Mika Westerberg | 760ee1c | 2011-05-29 13:10:02 +0300 | [diff] [blame] | 1 | /* |
| 2 | * Driver for the Cirrus Logic EP93xx DMA Controller |
| 3 | * |
| 4 | * Copyright (C) 2011 Mika Westerberg |
| 5 | * |
| 6 | * DMA M2P implementation is based on the original |
| 7 | * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights: |
| 8 | * |
| 9 | * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org> |
| 10 | * Copyright (C) 2006 Applied Data Systems |
| 11 | * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com> |
| 12 | * |
| 13 | * This driver is based on dw_dmac and amba-pl08x drivers. |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or modify |
| 16 | * it under the terms of the GNU General Public License as published by |
| 17 | * the Free Software Foundation; either version 2 of the License, or |
| 18 | * (at your option) any later version. |
| 19 | */ |
| 20 | |
| 21 | #include <linux/clk.h> |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/dmaengine.h> |
| 25 | #include <linux/platform_device.h> |
| 26 | #include <linux/slab.h> |
| 27 | |
| 28 | #include <mach/dma.h> |
| 29 | |
| 30 | /* M2P registers */ |
| 31 | #define M2P_CONTROL 0x0000 |
| 32 | #define M2P_CONTROL_STALLINT BIT(0) |
| 33 | #define M2P_CONTROL_NFBINT BIT(1) |
| 34 | #define M2P_CONTROL_CH_ERROR_INT BIT(3) |
| 35 | #define M2P_CONTROL_ENABLE BIT(4) |
| 36 | #define M2P_CONTROL_ICE BIT(6) |
| 37 | |
| 38 | #define M2P_INTERRUPT 0x0004 |
| 39 | #define M2P_INTERRUPT_STALL BIT(0) |
| 40 | #define M2P_INTERRUPT_NFB BIT(1) |
| 41 | #define M2P_INTERRUPT_ERROR BIT(3) |
| 42 | |
| 43 | #define M2P_PPALLOC 0x0008 |
| 44 | #define M2P_STATUS 0x000c |
| 45 | |
| 46 | #define M2P_MAXCNT0 0x0020 |
| 47 | #define M2P_BASE0 0x0024 |
| 48 | #define M2P_MAXCNT1 0x0030 |
| 49 | #define M2P_BASE1 0x0034 |
| 50 | |
| 51 | #define M2P_STATE_IDLE 0 |
| 52 | #define M2P_STATE_STALL 1 |
| 53 | #define M2P_STATE_ON 2 |
| 54 | #define M2P_STATE_NEXT 3 |
| 55 | |
| 56 | /* M2M registers */ |
| 57 | #define M2M_CONTROL 0x0000 |
| 58 | #define M2M_CONTROL_DONEINT BIT(2) |
| 59 | #define M2M_CONTROL_ENABLE BIT(3) |
| 60 | #define M2M_CONTROL_START BIT(4) |
| 61 | #define M2M_CONTROL_DAH BIT(11) |
| 62 | #define M2M_CONTROL_SAH BIT(12) |
| 63 | #define M2M_CONTROL_PW_SHIFT 9 |
| 64 | #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT) |
| 65 | #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT) |
| 66 | #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT) |
| 67 | #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT) |
| 68 | #define M2M_CONTROL_TM_SHIFT 13 |
| 69 | #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT) |
| 70 | #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT) |
| 71 | #define M2M_CONTROL_RSS_SHIFT 22 |
| 72 | #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT) |
| 73 | #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT) |
| 74 | #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT) |
| 75 | #define M2M_CONTROL_NO_HDSK BIT(24) |
| 76 | #define M2M_CONTROL_PWSC_SHIFT 25 |
| 77 | |
| 78 | #define M2M_INTERRUPT 0x0004 |
| 79 | #define M2M_INTERRUPT_DONEINT BIT(1) |
| 80 | |
| 81 | #define M2M_BCR0 0x0010 |
| 82 | #define M2M_BCR1 0x0014 |
| 83 | #define M2M_SAR_BASE0 0x0018 |
| 84 | #define M2M_SAR_BASE1 0x001c |
| 85 | #define M2M_DAR_BASE0 0x002c |
| 86 | #define M2M_DAR_BASE1 0x0030 |
| 87 | |
| 88 | #define DMA_MAX_CHAN_BYTES 0xffff |
| 89 | #define DMA_MAX_CHAN_DESCRIPTORS 32 |
| 90 | |
| 91 | struct ep93xx_dma_engine; |
| 92 | |
| 93 | /** |
| 94 | * struct ep93xx_dma_desc - EP93xx specific transaction descriptor |
| 95 | * @src_addr: source address of the transaction |
| 96 | * @dst_addr: destination address of the transaction |
| 97 | * @size: size of the transaction (in bytes) |
| 98 | * @complete: this descriptor is completed |
| 99 | * @txd: dmaengine API descriptor |
| 100 | * @tx_list: list of linked descriptors |
| 101 | * @node: link used for putting this into a channel queue |
| 102 | */ |
| 103 | struct ep93xx_dma_desc { |
| 104 | u32 src_addr; |
| 105 | u32 dst_addr; |
| 106 | size_t size; |
| 107 | bool complete; |
| 108 | struct dma_async_tx_descriptor txd; |
| 109 | struct list_head tx_list; |
| 110 | struct list_head node; |
| 111 | }; |
| 112 | |
| 113 | /** |
| 114 | * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel |
| 115 | * @chan: dmaengine API channel |
| 116 | * @edma: pointer to to the engine device |
| 117 | * @regs: memory mapped registers |
| 118 | * @irq: interrupt number of the channel |
| 119 | * @clk: clock used by this channel |
| 120 | * @tasklet: channel specific tasklet used for callbacks |
| 121 | * @lock: lock protecting the fields following |
| 122 | * @flags: flags for the channel |
| 123 | * @buffer: which buffer to use next (0/1) |
| 124 | * @last_completed: last completed cookie value |
| 125 | * @active: flattened chain of descriptors currently being processed |
| 126 | * @queue: pending descriptors which are handled next |
| 127 | * @free_list: list of free descriptors which can be used |
| 128 | * @runtime_addr: physical address currently used as dest/src (M2M only). This |
| 129 | * is set via %DMA_SLAVE_CONFIG before slave operation is |
| 130 | * prepared |
| 131 | * @runtime_ctrl: M2M runtime values for the control register. |
| 132 | * |
| 133 | * As EP93xx DMA controller doesn't support real chained DMA descriptors we |
| 134 | * will have slightly different scheme here: @active points to a head of |
| 135 | * flattened DMA descriptor chain. |
| 136 | * |
| 137 | * @queue holds pending transactions. These are linked through the first |
| 138 | * descriptor in the chain. When a descriptor is moved to the @active queue, |
| 139 | * the first and chained descriptors are flattened into a single list. |
| 140 | * |
| 141 | * @chan.private holds pointer to &struct ep93xx_dma_data which contains |
| 142 | * necessary channel configuration information. For memcpy channels this must |
| 143 | * be %NULL. |
| 144 | */ |
| 145 | struct ep93xx_dma_chan { |
| 146 | struct dma_chan chan; |
| 147 | const struct ep93xx_dma_engine *edma; |
| 148 | void __iomem *regs; |
| 149 | int irq; |
| 150 | struct clk *clk; |
| 151 | struct tasklet_struct tasklet; |
| 152 | /* protects the fields following */ |
| 153 | spinlock_t lock; |
| 154 | unsigned long flags; |
| 155 | /* Channel is configured for cyclic transfers */ |
| 156 | #define EP93XX_DMA_IS_CYCLIC 0 |
| 157 | |
| 158 | int buffer; |
| 159 | dma_cookie_t last_completed; |
| 160 | struct list_head active; |
| 161 | struct list_head queue; |
| 162 | struct list_head free_list; |
| 163 | u32 runtime_addr; |
| 164 | u32 runtime_ctrl; |
| 165 | }; |
| 166 | |
| 167 | /** |
| 168 | * struct ep93xx_dma_engine - the EP93xx DMA engine instance |
| 169 | * @dma_dev: holds the dmaengine device |
| 170 | * @m2m: is this an M2M or M2P device |
| 171 | * @hw_setup: method which sets the channel up for operation |
| 172 | * @hw_shutdown: shuts the channel down and flushes whatever is left |
| 173 | * @hw_submit: pushes active descriptor(s) to the hardware |
| 174 | * @hw_interrupt: handle the interrupt |
| 175 | * @num_channels: number of channels for this instance |
| 176 | * @channels: array of channels |
| 177 | * |
| 178 | * There is one instance of this struct for the M2P channels and one for the |
| 179 | * M2M channels. hw_xxx() methods are used to perform operations which are |
| 180 | * different on M2M and M2P channels. These methods are called with channel |
| 181 | * lock held and interrupts disabled so they cannot sleep. |
| 182 | */ |
| 183 | struct ep93xx_dma_engine { |
| 184 | struct dma_device dma_dev; |
| 185 | bool m2m; |
| 186 | int (*hw_setup)(struct ep93xx_dma_chan *); |
| 187 | void (*hw_shutdown)(struct ep93xx_dma_chan *); |
| 188 | void (*hw_submit)(struct ep93xx_dma_chan *); |
| 189 | int (*hw_interrupt)(struct ep93xx_dma_chan *); |
| 190 | #define INTERRUPT_UNKNOWN 0 |
| 191 | #define INTERRUPT_DONE 1 |
| 192 | #define INTERRUPT_NEXT_BUFFER 2 |
| 193 | |
| 194 | size_t num_channels; |
| 195 | struct ep93xx_dma_chan channels[]; |
| 196 | }; |
| 197 | |
| 198 | static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac) |
| 199 | { |
| 200 | return &edmac->chan.dev->device; |
| 201 | } |
| 202 | |
| 203 | static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan) |
| 204 | { |
| 205 | return container_of(chan, struct ep93xx_dma_chan, chan); |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * ep93xx_dma_set_active - set new active descriptor chain |
| 210 | * @edmac: channel |
| 211 | * @desc: head of the new active descriptor chain |
| 212 | * |
| 213 | * Sets @desc to be the head of the new active descriptor chain. This is the |
| 214 | * chain which is processed next. The active list must be empty before calling |
| 215 | * this function. |
| 216 | * |
| 217 | * Called with @edmac->lock held and interrupts disabled. |
| 218 | */ |
| 219 | static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac, |
| 220 | struct ep93xx_dma_desc *desc) |
| 221 | { |
| 222 | BUG_ON(!list_empty(&edmac->active)); |
| 223 | |
| 224 | list_add_tail(&desc->node, &edmac->active); |
| 225 | |
| 226 | /* Flatten the @desc->tx_list chain into @edmac->active list */ |
| 227 | while (!list_empty(&desc->tx_list)) { |
| 228 | struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list, |
| 229 | struct ep93xx_dma_desc, node); |
| 230 | |
| 231 | /* |
| 232 | * We copy the callback parameters from the first descriptor |
| 233 | * to all the chained descriptors. This way we can call the |
| 234 | * callback without having to find out the first descriptor in |
| 235 | * the chain. Useful for cyclic transfers. |
| 236 | */ |
| 237 | d->txd.callback = desc->txd.callback; |
| 238 | d->txd.callback_param = desc->txd.callback_param; |
| 239 | |
| 240 | list_move_tail(&d->node, &edmac->active); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | /* Called with @edmac->lock held and interrupts disabled */ |
| 245 | static struct ep93xx_dma_desc * |
| 246 | ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac) |
| 247 | { |
| 248 | return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node); |
| 249 | } |
| 250 | |
| 251 | /** |
| 252 | * ep93xx_dma_advance_active - advances to the next active descriptor |
| 253 | * @edmac: channel |
| 254 | * |
| 255 | * Function advances active descriptor to the next in the @edmac->active and |
| 256 | * returns %true if we still have descriptors in the chain to process. |
| 257 | * Otherwise returns %false. |
| 258 | * |
| 259 | * When the channel is in cyclic mode always returns %true. |
| 260 | * |
| 261 | * Called with @edmac->lock held and interrupts disabled. |
| 262 | */ |
| 263 | static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac) |
| 264 | { |
| 265 | list_rotate_left(&edmac->active); |
| 266 | |
| 267 | if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) |
| 268 | return true; |
| 269 | |
| 270 | /* |
| 271 | * If txd.cookie is set it means that we are back in the first |
| 272 | * descriptor in the chain and hence done with it. |
| 273 | */ |
| 274 | return !ep93xx_dma_get_active(edmac)->txd.cookie; |
| 275 | } |
| 276 | |
| 277 | /* |
| 278 | * M2P DMA implementation |
| 279 | */ |
| 280 | |
| 281 | static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control) |
| 282 | { |
| 283 | writel(control, edmac->regs + M2P_CONTROL); |
| 284 | /* |
| 285 | * EP93xx User's Guide states that we must perform a dummy read after |
| 286 | * write to the control register. |
| 287 | */ |
| 288 | readl(edmac->regs + M2P_CONTROL); |
| 289 | } |
| 290 | |
| 291 | static int m2p_hw_setup(struct ep93xx_dma_chan *edmac) |
| 292 | { |
| 293 | struct ep93xx_dma_data *data = edmac->chan.private; |
| 294 | u32 control; |
| 295 | |
| 296 | writel(data->port & 0xf, edmac->regs + M2P_PPALLOC); |
| 297 | |
| 298 | control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE |
| 299 | | M2P_CONTROL_ENABLE; |
| 300 | m2p_set_control(edmac, control); |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac) |
| 306 | { |
| 307 | return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3; |
| 308 | } |
| 309 | |
| 310 | static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac) |
| 311 | { |
| 312 | u32 control; |
| 313 | |
| 314 | control = readl(edmac->regs + M2P_CONTROL); |
| 315 | control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); |
| 316 | m2p_set_control(edmac, control); |
| 317 | |
| 318 | while (m2p_channel_state(edmac) >= M2P_STATE_ON) |
| 319 | cpu_relax(); |
| 320 | |
| 321 | m2p_set_control(edmac, 0); |
| 322 | |
| 323 | while (m2p_channel_state(edmac) == M2P_STATE_STALL) |
| 324 | cpu_relax(); |
| 325 | } |
| 326 | |
| 327 | static void m2p_fill_desc(struct ep93xx_dma_chan *edmac) |
| 328 | { |
| 329 | struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); |
| 330 | u32 bus_addr; |
| 331 | |
| 332 | if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_TO_DEVICE) |
| 333 | bus_addr = desc->src_addr; |
| 334 | else |
| 335 | bus_addr = desc->dst_addr; |
| 336 | |
| 337 | if (edmac->buffer == 0) { |
| 338 | writel(desc->size, edmac->regs + M2P_MAXCNT0); |
| 339 | writel(bus_addr, edmac->regs + M2P_BASE0); |
| 340 | } else { |
| 341 | writel(desc->size, edmac->regs + M2P_MAXCNT1); |
| 342 | writel(bus_addr, edmac->regs + M2P_BASE1); |
| 343 | } |
| 344 | |
| 345 | edmac->buffer ^= 1; |
| 346 | } |
| 347 | |
| 348 | static void m2p_hw_submit(struct ep93xx_dma_chan *edmac) |
| 349 | { |
| 350 | u32 control = readl(edmac->regs + M2P_CONTROL); |
| 351 | |
| 352 | m2p_fill_desc(edmac); |
| 353 | control |= M2P_CONTROL_STALLINT; |
| 354 | |
| 355 | if (ep93xx_dma_advance_active(edmac)) { |
| 356 | m2p_fill_desc(edmac); |
| 357 | control |= M2P_CONTROL_NFBINT; |
| 358 | } |
| 359 | |
| 360 | m2p_set_control(edmac, control); |
| 361 | } |
| 362 | |
| 363 | static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac) |
| 364 | { |
| 365 | u32 irq_status = readl(edmac->regs + M2P_INTERRUPT); |
| 366 | u32 control; |
| 367 | |
| 368 | if (irq_status & M2P_INTERRUPT_ERROR) { |
| 369 | struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); |
| 370 | |
| 371 | /* Clear the error interrupt */ |
| 372 | writel(1, edmac->regs + M2P_INTERRUPT); |
| 373 | |
| 374 | /* |
| 375 | * It seems that there is no easy way of reporting errors back |
| 376 | * to client so we just report the error here and continue as |
| 377 | * usual. |
| 378 | * |
| 379 | * Revisit this when there is a mechanism to report back the |
| 380 | * errors. |
| 381 | */ |
| 382 | dev_err(chan2dev(edmac), |
| 383 | "DMA transfer failed! Details:\n" |
| 384 | "\tcookie : %d\n" |
| 385 | "\tsrc_addr : 0x%08x\n" |
| 386 | "\tdst_addr : 0x%08x\n" |
| 387 | "\tsize : %zu\n", |
| 388 | desc->txd.cookie, desc->src_addr, desc->dst_addr, |
| 389 | desc->size); |
| 390 | } |
| 391 | |
| 392 | switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) { |
| 393 | case M2P_INTERRUPT_STALL: |
| 394 | /* Disable interrupts */ |
| 395 | control = readl(edmac->regs + M2P_CONTROL); |
| 396 | control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT); |
| 397 | m2p_set_control(edmac, control); |
| 398 | |
| 399 | return INTERRUPT_DONE; |
| 400 | |
| 401 | case M2P_INTERRUPT_NFB: |
| 402 | if (ep93xx_dma_advance_active(edmac)) |
| 403 | m2p_fill_desc(edmac); |
| 404 | |
| 405 | return INTERRUPT_NEXT_BUFFER; |
| 406 | } |
| 407 | |
| 408 | return INTERRUPT_UNKNOWN; |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * M2M DMA implementation |
| 413 | * |
| 414 | * For the M2M transfers we don't use NFB at all. This is because it simply |
| 415 | * doesn't work well with memcpy transfers. When you submit both buffers it is |
| 416 | * extremely unlikely that you get an NFB interrupt, but it instead reports |
| 417 | * DONE interrupt and both buffers are already transferred which means that we |
| 418 | * weren't able to update the next buffer. |
| 419 | * |
| 420 | * So for now we "simulate" NFB by just submitting buffer after buffer |
| 421 | * without double buffering. |
| 422 | */ |
| 423 | |
| 424 | static int m2m_hw_setup(struct ep93xx_dma_chan *edmac) |
| 425 | { |
| 426 | const struct ep93xx_dma_data *data = edmac->chan.private; |
| 427 | u32 control = 0; |
| 428 | |
| 429 | if (!data) { |
| 430 | /* This is memcpy channel, nothing to configure */ |
| 431 | writel(control, edmac->regs + M2M_CONTROL); |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | switch (data->port) { |
| 436 | case EP93XX_DMA_SSP: |
| 437 | /* |
| 438 | * This was found via experimenting - anything less than 5 |
| 439 | * causes the channel to perform only a partial transfer which |
| 440 | * leads to problems since we don't get DONE interrupt then. |
| 441 | */ |
| 442 | control = (5 << M2M_CONTROL_PWSC_SHIFT); |
| 443 | control |= M2M_CONTROL_NO_HDSK; |
| 444 | |
| 445 | if (data->direction == DMA_TO_DEVICE) { |
| 446 | control |= M2M_CONTROL_DAH; |
| 447 | control |= M2M_CONTROL_TM_TX; |
| 448 | control |= M2M_CONTROL_RSS_SSPTX; |
| 449 | } else { |
| 450 | control |= M2M_CONTROL_SAH; |
| 451 | control |= M2M_CONTROL_TM_RX; |
| 452 | control |= M2M_CONTROL_RSS_SSPRX; |
| 453 | } |
| 454 | break; |
| 455 | |
| 456 | case EP93XX_DMA_IDE: |
| 457 | /* |
| 458 | * This IDE part is totally untested. Values below are taken |
| 459 | * from the EP93xx Users's Guide and might not be correct. |
| 460 | */ |
| 461 | control |= M2M_CONTROL_NO_HDSK; |
| 462 | control |= M2M_CONTROL_RSS_IDE; |
| 463 | control |= M2M_CONTROL_PW_16; |
| 464 | |
| 465 | if (data->direction == DMA_TO_DEVICE) { |
| 466 | /* Worst case from the UG */ |
| 467 | control = (3 << M2M_CONTROL_PWSC_SHIFT); |
| 468 | control |= M2M_CONTROL_DAH; |
| 469 | control |= M2M_CONTROL_TM_TX; |
| 470 | } else { |
| 471 | control = (2 << M2M_CONTROL_PWSC_SHIFT); |
| 472 | control |= M2M_CONTROL_SAH; |
| 473 | control |= M2M_CONTROL_TM_RX; |
| 474 | } |
| 475 | break; |
| 476 | |
| 477 | default: |
| 478 | return -EINVAL; |
| 479 | } |
| 480 | |
| 481 | writel(control, edmac->regs + M2M_CONTROL); |
| 482 | return 0; |
| 483 | } |
| 484 | |
| 485 | static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac) |
| 486 | { |
| 487 | /* Just disable the channel */ |
| 488 | writel(0, edmac->regs + M2M_CONTROL); |
| 489 | } |
| 490 | |
| 491 | static void m2m_fill_desc(struct ep93xx_dma_chan *edmac) |
| 492 | { |
| 493 | struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac); |
| 494 | |
| 495 | if (edmac->buffer == 0) { |
| 496 | writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0); |
| 497 | writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0); |
| 498 | writel(desc->size, edmac->regs + M2M_BCR0); |
| 499 | } else { |
| 500 | writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1); |
| 501 | writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1); |
| 502 | writel(desc->size, edmac->regs + M2M_BCR1); |
| 503 | } |
| 504 | |
| 505 | edmac->buffer ^= 1; |
| 506 | } |
| 507 | |
| 508 | static void m2m_hw_submit(struct ep93xx_dma_chan *edmac) |
| 509 | { |
| 510 | struct ep93xx_dma_data *data = edmac->chan.private; |
| 511 | u32 control = readl(edmac->regs + M2M_CONTROL); |
| 512 | |
| 513 | /* |
| 514 | * Since we allow clients to configure PW (peripheral width) we always |
| 515 | * clear PW bits here and then set them according what is given in |
| 516 | * the runtime configuration. |
| 517 | */ |
| 518 | control &= ~M2M_CONTROL_PW_MASK; |
| 519 | control |= edmac->runtime_ctrl; |
| 520 | |
| 521 | m2m_fill_desc(edmac); |
| 522 | control |= M2M_CONTROL_DONEINT; |
| 523 | |
| 524 | /* |
| 525 | * Now we can finally enable the channel. For M2M channel this must be |
| 526 | * done _after_ the BCRx registers are programmed. |
| 527 | */ |
| 528 | control |= M2M_CONTROL_ENABLE; |
| 529 | writel(control, edmac->regs + M2M_CONTROL); |
| 530 | |
| 531 | if (!data) { |
| 532 | /* |
| 533 | * For memcpy channels the software trigger must be asserted |
| 534 | * in order to start the memcpy operation. |
| 535 | */ |
| 536 | control |= M2M_CONTROL_START; |
| 537 | writel(control, edmac->regs + M2M_CONTROL); |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac) |
| 542 | { |
| 543 | u32 control; |
| 544 | |
| 545 | if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_DONEINT)) |
| 546 | return INTERRUPT_UNKNOWN; |
| 547 | |
| 548 | /* Clear the DONE bit */ |
| 549 | writel(0, edmac->regs + M2M_INTERRUPT); |
| 550 | |
| 551 | /* Disable interrupts and the channel */ |
| 552 | control = readl(edmac->regs + M2M_CONTROL); |
| 553 | control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_ENABLE); |
| 554 | writel(control, edmac->regs + M2M_CONTROL); |
| 555 | |
| 556 | /* |
| 557 | * Since we only get DONE interrupt we have to find out ourselves |
| 558 | * whether there still is something to process. So we try to advance |
| 559 | * the chain an see whether it succeeds. |
| 560 | */ |
| 561 | if (ep93xx_dma_advance_active(edmac)) { |
| 562 | edmac->edma->hw_submit(edmac); |
| 563 | return INTERRUPT_NEXT_BUFFER; |
| 564 | } |
| 565 | |
| 566 | return INTERRUPT_DONE; |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * DMA engine API implementation |
| 571 | */ |
| 572 | |
| 573 | static struct ep93xx_dma_desc * |
| 574 | ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac) |
| 575 | { |
| 576 | struct ep93xx_dma_desc *desc, *_desc; |
| 577 | struct ep93xx_dma_desc *ret = NULL; |
| 578 | unsigned long flags; |
| 579 | |
| 580 | spin_lock_irqsave(&edmac->lock, flags); |
| 581 | list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) { |
| 582 | if (async_tx_test_ack(&desc->txd)) { |
| 583 | list_del_init(&desc->node); |
| 584 | |
| 585 | /* Re-initialize the descriptor */ |
| 586 | desc->src_addr = 0; |
| 587 | desc->dst_addr = 0; |
| 588 | desc->size = 0; |
| 589 | desc->complete = false; |
| 590 | desc->txd.cookie = 0; |
| 591 | desc->txd.callback = NULL; |
| 592 | desc->txd.callback_param = NULL; |
| 593 | |
| 594 | ret = desc; |
| 595 | break; |
| 596 | } |
| 597 | } |
| 598 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 599 | return ret; |
| 600 | } |
| 601 | |
| 602 | static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac, |
| 603 | struct ep93xx_dma_desc *desc) |
| 604 | { |
| 605 | if (desc) { |
| 606 | unsigned long flags; |
| 607 | |
| 608 | spin_lock_irqsave(&edmac->lock, flags); |
| 609 | list_splice_init(&desc->tx_list, &edmac->free_list); |
| 610 | list_add(&desc->node, &edmac->free_list); |
| 611 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | /** |
| 616 | * ep93xx_dma_advance_work - start processing the next pending transaction |
| 617 | * @edmac: channel |
| 618 | * |
| 619 | * If we have pending transactions queued and we are currently idling, this |
| 620 | * function takes the next queued transaction from the @edmac->queue and |
| 621 | * pushes it to the hardware for execution. |
| 622 | */ |
| 623 | static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac) |
| 624 | { |
| 625 | struct ep93xx_dma_desc *new; |
| 626 | unsigned long flags; |
| 627 | |
| 628 | spin_lock_irqsave(&edmac->lock, flags); |
| 629 | if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) { |
| 630 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 631 | return; |
| 632 | } |
| 633 | |
| 634 | /* Take the next descriptor from the pending queue */ |
| 635 | new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node); |
| 636 | list_del_init(&new->node); |
| 637 | |
| 638 | ep93xx_dma_set_active(edmac, new); |
| 639 | |
| 640 | /* Push it to the hardware */ |
| 641 | edmac->edma->hw_submit(edmac); |
| 642 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 643 | } |
| 644 | |
| 645 | static void ep93xx_dma_unmap_buffers(struct ep93xx_dma_desc *desc) |
| 646 | { |
| 647 | struct device *dev = desc->txd.chan->device->dev; |
| 648 | |
| 649 | if (!(desc->txd.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
| 650 | if (desc->txd.flags & DMA_COMPL_SRC_UNMAP_SINGLE) |
| 651 | dma_unmap_single(dev, desc->src_addr, desc->size, |
| 652 | DMA_TO_DEVICE); |
| 653 | else |
| 654 | dma_unmap_page(dev, desc->src_addr, desc->size, |
| 655 | DMA_TO_DEVICE); |
| 656 | } |
| 657 | if (!(desc->txd.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { |
| 658 | if (desc->txd.flags & DMA_COMPL_DEST_UNMAP_SINGLE) |
| 659 | dma_unmap_single(dev, desc->dst_addr, desc->size, |
| 660 | DMA_FROM_DEVICE); |
| 661 | else |
| 662 | dma_unmap_page(dev, desc->dst_addr, desc->size, |
| 663 | DMA_FROM_DEVICE); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | static void ep93xx_dma_tasklet(unsigned long data) |
| 668 | { |
| 669 | struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data; |
| 670 | struct ep93xx_dma_desc *desc, *d; |
| 671 | dma_async_tx_callback callback; |
| 672 | void *callback_param; |
| 673 | LIST_HEAD(list); |
| 674 | |
| 675 | spin_lock_irq(&edmac->lock); |
| 676 | desc = ep93xx_dma_get_active(edmac); |
| 677 | if (desc->complete) { |
| 678 | edmac->last_completed = desc->txd.cookie; |
| 679 | list_splice_init(&edmac->active, &list); |
| 680 | } |
| 681 | spin_unlock_irq(&edmac->lock); |
| 682 | |
| 683 | /* Pick up the next descriptor from the queue */ |
| 684 | ep93xx_dma_advance_work(edmac); |
| 685 | |
| 686 | callback = desc->txd.callback; |
| 687 | callback_param = desc->txd.callback_param; |
| 688 | |
| 689 | /* Now we can release all the chained descriptors */ |
| 690 | list_for_each_entry_safe(desc, d, &list, node) { |
| 691 | /* |
| 692 | * For the memcpy channels the API requires us to unmap the |
| 693 | * buffers unless requested otherwise. |
| 694 | */ |
| 695 | if (!edmac->chan.private) |
| 696 | ep93xx_dma_unmap_buffers(desc); |
| 697 | |
| 698 | ep93xx_dma_desc_put(edmac, desc); |
| 699 | } |
| 700 | |
| 701 | if (callback) |
| 702 | callback(callback_param); |
| 703 | } |
| 704 | |
| 705 | static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id) |
| 706 | { |
| 707 | struct ep93xx_dma_chan *edmac = dev_id; |
| 708 | irqreturn_t ret = IRQ_HANDLED; |
| 709 | |
| 710 | spin_lock(&edmac->lock); |
| 711 | |
| 712 | switch (edmac->edma->hw_interrupt(edmac)) { |
| 713 | case INTERRUPT_DONE: |
| 714 | ep93xx_dma_get_active(edmac)->complete = true; |
| 715 | tasklet_schedule(&edmac->tasklet); |
| 716 | break; |
| 717 | |
| 718 | case INTERRUPT_NEXT_BUFFER: |
| 719 | if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) |
| 720 | tasklet_schedule(&edmac->tasklet); |
| 721 | break; |
| 722 | |
| 723 | default: |
| 724 | dev_warn(chan2dev(edmac), "unknown interrupt!\n"); |
| 725 | ret = IRQ_NONE; |
| 726 | break; |
| 727 | } |
| 728 | |
| 729 | spin_unlock(&edmac->lock); |
| 730 | return ret; |
| 731 | } |
| 732 | |
| 733 | /** |
| 734 | * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed |
| 735 | * @tx: descriptor to be executed |
| 736 | * |
| 737 | * Function will execute given descriptor on the hardware or if the hardware |
| 738 | * is busy, queue the descriptor to be executed later on. Returns cookie which |
| 739 | * can be used to poll the status of the descriptor. |
| 740 | */ |
| 741 | static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx) |
| 742 | { |
| 743 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan); |
| 744 | struct ep93xx_dma_desc *desc; |
| 745 | dma_cookie_t cookie; |
| 746 | unsigned long flags; |
| 747 | |
| 748 | spin_lock_irqsave(&edmac->lock, flags); |
| 749 | |
| 750 | cookie = edmac->chan.cookie; |
| 751 | |
| 752 | if (++cookie < 0) |
| 753 | cookie = 1; |
| 754 | |
| 755 | desc = container_of(tx, struct ep93xx_dma_desc, txd); |
| 756 | |
| 757 | edmac->chan.cookie = cookie; |
| 758 | desc->txd.cookie = cookie; |
| 759 | |
| 760 | /* |
| 761 | * If nothing is currently prosessed, we push this descriptor |
| 762 | * directly to the hardware. Otherwise we put the descriptor |
| 763 | * to the pending queue. |
| 764 | */ |
| 765 | if (list_empty(&edmac->active)) { |
| 766 | ep93xx_dma_set_active(edmac, desc); |
| 767 | edmac->edma->hw_submit(edmac); |
| 768 | } else { |
| 769 | list_add_tail(&desc->node, &edmac->queue); |
| 770 | } |
| 771 | |
| 772 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 773 | return cookie; |
| 774 | } |
| 775 | |
| 776 | /** |
| 777 | * ep93xx_dma_alloc_chan_resources - allocate resources for the channel |
| 778 | * @chan: channel to allocate resources |
| 779 | * |
| 780 | * Function allocates necessary resources for the given DMA channel and |
| 781 | * returns number of allocated descriptors for the channel. Negative errno |
| 782 | * is returned in case of failure. |
| 783 | */ |
| 784 | static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan) |
| 785 | { |
| 786 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 787 | struct ep93xx_dma_data *data = chan->private; |
| 788 | const char *name = dma_chan_name(chan); |
| 789 | int ret, i; |
| 790 | |
| 791 | /* Sanity check the channel parameters */ |
| 792 | if (!edmac->edma->m2m) { |
| 793 | if (!data) |
| 794 | return -EINVAL; |
| 795 | if (data->port < EP93XX_DMA_I2S1 || |
| 796 | data->port > EP93XX_DMA_IRDA) |
| 797 | return -EINVAL; |
| 798 | if (data->direction != ep93xx_dma_chan_direction(chan)) |
| 799 | return -EINVAL; |
| 800 | } else { |
| 801 | if (data) { |
| 802 | switch (data->port) { |
| 803 | case EP93XX_DMA_SSP: |
| 804 | case EP93XX_DMA_IDE: |
| 805 | if (data->direction != DMA_TO_DEVICE && |
| 806 | data->direction != DMA_FROM_DEVICE) |
| 807 | return -EINVAL; |
| 808 | break; |
| 809 | default: |
| 810 | return -EINVAL; |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | if (data && data->name) |
| 816 | name = data->name; |
| 817 | |
| 818 | ret = clk_enable(edmac->clk); |
| 819 | if (ret) |
| 820 | return ret; |
| 821 | |
| 822 | ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac); |
| 823 | if (ret) |
| 824 | goto fail_clk_disable; |
| 825 | |
| 826 | spin_lock_irq(&edmac->lock); |
| 827 | edmac->last_completed = 1; |
| 828 | edmac->chan.cookie = 1; |
| 829 | ret = edmac->edma->hw_setup(edmac); |
| 830 | spin_unlock_irq(&edmac->lock); |
| 831 | |
| 832 | if (ret) |
| 833 | goto fail_free_irq; |
| 834 | |
| 835 | for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) { |
| 836 | struct ep93xx_dma_desc *desc; |
| 837 | |
| 838 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); |
| 839 | if (!desc) { |
| 840 | dev_warn(chan2dev(edmac), "not enough descriptors\n"); |
| 841 | break; |
| 842 | } |
| 843 | |
| 844 | INIT_LIST_HEAD(&desc->tx_list); |
| 845 | |
| 846 | dma_async_tx_descriptor_init(&desc->txd, chan); |
| 847 | desc->txd.flags = DMA_CTRL_ACK; |
| 848 | desc->txd.tx_submit = ep93xx_dma_tx_submit; |
| 849 | |
| 850 | ep93xx_dma_desc_put(edmac, desc); |
| 851 | } |
| 852 | |
| 853 | return i; |
| 854 | |
| 855 | fail_free_irq: |
| 856 | free_irq(edmac->irq, edmac); |
| 857 | fail_clk_disable: |
| 858 | clk_disable(edmac->clk); |
| 859 | |
| 860 | return ret; |
| 861 | } |
| 862 | |
| 863 | /** |
| 864 | * ep93xx_dma_free_chan_resources - release resources for the channel |
| 865 | * @chan: channel |
| 866 | * |
| 867 | * Function releases all the resources allocated for the given channel. |
| 868 | * The channel must be idle when this is called. |
| 869 | */ |
| 870 | static void ep93xx_dma_free_chan_resources(struct dma_chan *chan) |
| 871 | { |
| 872 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 873 | struct ep93xx_dma_desc *desc, *d; |
| 874 | unsigned long flags; |
| 875 | LIST_HEAD(list); |
| 876 | |
| 877 | BUG_ON(!list_empty(&edmac->active)); |
| 878 | BUG_ON(!list_empty(&edmac->queue)); |
| 879 | |
| 880 | spin_lock_irqsave(&edmac->lock, flags); |
| 881 | edmac->edma->hw_shutdown(edmac); |
| 882 | edmac->runtime_addr = 0; |
| 883 | edmac->runtime_ctrl = 0; |
| 884 | edmac->buffer = 0; |
| 885 | list_splice_init(&edmac->free_list, &list); |
| 886 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 887 | |
| 888 | list_for_each_entry_safe(desc, d, &list, node) |
| 889 | kfree(desc); |
| 890 | |
| 891 | clk_disable(edmac->clk); |
| 892 | free_irq(edmac->irq, edmac); |
| 893 | } |
| 894 | |
| 895 | /** |
| 896 | * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation |
| 897 | * @chan: channel |
| 898 | * @dest: destination bus address |
| 899 | * @src: source bus address |
| 900 | * @len: size of the transaction |
| 901 | * @flags: flags for the descriptor |
| 902 | * |
| 903 | * Returns a valid DMA descriptor or %NULL in case of failure. |
| 904 | */ |
| 905 | struct dma_async_tx_descriptor * |
| 906 | ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, |
| 907 | dma_addr_t src, size_t len, unsigned long flags) |
| 908 | { |
| 909 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 910 | struct ep93xx_dma_desc *desc, *first; |
| 911 | size_t bytes, offset; |
| 912 | |
| 913 | first = NULL; |
| 914 | for (offset = 0; offset < len; offset += bytes) { |
| 915 | desc = ep93xx_dma_desc_get(edmac); |
| 916 | if (!desc) { |
| 917 | dev_warn(chan2dev(edmac), "couln't get descriptor\n"); |
| 918 | goto fail; |
| 919 | } |
| 920 | |
| 921 | bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES); |
| 922 | |
| 923 | desc->src_addr = src + offset; |
| 924 | desc->dst_addr = dest + offset; |
| 925 | desc->size = bytes; |
| 926 | |
| 927 | if (!first) |
| 928 | first = desc; |
| 929 | else |
| 930 | list_add_tail(&desc->node, &first->tx_list); |
| 931 | } |
| 932 | |
| 933 | first->txd.cookie = -EBUSY; |
| 934 | first->txd.flags = flags; |
| 935 | |
| 936 | return &first->txd; |
| 937 | fail: |
| 938 | ep93xx_dma_desc_put(edmac, first); |
| 939 | return NULL; |
| 940 | } |
| 941 | |
| 942 | /** |
| 943 | * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation |
| 944 | * @chan: channel |
| 945 | * @sgl: list of buffers to transfer |
| 946 | * @sg_len: number of entries in @sgl |
| 947 | * @dir: direction of tha DMA transfer |
| 948 | * @flags: flags for the descriptor |
| 949 | * |
| 950 | * Returns a valid DMA descriptor or %NULL in case of failure. |
| 951 | */ |
| 952 | static struct dma_async_tx_descriptor * |
| 953 | ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, |
| 954 | unsigned int sg_len, enum dma_data_direction dir, |
| 955 | unsigned long flags) |
| 956 | { |
| 957 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 958 | struct ep93xx_dma_desc *desc, *first; |
| 959 | struct scatterlist *sg; |
| 960 | int i; |
| 961 | |
| 962 | if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { |
| 963 | dev_warn(chan2dev(edmac), |
| 964 | "channel was configured with different direction\n"); |
| 965 | return NULL; |
| 966 | } |
| 967 | |
| 968 | if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { |
| 969 | dev_warn(chan2dev(edmac), |
| 970 | "channel is already used for cyclic transfers\n"); |
| 971 | return NULL; |
| 972 | } |
| 973 | |
| 974 | first = NULL; |
| 975 | for_each_sg(sgl, sg, sg_len, i) { |
| 976 | size_t sg_len = sg_dma_len(sg); |
| 977 | |
| 978 | if (sg_len > DMA_MAX_CHAN_BYTES) { |
| 979 | dev_warn(chan2dev(edmac), "too big transfer size %d\n", |
| 980 | sg_len); |
| 981 | goto fail; |
| 982 | } |
| 983 | |
| 984 | desc = ep93xx_dma_desc_get(edmac); |
| 985 | if (!desc) { |
| 986 | dev_warn(chan2dev(edmac), "couln't get descriptor\n"); |
| 987 | goto fail; |
| 988 | } |
| 989 | |
| 990 | if (dir == DMA_TO_DEVICE) { |
| 991 | desc->src_addr = sg_dma_address(sg); |
| 992 | desc->dst_addr = edmac->runtime_addr; |
| 993 | } else { |
| 994 | desc->src_addr = edmac->runtime_addr; |
| 995 | desc->dst_addr = sg_dma_address(sg); |
| 996 | } |
| 997 | desc->size = sg_len; |
| 998 | |
| 999 | if (!first) |
| 1000 | first = desc; |
| 1001 | else |
| 1002 | list_add_tail(&desc->node, &first->tx_list); |
| 1003 | } |
| 1004 | |
| 1005 | first->txd.cookie = -EBUSY; |
| 1006 | first->txd.flags = flags; |
| 1007 | |
| 1008 | return &first->txd; |
| 1009 | |
| 1010 | fail: |
| 1011 | ep93xx_dma_desc_put(edmac, first); |
| 1012 | return NULL; |
| 1013 | } |
| 1014 | |
| 1015 | /** |
| 1016 | * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation |
| 1017 | * @chan: channel |
| 1018 | * @dma_addr: DMA mapped address of the buffer |
| 1019 | * @buf_len: length of the buffer (in bytes) |
| 1020 | * @period_len: lenght of a single period |
| 1021 | * @dir: direction of the operation |
| 1022 | * |
| 1023 | * Prepares a descriptor for cyclic DMA operation. This means that once the |
| 1024 | * descriptor is submitted, we will be submitting in a @period_len sized |
| 1025 | * buffers and calling callback once the period has been elapsed. Transfer |
| 1026 | * terminates only when client calls dmaengine_terminate_all() for this |
| 1027 | * channel. |
| 1028 | * |
| 1029 | * Returns a valid DMA descriptor or %NULL in case of failure. |
| 1030 | */ |
| 1031 | static struct dma_async_tx_descriptor * |
| 1032 | ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, |
| 1033 | size_t buf_len, size_t period_len, |
| 1034 | enum dma_data_direction dir) |
| 1035 | { |
| 1036 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 1037 | struct ep93xx_dma_desc *desc, *first; |
| 1038 | size_t offset = 0; |
| 1039 | |
| 1040 | if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) { |
| 1041 | dev_warn(chan2dev(edmac), |
| 1042 | "channel was configured with different direction\n"); |
| 1043 | return NULL; |
| 1044 | } |
| 1045 | |
| 1046 | if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) { |
| 1047 | dev_warn(chan2dev(edmac), |
| 1048 | "channel is already used for cyclic transfers\n"); |
| 1049 | return NULL; |
| 1050 | } |
| 1051 | |
| 1052 | if (period_len > DMA_MAX_CHAN_BYTES) { |
| 1053 | dev_warn(chan2dev(edmac), "too big period length %d\n", |
| 1054 | period_len); |
| 1055 | return NULL; |
| 1056 | } |
| 1057 | |
| 1058 | /* Split the buffer into period size chunks */ |
| 1059 | first = NULL; |
| 1060 | for (offset = 0; offset < buf_len; offset += period_len) { |
| 1061 | desc = ep93xx_dma_desc_get(edmac); |
| 1062 | if (!desc) { |
| 1063 | dev_warn(chan2dev(edmac), "couln't get descriptor\n"); |
| 1064 | goto fail; |
| 1065 | } |
| 1066 | |
| 1067 | if (dir == DMA_TO_DEVICE) { |
| 1068 | desc->src_addr = dma_addr + offset; |
| 1069 | desc->dst_addr = edmac->runtime_addr; |
| 1070 | } else { |
| 1071 | desc->src_addr = edmac->runtime_addr; |
| 1072 | desc->dst_addr = dma_addr + offset; |
| 1073 | } |
| 1074 | |
| 1075 | desc->size = period_len; |
| 1076 | |
| 1077 | if (!first) |
| 1078 | first = desc; |
| 1079 | else |
| 1080 | list_add_tail(&desc->node, &first->tx_list); |
| 1081 | } |
| 1082 | |
| 1083 | first->txd.cookie = -EBUSY; |
| 1084 | |
| 1085 | return &first->txd; |
| 1086 | |
| 1087 | fail: |
| 1088 | ep93xx_dma_desc_put(edmac, first); |
| 1089 | return NULL; |
| 1090 | } |
| 1091 | |
| 1092 | /** |
| 1093 | * ep93xx_dma_terminate_all - terminate all transactions |
| 1094 | * @edmac: channel |
| 1095 | * |
| 1096 | * Stops all DMA transactions. All descriptors are put back to the |
| 1097 | * @edmac->free_list and callbacks are _not_ called. |
| 1098 | */ |
| 1099 | static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac) |
| 1100 | { |
| 1101 | struct ep93xx_dma_desc *desc, *_d; |
| 1102 | unsigned long flags; |
| 1103 | LIST_HEAD(list); |
| 1104 | |
| 1105 | spin_lock_irqsave(&edmac->lock, flags); |
| 1106 | /* First we disable and flush the DMA channel */ |
| 1107 | edmac->edma->hw_shutdown(edmac); |
| 1108 | clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags); |
| 1109 | list_splice_init(&edmac->active, &list); |
| 1110 | list_splice_init(&edmac->queue, &list); |
| 1111 | /* |
| 1112 | * We then re-enable the channel. This way we can continue submitting |
| 1113 | * the descriptors by just calling ->hw_submit() again. |
| 1114 | */ |
| 1115 | edmac->edma->hw_setup(edmac); |
| 1116 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 1117 | |
| 1118 | list_for_each_entry_safe(desc, _d, &list, node) |
| 1119 | ep93xx_dma_desc_put(edmac, desc); |
| 1120 | |
| 1121 | return 0; |
| 1122 | } |
| 1123 | |
| 1124 | static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac, |
| 1125 | struct dma_slave_config *config) |
| 1126 | { |
| 1127 | enum dma_slave_buswidth width; |
| 1128 | unsigned long flags; |
| 1129 | u32 addr, ctrl; |
| 1130 | |
| 1131 | if (!edmac->edma->m2m) |
| 1132 | return -EINVAL; |
| 1133 | |
| 1134 | switch (config->direction) { |
| 1135 | case DMA_FROM_DEVICE: |
| 1136 | width = config->src_addr_width; |
| 1137 | addr = config->src_addr; |
| 1138 | break; |
| 1139 | |
| 1140 | case DMA_TO_DEVICE: |
| 1141 | width = config->dst_addr_width; |
| 1142 | addr = config->dst_addr; |
| 1143 | break; |
| 1144 | |
| 1145 | default: |
| 1146 | return -EINVAL; |
| 1147 | } |
| 1148 | |
| 1149 | switch (width) { |
| 1150 | case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| 1151 | ctrl = 0; |
| 1152 | break; |
| 1153 | case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| 1154 | ctrl = M2M_CONTROL_PW_16; |
| 1155 | break; |
| 1156 | case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| 1157 | ctrl = M2M_CONTROL_PW_32; |
| 1158 | break; |
| 1159 | default: |
| 1160 | return -EINVAL; |
| 1161 | } |
| 1162 | |
| 1163 | spin_lock_irqsave(&edmac->lock, flags); |
| 1164 | edmac->runtime_addr = addr; |
| 1165 | edmac->runtime_ctrl = ctrl; |
| 1166 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 1167 | |
| 1168 | return 0; |
| 1169 | } |
| 1170 | |
| 1171 | /** |
| 1172 | * ep93xx_dma_control - manipulate all pending operations on a channel |
| 1173 | * @chan: channel |
| 1174 | * @cmd: control command to perform |
| 1175 | * @arg: optional argument |
| 1176 | * |
| 1177 | * Controls the channel. Function returns %0 in case of success or negative |
| 1178 | * error in case of failure. |
| 1179 | */ |
| 1180 | static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| 1181 | unsigned long arg) |
| 1182 | { |
| 1183 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 1184 | struct dma_slave_config *config; |
| 1185 | |
| 1186 | switch (cmd) { |
| 1187 | case DMA_TERMINATE_ALL: |
| 1188 | return ep93xx_dma_terminate_all(edmac); |
| 1189 | |
| 1190 | case DMA_SLAVE_CONFIG: |
| 1191 | config = (struct dma_slave_config *)arg; |
| 1192 | return ep93xx_dma_slave_config(edmac, config); |
| 1193 | |
| 1194 | default: |
| 1195 | break; |
| 1196 | } |
| 1197 | |
| 1198 | return -ENOSYS; |
| 1199 | } |
| 1200 | |
| 1201 | /** |
| 1202 | * ep93xx_dma_tx_status - check if a transaction is completed |
| 1203 | * @chan: channel |
| 1204 | * @cookie: transaction specific cookie |
| 1205 | * @state: state of the transaction is stored here if given |
| 1206 | * |
| 1207 | * This function can be used to query state of a given transaction. |
| 1208 | */ |
| 1209 | static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan, |
| 1210 | dma_cookie_t cookie, |
| 1211 | struct dma_tx_state *state) |
| 1212 | { |
| 1213 | struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan); |
| 1214 | dma_cookie_t last_used, last_completed; |
| 1215 | enum dma_status ret; |
| 1216 | unsigned long flags; |
| 1217 | |
| 1218 | spin_lock_irqsave(&edmac->lock, flags); |
| 1219 | last_used = chan->cookie; |
| 1220 | last_completed = edmac->last_completed; |
| 1221 | spin_unlock_irqrestore(&edmac->lock, flags); |
| 1222 | |
| 1223 | ret = dma_async_is_complete(cookie, last_completed, last_used); |
| 1224 | dma_set_tx_state(state, last_completed, last_used, 0); |
| 1225 | |
| 1226 | return ret; |
| 1227 | } |
| 1228 | |
| 1229 | /** |
| 1230 | * ep93xx_dma_issue_pending - push pending transactions to the hardware |
| 1231 | * @chan: channel |
| 1232 | * |
| 1233 | * When this function is called, all pending transactions are pushed to the |
| 1234 | * hardware and executed. |
| 1235 | */ |
| 1236 | static void ep93xx_dma_issue_pending(struct dma_chan *chan) |
| 1237 | { |
| 1238 | ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan)); |
| 1239 | } |
| 1240 | |
| 1241 | static int __init ep93xx_dma_probe(struct platform_device *pdev) |
| 1242 | { |
| 1243 | struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| 1244 | struct ep93xx_dma_engine *edma; |
| 1245 | struct dma_device *dma_dev; |
| 1246 | size_t edma_size; |
| 1247 | int ret, i; |
| 1248 | |
| 1249 | edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan); |
| 1250 | edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL); |
| 1251 | if (!edma) |
| 1252 | return -ENOMEM; |
| 1253 | |
| 1254 | dma_dev = &edma->dma_dev; |
| 1255 | edma->m2m = platform_get_device_id(pdev)->driver_data; |
| 1256 | edma->num_channels = pdata->num_channels; |
| 1257 | |
| 1258 | INIT_LIST_HEAD(&dma_dev->channels); |
| 1259 | for (i = 0; i < pdata->num_channels; i++) { |
| 1260 | const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i]; |
| 1261 | struct ep93xx_dma_chan *edmac = &edma->channels[i]; |
| 1262 | |
| 1263 | edmac->chan.device = dma_dev; |
| 1264 | edmac->regs = cdata->base; |
| 1265 | edmac->irq = cdata->irq; |
| 1266 | edmac->edma = edma; |
| 1267 | |
| 1268 | edmac->clk = clk_get(NULL, cdata->name); |
| 1269 | if (IS_ERR(edmac->clk)) { |
| 1270 | dev_warn(&pdev->dev, "failed to get clock for %s\n", |
| 1271 | cdata->name); |
| 1272 | continue; |
| 1273 | } |
| 1274 | |
| 1275 | spin_lock_init(&edmac->lock); |
| 1276 | INIT_LIST_HEAD(&edmac->active); |
| 1277 | INIT_LIST_HEAD(&edmac->queue); |
| 1278 | INIT_LIST_HEAD(&edmac->free_list); |
| 1279 | tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet, |
| 1280 | (unsigned long)edmac); |
| 1281 | |
| 1282 | list_add_tail(&edmac->chan.device_node, |
| 1283 | &dma_dev->channels); |
| 1284 | } |
| 1285 | |
| 1286 | dma_cap_zero(dma_dev->cap_mask); |
| 1287 | dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); |
| 1288 | dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); |
| 1289 | |
| 1290 | dma_dev->dev = &pdev->dev; |
| 1291 | dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources; |
| 1292 | dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources; |
| 1293 | dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg; |
| 1294 | dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic; |
| 1295 | dma_dev->device_control = ep93xx_dma_control; |
| 1296 | dma_dev->device_issue_pending = ep93xx_dma_issue_pending; |
| 1297 | dma_dev->device_tx_status = ep93xx_dma_tx_status; |
| 1298 | |
| 1299 | dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES); |
| 1300 | |
| 1301 | if (edma->m2m) { |
| 1302 | dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); |
| 1303 | dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy; |
| 1304 | |
| 1305 | edma->hw_setup = m2m_hw_setup; |
| 1306 | edma->hw_shutdown = m2m_hw_shutdown; |
| 1307 | edma->hw_submit = m2m_hw_submit; |
| 1308 | edma->hw_interrupt = m2m_hw_interrupt; |
| 1309 | } else { |
| 1310 | dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask); |
| 1311 | |
| 1312 | edma->hw_setup = m2p_hw_setup; |
| 1313 | edma->hw_shutdown = m2p_hw_shutdown; |
| 1314 | edma->hw_submit = m2p_hw_submit; |
| 1315 | edma->hw_interrupt = m2p_hw_interrupt; |
| 1316 | } |
| 1317 | |
| 1318 | ret = dma_async_device_register(dma_dev); |
| 1319 | if (unlikely(ret)) { |
| 1320 | for (i = 0; i < edma->num_channels; i++) { |
| 1321 | struct ep93xx_dma_chan *edmac = &edma->channels[i]; |
| 1322 | if (!IS_ERR_OR_NULL(edmac->clk)) |
| 1323 | clk_put(edmac->clk); |
| 1324 | } |
| 1325 | kfree(edma); |
| 1326 | } else { |
| 1327 | dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n", |
| 1328 | edma->m2m ? "M" : "P"); |
| 1329 | } |
| 1330 | |
| 1331 | return ret; |
| 1332 | } |
| 1333 | |
| 1334 | static struct platform_device_id ep93xx_dma_driver_ids[] = { |
| 1335 | { "ep93xx-dma-m2p", 0 }, |
| 1336 | { "ep93xx-dma-m2m", 1 }, |
| 1337 | { }, |
| 1338 | }; |
| 1339 | |
| 1340 | static struct platform_driver ep93xx_dma_driver = { |
| 1341 | .driver = { |
| 1342 | .name = "ep93xx-dma", |
| 1343 | }, |
| 1344 | .id_table = ep93xx_dma_driver_ids, |
| 1345 | }; |
| 1346 | |
| 1347 | static int __init ep93xx_dma_module_init(void) |
| 1348 | { |
| 1349 | return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe); |
| 1350 | } |
| 1351 | subsys_initcall(ep93xx_dma_module_init); |
| 1352 | |
| 1353 | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); |
| 1354 | MODULE_DESCRIPTION("EP93xx DMA driver"); |
| 1355 | MODULE_LICENSE("GPL"); |