ALEN; i > 0; i--) {
1551 macaddr[i-1] = (u8)(data1 & 0xFF);
1552 data1 >>= 8;
1553
1554 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1555 data2 >>= 8;
1556 }
1557
1558exit:
1559 return status;
1560}
1561
1562/**
1563 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1564 * to MAC address table.
1565 * @vp: Vpath handle.
1566 * @macaddr: MAC address to be added for this vpath into the list
1567 * @macaddr_mask: MAC address mask for macaddr
1568 *
1569 * Delete the given mac address and mac address mask into the list for this
1570 * vpath.
1571 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1572 * vxge_hw_vpath_mac_addr_get_next
1573 *
1574 */
1575enum vxge_hw_status
1576vxge_hw_vpath_mac_addr_delete(
1577 struct __vxge_hw_vpath_handle *vp,
1578 u8 (macaddr)[ETH_ALEN],
1579 u8 (macaddr_mask)[ETH_ALEN])
1580{
1581 u32 i;
1582 u64 data1 = 0ULL;
1583 u64 data2 = 0ULL;
1584 enum vxge_hw_status status = VXGE_HW_OK;
1585
1586 if (vp == NULL) {
1587 status = VXGE_HW_ERR_INVALID_HANDLE;
1588 goto exit;
1589 }
1590
1591 for (i = 0; i < ETH_ALEN; i++) {
1592 data1 <<= 8;
1593 data1 |= (u8)macaddr[i];
1594
1595 data2 <<= 8;
1596 data2 |= (u8)macaddr_mask[i];
1597 }
1598
1599 status = __vxge_hw_vpath_rts_table_set(vp,
1600 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1601 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1602 0,
1603 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1604 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1605exit:
1606 return status;
1607}
1608
1609/**
1610 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1611 * to vlan id table.
1612 * @vp: Vpath handle.
1613 * @vid: vlan id to be added for this vpath into the list
1614 *
1615 * Adds the given vlan id into the list for this vpath.
1616 * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1617 * vxge_hw_vpath_vid_get_next
1618 *
1619 */
1620enum vxge_hw_status
1621vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1622{
1623 enum vxge_hw_status status = VXGE_HW_OK;
1624
1625 if (vp == NULL) {
1626 status = VXGE_HW_ERR_INVALID_HANDLE;
1627 goto exit;
1628 }
1629
1630 status = __vxge_hw_vpath_rts_table_set(vp,
1631 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1632 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1633 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1634exit:
1635 return status;
1636}
1637
1638/**
1639 * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1640 * from vlan id table.
1641 * @vp: Vpath handle.
1642 * @vid: Buffer to return vlan id
1643 *
1644 * Returns the first vlan id in the list for this vpath.
1645 * see also: vxge_hw_vpath_vid_get_next
1646 *
1647 */
1648enum vxge_hw_status
1649vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1650{
1651 u64 data;
1652 enum vxge_hw_status status = VXGE_HW_OK;
1653
1654 if (vp == NULL) {
1655 status = VXGE_HW_ERR_INVALID_HANDLE;
1656 goto exit;
1657 }
1658
1659 status = __vxge_hw_vpath_rts_table_get(vp,
1660 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1661 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1662 0, vid, &data);
1663
1664 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1665exit:
1666 return status;
1667}
1668
1669/**
1670 * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
1671 * from vlan id table.
1672 * @vp: Vpath handle.
1673 * @vid: Buffer to return vlan id
1674 *
1675 * Returns the next vlan id in the list for this vpath.
1676 * see also: vxge_hw_vpath_vid_get
1677 *
1678 */
1679enum vxge_hw_status
1680vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1681{
1682 u64 data;
1683 enum vxge_hw_status status = VXGE_HW_OK;
1684
1685 if (vp == NULL) {
1686 status = VXGE_HW_ERR_INVALID_HANDLE;
1687 goto exit;
1688 }
1689
1690 status = __vxge_hw_vpath_rts_table_get(vp,
1691 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1692 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1693 0, vid, &data);
1694
1695 *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
1696exit:
1697 return status;
1698}
1699
1700/**
1701 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1702 * to vlan id table.
1703 * @vp: Vpath handle.
1704 * @vid: vlan id to be added for this vpath into the list
1705 *
1706 * Adds the given vlan id into the list for this vpath.
1707 * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
1708 * vxge_hw_vpath_vid_get_next
1709 *
1710 */
1711enum vxge_hw_status
1712vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1713{
1714 enum vxge_hw_status status = VXGE_HW_OK;
1715
1716 if (vp == NULL) {
1717 status = VXGE_HW_ERR_INVALID_HANDLE;
1718 goto exit;
1719 }
1720
1721 status = __vxge_hw_vpath_rts_table_set(vp,
1722 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1723 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1724 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1725exit:
1726 return status;
1727}
1728
1729/**
1730 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1731 * @vp: Vpath handle.
1732 *
1733 * Enable promiscuous mode of Titan-e operation.
1734 *
1735 * See also: vxge_hw_vpath_promisc_disable().
1736 */
1737enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1738 struct __vxge_hw_vpath_handle *vp)
1739{
1740 u64 val64;
1741 struct __vxge_hw_virtualpath *vpath;
1742 enum vxge_hw_status status = VXGE_HW_OK;
1743
1744 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1745 status = VXGE_HW_ERR_INVALID_HANDLE;
1746 goto exit;
1747 }
1748
1749 vpath = vp->vpath;
1750
1751 /* Enable promiscous mode for function 0 only */
1752 if (!(vpath->hldev->access_rights &
1753 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1754 return VXGE_HW_OK;
1755
1756 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1757
1758 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
1759
1760 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1761 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1762 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
1763 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
1764
1765 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1766 }
1767exit:
1768 return status;
1769}
1770
1771/**
1772 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
1773 * @vp: Vpath handle.
1774 *
1775 * Disable promiscuous mode of Titan-e operation.
1776 *
1777 * See also: vxge_hw_vpath_promisc_enable().
1778 */
1779enum vxge_hw_status vxge_hw_vpath_promisc_disable(
1780 struct __vxge_hw_vpath_handle *vp)
1781{
1782 u64 val64;
1783 struct __vxge_hw_virtualpath *vpath;
1784 enum vxge_hw_status status = VXGE_HW_OK;
1785
1786 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1787 status = VXGE_HW_ERR_INVALID_HANDLE;
1788 goto exit;
1789 }
1790
1791 vpath = vp->vpath;
1792
1793 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1794
1795 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
1796
1797 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
1798 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
1799 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
1800
1801 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1802 }
1803exit:
1804 return status;
1805}
1806
1807/*
1808 * vxge_hw_vpath_bcast_enable - Enable broadcast
1809 * @vp: Vpath handle.
1810 *
1811 * Enable receiving broadcasts.
1812 */
1813enum vxge_hw_status vxge_hw_vpath_bcast_enable(
1814 struct __vxge_hw_vpath_handle *vp)
1815{
1816 u64 val64;
1817 struct __vxge_hw_virtualpath *vpath;
1818 enum vxge_hw_status status = VXGE_HW_OK;
1819
1820 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1821 status = VXGE_HW_ERR_INVALID_HANDLE;
1822 goto exit;
1823 }
1824
1825 vpath = vp->vpath;
1826
1827 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1828
1829 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
1830 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
1831 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1832 }
1833exit:
1834 return status;
1835}
1836
1837/**
1838 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
1839 * @vp: Vpath handle.
1840 *
1841 * Enable Titan-e multicast addresses.
1842 * Returns: VXGE_HW_OK on success.
1843 *
1844 */
1845enum vxge_hw_status vxge_hw_vpath_mcast_enable(
1846 struct __vxge_hw_vpath_handle *vp)
1847{
1848 u64 val64;
1849 struct __vxge_hw_virtualpath *vpath;
1850 enum vxge_hw_status status = VXGE_HW_OK;
1851
1852 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1853 status = VXGE_HW_ERR_INVALID_HANDLE;
1854 goto exit;
1855 }
1856
1857 vpath = vp->vpath;
1858
1859 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1860
1861 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
1862 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1863 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1864 }
1865exit:
1866 return status;
1867}
1868
1869/**
1870 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
1871 * @vp: Vpath handle.
1872 *
1873 * Disable Titan-e multicast addresses.
1874 * Returns: VXGE_HW_OK - success.
1875 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
1876 *
1877 */
1878enum vxge_hw_status
1879vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
1880{
1881 u64 val64;
1882 struct __vxge_hw_virtualpath *vpath;
1883 enum vxge_hw_status status = VXGE_HW_OK;
1884
1885 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1886 status = VXGE_HW_ERR_INVALID_HANDLE;
1887 goto exit;
1888 }
1889
1890 vpath = vp->vpath;
1891
1892 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
1893
1894 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
1895 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
1896 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
1897 }
1898exit:
1899 return status;
1900}
1901
1902/*
1903 * __vxge_hw_vpath_alarm_process - Process Alarms.
1904 * @vpath: Virtual Path.
1905 * @skip_alarms: Do not clear the alarms
1906 *
1907 * Process vpath alarms.
1908 *
1909 */
1910enum vxge_hw_status __vxge_hw_vpath_alarm_process(
1911 struct __vxge_hw_virtualpath *vpath,
1912 u32 skip_alarms)
1913{
1914 u64 val64;
1915 u64 alarm_status;
1916 u64 pic_status;
1917 struct __vxge_hw_device *hldev = NULL;
1918 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
1919 u64 mask64;
1920 struct vxge_hw_vpath_stats_sw_info *sw_stats;
1921 struct vxge_hw_vpath_reg __iomem *vp_reg;
1922
1923 if (vpath == NULL) {
1924 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1925 alarm_event);
1926 goto out;
1927 }
1928
1929 hldev = vpath->hldev;
1930 vp_reg = vpath->vp_reg;
1931 alarm_status = readq(&vp_reg->vpath_general_int_status);
1932
1933 if (alarm_status == VXGE_HW_ALL_FOXES) {
1934 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
1935 alarm_event);
1936 goto out;
1937 }
1938
1939 sw_stats = vpath->sw_stats;
1940
1941 if (alarm_status & ~(
1942 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
1943 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
1944 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
1945 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
1946 sw_stats->error_stats.unknown_alarms++;
1947
1948 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
1949 alarm_event);
1950 goto out;
1951 }
1952
1953 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
1954
1955 val64 = readq(&vp_reg->xgmac_vp_int_status);
1956
1957 if (val64 &
1958 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
1959
1960 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
1961
1962 if (((val64 &
1963 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
1964 (!(val64 &
1965 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
1966 ((val64 &
1967 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1968 && (!(val64 &
1969 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1970 ))) {
1971 sw_stats->error_stats.network_sustained_fault++;
1972
1973 writeq(
1974 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
1975 &vp_reg->asic_ntwk_vp_err_mask);
1976
1977 __vxge_hw_device_handle_link_down_ind(hldev);
1978 alarm_event = VXGE_HW_SET_LEVEL(
1979 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
1980 }
1981
1982 if (((val64 &
1983 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
1984 (!(val64 &
1985 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
1986 ((val64 &
1987 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
1988 && (!(val64 &
1989 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
1990 ))) {
1991
1992 sw_stats->error_stats.network_sustained_ok++;
1993
1994 writeq(
1995 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
1996 &vp_reg->asic_ntwk_vp_err_mask);
1997
1998 __vxge_hw_device_handle_link_up_ind(hldev);
1999 alarm_event = VXGE_HW_SET_LEVEL(
2000 VXGE_HW_EVENT_LINK_UP, alarm_event);
2001 }
2002
2003 writeq(VXGE_HW_INTR_MASK_ALL,
2004 &vp_reg->asic_ntwk_vp_err_reg);
2005
2006 alarm_event = VXGE_HW_SET_LEVEL(
2007 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
2008
2009 if (skip_alarms)
2010 return VXGE_HW_OK;
2011 }
2012 }
2013
2014 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
2015
2016 pic_status = readq(&vp_reg->vpath_ppif_int_status);
2017
2018 if (pic_status &
2019 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
2020
2021 val64 = readq(&vp_reg->general_errors_reg);
2022 mask64 = readq(&vp_reg->general_errors_mask);
2023
2024 if ((val64 &
2025 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
2026 ~mask64) {
2027 sw_stats->error_stats.ini_serr_det++;
2028
2029 alarm_event = VXGE_HW_SET_LEVEL(
2030 VXGE_HW_EVENT_SERR, alarm_event);
2031 }
2032
2033 if ((val64 &
2034 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
2035 ~mask64) {
2036 sw_stats->error_stats.dblgen_fifo0_overflow++;
2037
2038 alarm_event = VXGE_HW_SET_LEVEL(
2039 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
2040 }
2041
2042 if ((val64 &
2043 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
2044 ~mask64)
2045 sw_stats->error_stats.statsb_pif_chain_error++;
2046
2047 if ((val64 &
2048 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
2049 ~mask64)
2050 sw_stats->error_stats.statsb_drop_timeout++;
2051
2052 if ((val64 &
2053 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
2054 ~mask64)
2055 sw_stats->error_stats.target_illegal_access++;
2056
2057 if (!skip_alarms) {
2058 writeq(VXGE_HW_INTR_MASK_ALL,
2059 &vp_reg->general_errors_reg);
2060 alarm_event = VXGE_HW_SET_LEVEL(
2061 VXGE_HW_EVENT_ALARM_CLEARED,
2062 alarm_event);
2063 }
2064 }
2065
2066 if (pic_status &
2067 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
2068
2069 val64 = readq(&vp_reg->kdfcctl_errors_reg);
2070 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
2071
2072 if ((val64 &
2073 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
2074 ~mask64) {
2075 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
2076
2077 alarm_event = VXGE_HW_SET_LEVEL(
2078 VXGE_HW_EVENT_FIFO_ERR,
2079 alarm_event);
2080 }
2081
2082 if ((val64 &
2083 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
2084 ~mask64) {
2085 sw_stats->error_stats.kdfcctl_fifo0_poison++;
2086
2087 alarm_event = VXGE_HW_SET_LEVEL(
2088 VXGE_HW_EVENT_FIFO_ERR,
2089 alarm_event);
2090 }
2091
2092 if ((val64 &
2093 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
2094 ~mask64) {
2095 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
2096
2097 alarm_event = VXGE_HW_SET_LEVEL(
2098 VXGE_HW_EVENT_FIFO_ERR,
2099 alarm_event);
2100 }
2101
2102 if (!skip_alarms) {
2103 writeq(VXGE_HW_INTR_MASK_ALL,
2104 &vp_reg->kdfcctl_errors_reg);
2105 alarm_event = VXGE_HW_SET_LEVEL(
2106 VXGE_HW_EVENT_ALARM_CLEARED,
2107 alarm_event);
2108 }
2109 }
2110
2111 }
2112
2113 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
2114
2115 val64 = readq(&vp_reg->wrdma_alarm_status);
2116
2117 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
2118
2119 val64 = readq(&vp_reg->prc_alarm_reg);
2120 mask64 = readq(&vp_reg->prc_alarm_mask);
2121
2122 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
2123 ~mask64)
2124 sw_stats->error_stats.prc_ring_bumps++;
2125
2126 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
2127 ~mask64) {
2128 sw_stats->error_stats.prc_rxdcm_sc_err++;
2129
2130 alarm_event = VXGE_HW_SET_LEVEL(
2131 VXGE_HW_EVENT_VPATH_ERR,
2132 alarm_event);
2133 }
2134
2135 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
2136 & ~mask64) {
2137 sw_stats->error_stats.prc_rxdcm_sc_abort++;
2138
2139 alarm_event = VXGE_HW_SET_LEVEL(
2140 VXGE_HW_EVENT_VPATH_ERR,
2141 alarm_event);
2142 }
2143
2144 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
2145 & ~mask64) {
2146 sw_stats->error_stats.prc_quanta_size_err++;
2147
2148 alarm_event = VXGE_HW_SET_LEVEL(
2149 VXGE_HW_EVENT_VPATH_ERR,
2150 alarm_event);
2151 }
2152
2153 if (!skip_alarms) {
2154 writeq(VXGE_HW_INTR_MASK_ALL,
2155 &vp_reg->prc_alarm_reg);
2156 alarm_event = VXGE_HW_SET_LEVEL(
2157 VXGE_HW_EVENT_ALARM_CLEARED,
2158 alarm_event);
2159 }
2160 }
2161 }
2162out:
2163 hldev->stats.sw_dev_err_stats.vpath_alarms++;
2164
2165 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
2166 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
2167 return VXGE_HW_OK;
2168
2169 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
2170
2171 if (alarm_event == VXGE_HW_EVENT_SERR)
2172 return VXGE_HW_ERR_CRITICAL;
2173
2174 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
2175 VXGE_HW_ERR_SLOT_FREEZE :
2176 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
2177 VXGE_HW_ERR_VPATH;
2178}
2179
2180/*
2181 * vxge_hw_vpath_alarm_process - Process Alarms.
2182 * @vpath: Virtual Path.
2183 * @skip_alarms: Do not clear the alarms
2184 *
2185 * Process vpath alarms.
2186 *
2187 */
2188enum vxge_hw_status vxge_hw_vpath_alarm_process(
2189 struct __vxge_hw_vpath_handle *vp,
2190 u32 skip_alarms)
2191{
2192 enum vxge_hw_status status = VXGE_HW_OK;
2193
2194 if (vp == NULL) {
2195 status = VXGE_HW_ERR_INVALID_HANDLE;
2196 goto exit;
2197 }
2198
2199 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2200exit:
2201 return status;
2202}
2203
2204/**
2205 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2206 * alrms
2207 * @vp: Virtual Path handle.
2208 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2209 * interrupts(Can be repeated). If fifo or ring are not enabled
2210 * the MSIX vector for that should be set to 0
2211 * @alarm_msix_id: MSIX vector for alarm.
2212 *
2213 * This API will associate a given MSIX vector numbers with the four TIM
2214 * interrupts and alarm interrupt.
2215 */
2216enum vxge_hw_status
2217vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2218 int alarm_msix_id)
2219{
2220 u64 val64;
2221 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2222 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2223 u32 first_vp_id = vpath->hldev->first_vp_id;
2224
2225 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2226 (first_vp_id * 4) + tim_msix_id[0]) |
2227 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2228 (first_vp_id * 4) + tim_msix_id[1]) |
2229 VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
2230 (first_vp_id * 4) + tim_msix_id[2]);
2231
2232 val64 |= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
2233 (first_vp_id * 4) + tim_msix_id[3]);
2234
2235 writeq(val64, &vp_reg->interrupt_cfg0);
2236
2237 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2238 (first_vp_id * 4) + alarm_msix_id),
2239 &vp_reg->interrupt_cfg2);
2240
2241 if (vpath->hldev->config.intr_mode ==
2242 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2243 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2244 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2245 0, 32), &vp_reg->one_shot_vect1_en);
2246 }
2247
2248 if (vpath->hldev->config.intr_mode ==
2249 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2250 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2251 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2252 0, 32), &vp_reg->one_shot_vect2_en);
2253
2254 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2255 VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
2256 0, 32), &vp_reg->one_shot_vect3_en);
2257 }
2258
2259 return VXGE_HW_OK;
2260}
2261
2262/**
2263 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2264 * @vp: Virtual Path handle.
2265 * @msix_id: MSIX ID
2266 *
2267 * The function masks the msix interrupt for the given msix_id
2268 *
2269 * Returns: 0,
2270 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2271 * status.
2272 * See also:
2273 */
2274void
2275vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2276{
2277 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2278 __vxge_hw_pio_mem_write32_upper(
2279 (u32) vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2280 (msix_id / 4)), 0, 32),
2281 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2282
2283 return;
2284}
2285
2286/**
2287 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2288 * @vp: Virtual Path handle.
2289 * @msix_id: MSI ID
2290 *
2291 * The function clears the msix interrupt for the given msix_id
2292 *
2293 * Returns: 0,
2294 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2295 * status.
2296 * See also:
2297 */
2298void
2299vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2300{
2301 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2302 if (hldev->config.intr_mode ==
2303 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2304 __vxge_hw_pio_mem_write32_upper(
2305 (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2306 (msix_id/4)), 0, 32),
2307 &hldev->common_reg->
2308 clr_msix_one_shot_vec[msix_id%4]);
2309 } else {
2310 __vxge_hw_pio_mem_write32_upper(
2311 (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2312 (msix_id/4)), 0, 32),
2313 &hldev->common_reg->
2314 clear_msix_mask_vect[msix_id%4]);
2315 }
2316
2317 return;
2318}
2319
2320/**
2321 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2322 * @vp: Virtual Path handle.
2323 * @msix_id: MSI ID
2324 *
2325 * The function unmasks the msix interrupt for the given msix_id
2326 *
2327 * Returns: 0,
2328 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2329 * status.
2330 * See also:
2331 */
2332void
2333vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2334{
2335 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2336 __vxge_hw_pio_mem_write32_upper(
2337 (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
2338 (msix_id/4)), 0, 32),
2339 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2340
2341 return;
2342}
2343
2344/**
2345 * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
2346 * @vp: Virtual Path handle.
2347 *
2348 * The function masks all msix interrupt for the given vpath
2349 *
2350 */
2351void
2352vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
2353{
2354
2355 __vxge_hw_pio_mem_write32_upper(
2356 (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
2357 &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
2358
2359 return;
2360}
2361
2362/**
2363 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2364 * @vp: Virtual Path handle.
2365 *
2366 * Mask Tx and Rx vpath interrupts.
2367 *
2368 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2369 */
2370void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2371{
2372 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2373 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2374 u64 val64;
2375 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2376
2377 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2378 tim_int_mask1, vp->vpath->vp_id);
2379
2380 val64 = readq(&hldev->common_reg->tim_int_mask0);
2381
2382 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2383 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2384 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2385 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2386 &hldev->common_reg->tim_int_mask0);
2387 }
2388
2389 val64 = readl(&hldev->common_reg->tim_int_mask1);
2390
2391 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2392 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2393 __vxge_hw_pio_mem_write32_upper(
2394 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2395 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2396 &hldev->common_reg->tim_int_mask1);
2397 }
2398
2399 return;
2400}
2401
2402/**
2403 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2404 * @vp: Virtual Path handle.
2405 *
2406 * Unmask Tx and Rx vpath interrupts.
2407 *
2408 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2409 */
2410void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2411{
2412 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2413 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2414 u64 val64;
2415 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2416
2417 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2418 tim_int_mask1, vp->vpath->vp_id);
2419
2420 val64 = readq(&hldev->common_reg->tim_int_mask0);
2421
2422 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2423 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2424 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2425 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2426 &hldev->common_reg->tim_int_mask0);
2427 }
2428
2429 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2430 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2431 __vxge_hw_pio_mem_write32_upper(
2432 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2433 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2434 &hldev->common_reg->tim_int_mask1);
2435 }
2436
2437 return;
2438}
2439
2440/**
2441 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2442 * descriptors and process the same.
2443 * @ring: Handle to the ring object used for receive
2444 *
2445 * The function polls the Rx for the completed descriptors and calls
2446 * the driver via supplied completion callback.
2447 *
2448 * Returns: VXGE_HW_OK, if the polling is completed successful.
2449 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2450 * descriptors available which are yet to be processed.
2451 *
2452 * See also: vxge_hw_vpath_poll_rx()
2453 */
2454enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2455{
2456 u8 t_code;
2457 enum vxge_hw_status status = VXGE_HW_OK;
2458 void *first_rxdh;
2459 u64 val64 = 0;
2460 int new_count = 0;
2461
2462 ring->cmpl_cnt = 0;
2463
2464 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2465 if (status == VXGE_HW_OK)
2466 ring->callback(ring, first_rxdh,
2467 t_code, ring->channel.userdata);
2468
2469 if (ring->cmpl_cnt != 0) {
2470 ring->doorbell_cnt += ring->cmpl_cnt;
2471 if (ring->doorbell_cnt >= ring->rxds_limit) {
2472 /*
2473 * Each RxD is of 4 qwords, update the number of
2474 * qwords replenished
2475 */
2476 new_count = (ring->doorbell_cnt * 4);
2477
2478 /* For each block add 4 more qwords */
2479 ring->total_db_cnt += ring->doorbell_cnt;
2480 if (ring->total_db_cnt >= ring->rxds_per_block) {
2481 new_count += 4;
2482 /* Reset total count */
2483 ring->total_db_cnt %= ring->rxds_per_block;
2484 }
2485 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2486 &ring->vp_reg->prc_rxd_doorbell);
2487 val64 =
2488 readl(&ring->common_reg->titan_general_int_status);
2489 ring->doorbell_cnt = 0;
2490 }
2491 }
2492
2493 return status;
2494}
2495
2496/**
2497 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2498 * the same.
2499 * @fifo: Handle to the fifo object used for non offload send
2500 *
2501 * The function polls the Tx for the completed descriptors and calls
2502 * the driver via supplied completion callback.
2503 *
2504 * Returns: VXGE_HW_OK, if the polling is completed successful.
2505 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2506 * descriptors available which are yet to be processed.
2507 *
2508 * See also: vxge_hw_vpath_poll_tx().
2509 */
2510enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2511 void **skb_ptr)
2512{
2513 enum vxge_hw_fifo_tcode t_code;
2514 void *first_txdlh;
2515 enum vxge_hw_status status = VXGE_HW_OK;
2516 struct __vxge_hw_channel *channel;
2517
2518 channel = &fifo->channel;
2519
2520 status = vxge_hw_fifo_txdl_next_completed(fifo,
2521 &first_txdlh, &t_code);
2522 if (status == VXGE_HW_OK)
2523 if (fifo->callback(fifo, first_txdlh,
2524 t_code, channel->userdata, skb_ptr) != VXGE_HW_OK)
2525 status = VXGE_HW_COMPLETIONS_REMAIN;
2526
2527 return status;
2528}