blob: ab3dfe074fb12c8ed3c0e2414a41082a85c213f4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header -->
8<!-- ****************************************************** -->
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
Takashi Iwai7c22f1a2005-10-10 11:46:31 +020021 <date>October 6, 2005</date>
22 <edition>0.3.5</edition>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +020033 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on the PCI soundcard.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 The target of this document is ones who already have enough
79 skill of C language and have the basic knowledge of linux
80 kernel programming. This document doesn't explain the general
81 topics of linux kernel codes and doesn't cover the detail of
82 implementation of each low-level driver. It describes only how is
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x, you
88 can check the drivers such as <filename>es1938.c</filename> or
89 <filename>maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedbacks and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in the two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source codes for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling the ALSA driver on the outside of Linux
121 kernel like configure script, the wrapper functions for older,
122 2.2 and 2.4 kernels, to adapt the latest kernel API,
123 and additional drivers which are still in development or in
124 tests. The drivers in alsa-driver tree will be moved to
125 alsa-kernel (eventually 2.6 kernel tree) once when they are
126 finished and confirmed to work fine.
127 </para>
128
129 <para>
130 The file tree structure of ALSA driver is depicted below. Both
131 alsa-kernel and alsa-driver have almost the same file
132 structure, except for <quote>core</quote> directory. It's
133 named as <quote>acore</quote> in alsa-driver tree.
134
135 <example>
136 <title>ALSA File Tree Structure</title>
137 <literallayout>
138 sound
139 /core
140 /oss
141 /seq
142 /oss
143 /instr
144 /ioctl32
145 /include
146 /drivers
147 /mpu401
148 /opl3
149 /i2c
150 /l3
151 /synth
152 /emux
153 /pci
154 /(cards)
155 /isa
156 /(cards)
157 /arm
158 /ppc
159 /sparc
160 /usb
161 /pcmcia /(cards)
162 /oss
163 </literallayout>
164 </example>
165 </para>
166 </section>
167
168 <section id="file-tree-core-directory">
169 <title>core directory</title>
170 <para>
171 This directory contains the middle layer, that is, the heart
172 of ALSA drivers. In this directory, the native ALSA modules are
173 stored. The sub-directories contain different modules and are
174 dependent upon the kernel config.
175 </para>
176
177 <section id="file-tree-core-directory-oss">
178 <title>core/oss</title>
179
180 <para>
181 The codes for PCM and mixer OSS emulation modules are stored
182 in this directory. The rawmidi OSS emulation is included in
183 the ALSA rawmidi code since it's quite small. The sequencer
184 code is stored in core/seq/oss directory (see
185 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186 below</citetitle></link>).
187 </para>
188 </section>
189
190 <section id="file-tree-core-directory-ioctl32">
191 <title>core/ioctl32</title>
192
193 <para>
194 This directory contains the 32bit-ioctl wrappers for 64bit
195 architectures such like x86-64, ppc64 and sparc64. For 32bit
196 and alpha architectures, these are not compiled.
197 </para>
198 </section>
199
200 <section id="file-tree-core-directory-seq">
201 <title>core/seq</title>
202 <para>
203 This and its sub-directories are for the ALSA
204 sequencer. This directory contains the sequencer core and
205 primary sequencer modules such like snd-seq-midi,
206 snd-seq-virmidi, etc. They are compiled only when
207 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208 config.
209 </para>
210 </section>
211
212 <section id="file-tree-core-directory-seq-oss">
213 <title>core/seq/oss</title>
214 <para>
215 This contains the OSS sequencer emulation codes.
216 </para>
217 </section>
218
219 <section id="file-tree-core-directory-deq-instr">
220 <title>core/seq/instr</title>
221 <para>
222 This directory contains the modules for the sequencer
223 instrument layer.
224 </para>
225 </section>
226 </section>
227
228 <section id="file-tree-include-directory">
229 <title>include directory</title>
230 <para>
231 This is the place for the public header files of ALSA drivers,
232 which are to be exported to the user-space, or included by
233 several files at different directories. Basically, the private
234 header files should not be placed in this directory, but you may
235 still find files there, due to historical reason :)
236 </para>
237 </section>
238
239 <section id="file-tree-drivers-directory">
240 <title>drivers directory</title>
241 <para>
242 This directory contains the codes shared among different drivers
243 on the different architectures. They are hence supposed not to be
244 architecture-specific.
245 For example, the dummy pcm driver and the serial MIDI
246 driver are found in this directory. In the sub-directories,
247 there are the codes for components which are independent from
248 bus and cpu architectures.
249 </para>
250
251 <section id="file-tree-drivers-directory-mpu401">
252 <title>drivers/mpu401</title>
253 <para>
254 The MPU401 and MPU401-UART modules are stored here.
255 </para>
256 </section>
257
258 <section id="file-tree-drivers-directory-opl3">
259 <title>drivers/opl3 and opl4</title>
260 <para>
261 The OPL3 and OPL4 FM-synth stuff is found here.
262 </para>
263 </section>
264 </section>
265
266 <section id="file-tree-i2c-directory">
267 <title>i2c directory</title>
268 <para>
269 This contains the ALSA i2c components.
270 </para>
271
272 <para>
273 Although there is a standard i2c layer on Linux, ALSA has its
274 own i2c codes for some cards, because the soundcard needs only a
275 simple operation and the standard i2c API is too complicated for
276 such a purpose.
277 </para>
278
279 <section id="file-tree-i2c-directory-l3">
280 <title>i2c/l3</title>
281 <para>
282 This is a sub-directory for ARM L3 i2c.
283 </para>
284 </section>
285 </section>
286
287 <section id="file-tree-synth-directory">
288 <title>synth directory</title>
289 <para>
290 This contains the synth middle-level modules.
291 </para>
292
293 <para>
294 So far, there is only Emu8000/Emu10k1 synth driver under
295 synth/emux sub-directory.
296 </para>
297 </section>
298
299 <section id="file-tree-pci-directory">
300 <title>pci directory</title>
301 <para>
302 This and its sub-directories hold the top-level card modules
303 for PCI soundcards and the codes specific to the PCI BUS.
304 </para>
305
306 <para>
307 The drivers compiled from a single file is stored directly on
308 pci directory, while the drivers with several source files are
309 stored on its own sub-directory (e.g. emu10k1, ice1712).
310 </para>
311 </section>
312
313 <section id="file-tree-isa-directory">
314 <title>isa directory</title>
315 <para>
316 This and its sub-directories hold the top-level card modules
317 for ISA soundcards.
318 </para>
319 </section>
320
321 <section id="file-tree-arm-ppc-sparc-directories">
322 <title>arm, ppc, and sparc directories</title>
323 <para>
324 These are for the top-level card modules which are
325 specific to each given architecture.
326 </para>
327 </section>
328
329 <section id="file-tree-usb-directory">
330 <title>usb directory</title>
331 <para>
332 This contains the USB-audio driver. On the latest version, the
333 USB MIDI driver is integrated together with usb-audio driver.
334 </para>
335 </section>
336
337 <section id="file-tree-pcmcia-directory">
338 <title>pcmcia directory</title>
339 <para>
340 The PCMCIA, especially PCCard drivers will go here. CardBus
341 drivers will be on pci directory, because its API is identical
342 with the standard PCI cards.
343 </para>
344 </section>
345
346 <section id="file-tree-oss-directory">
347 <title>oss directory</title>
348 <para>
349 The OSS/Lite source files are stored here on Linux 2.6 (or
350 later) tree. (In the ALSA driver tarball, it's empty, of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow of PCI soundcard is like the following:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
Takashi Iwai01d25d42005-04-11 16:58:24 +0200374 <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700375 <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376 </itemizedlist>
377 </para>
378 </section>
379
380 <section id="basic-flow-example">
381 <title>Full Code Example</title>
382 <para>
383 The code example is shown below. Some parts are kept
384 unimplemented at this moment but will be filled in the
385 succeeding sections. The numbers in comment lines of
386 <function>snd_mychip_probe()</function> function are the
387 markers.
388
389 <example>
390 <title>Basic Flow for PCI Drivers Example</title>
391 <programlisting>
392<![CDATA[
393 #include <sound/driver.h>
394 #include <linux/init.h>
395 #include <linux/pci.h>
396 #include <linux/slab.h>
397 #include <sound/core.h>
398 #include <sound/initval.h>
399
400 /* module parameters (see "Module Parameters") */
401 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405 /* definition of the chip-specific record */
406 typedef struct snd_mychip mychip_t;
407 struct snd_mychip {
408 snd_card_t *card;
409 // rest of implementation will be in the section
410 // "PCI Resource Managements"
411 };
412
413 /* chip-specific destructor
414 * (see "PCI Resource Managements")
415 */
416 static int snd_mychip_free(mychip_t *chip)
417 {
418 .... // will be implemented later...
419 }
420
421 /* component-destructor
422 * (see "Management of Cards and Components")
423 */
424 static int snd_mychip_dev_free(snd_device_t *device)
425 {
426 mychip_t *chip = device->device_data;
427 return snd_mychip_free(chip);
428 }
429
430 /* chip-specific constructor
431 * (see "Management of Cards and Components")
432 */
433 static int __devinit snd_mychip_create(snd_card_t *card,
434 struct pci_dev *pci,
435 mychip_t **rchip)
436 {
437 mychip_t *chip;
438 int err;
439 static snd_device_ops_t ops = {
440 .dev_free = snd_mychip_dev_free,
441 };
442
443 *rchip = NULL;
444
445 // check PCI availability here
446 // (see "PCI Resource Managements")
447 ....
448
449 /* allocate a chip-specific data with zero filled */
Takashi Iwai561b2202005-09-09 14:22:34 +0200450 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 if (chip == NULL)
452 return -ENOMEM;
453
454 chip->card = card;
455
456 // rest of initialization here; will be implemented
457 // later, see "PCI Resource Managements"
458 ....
459
460 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
461 chip, &ops)) < 0) {
462 snd_mychip_free(chip);
463 return err;
464 }
465
466 snd_card_set_dev(card, &pci->dev);
467
468 *rchip = chip;
469 return 0;
470 }
471
472 /* constructor -- see "Constructor" sub-section */
473 static int __devinit snd_mychip_probe(struct pci_dev *pci,
474 const struct pci_device_id *pci_id)
475 {
476 static int dev;
477 snd_card_t *card;
478 mychip_t *chip;
479 int err;
480
481 /* (1) */
482 if (dev >= SNDRV_CARDS)
483 return -ENODEV;
484 if (!enable[dev]) {
485 dev++;
486 return -ENOENT;
487 }
488
489 /* (2) */
490 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
491 if (card == NULL)
492 return -ENOMEM;
493
494 /* (3) */
495 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
496 snd_card_free(card);
497 return err;
498 }
499
500 /* (4) */
501 strcpy(card->driver, "My Chip");
502 strcpy(card->shortname, "My Own Chip 123");
503 sprintf(card->longname, "%s at 0x%lx irq %i",
504 card->shortname, chip->ioport, chip->irq);
505
506 /* (5) */
507 .... // implemented later
508
509 /* (6) */
510 if ((err = snd_card_register(card)) < 0) {
511 snd_card_free(card);
512 return err;
513 }
514
515 /* (7) */
516 pci_set_drvdata(pci, card);
517 dev++;
518 return 0;
519 }
520
521 /* destructor -- see "Destructor" sub-section */
522 static void __devexit snd_mychip_remove(struct pci_dev *pci)
523 {
524 snd_card_free(pci_get_drvdata(pci));
525 pci_set_drvdata(pci, NULL);
526 }
527]]>
528 </programlisting>
529 </example>
530 </para>
531 </section>
532
533 <section id="basic-flow-constructor">
534 <title>Constructor</title>
535 <para>
536 The real constructor of PCI drivers is probe callback. The
537 probe callback and other component-constructors which are called
538 from probe callback should be defined with
539 <parameter>__devinit</parameter> prefix. You
540 cannot use <parameter>__init</parameter> prefix for them,
541 because any PCI device could be a hotplug device.
542 </para>
543
544 <para>
545 In the probe callback, the following scheme is often used.
546 </para>
547
548 <section id="basic-flow-constructor-device-index">
549 <title>1) Check and increment the device index.</title>
550 <para>
551 <informalexample>
552 <programlisting>
553<![CDATA[
554 static int dev;
555 ....
556 if (dev >= SNDRV_CARDS)
557 return -ENODEV;
558 if (!enable[dev]) {
559 dev++;
560 return -ENOENT;
561 }
562]]>
563 </programlisting>
564 </informalexample>
565
566 where enable[dev] is the module option.
567 </para>
568
569 <para>
570 At each time probe callback is called, check the
571 availability of the device. If not available, simply increment
572 the device index and returns. dev will be incremented also
573 later (<link
574 linkend="basic-flow-constructor-set-pci"><citetitle>step
575 7</citetitle></link>).
576 </para>
577 </section>
578
579 <section id="basic-flow-constructor-create-card">
580 <title>2) Create a card instance</title>
581 <para>
582 <informalexample>
583 <programlisting>
584<![CDATA[
585 snd_card_t *card;
586 ....
587 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
588]]>
589 </programlisting>
590 </informalexample>
591 </para>
592
593 <para>
594 The detail will be explained in the section
595 <link linkend="card-management-card-instance"><citetitle>
596 Management of Cards and Components</citetitle></link>.
597 </para>
598 </section>
599
600 <section id="basic-flow-constructor-create-main">
601 <title>3) Create a main component</title>
602 <para>
603 In this part, the PCI resources are allocated.
604
605 <informalexample>
606 <programlisting>
607<![CDATA[
608 mychip_t *chip;
609 ....
610 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
611 snd_card_free(card);
612 return err;
613 }
614]]>
615 </programlisting>
616 </informalexample>
617
618 The detail will be explained in the section <link
619 linkend="pci-resource"><citetitle>PCI Resource
620 Managements</citetitle></link>.
621 </para>
622 </section>
623
624 <section id="basic-flow-constructor-main-component">
625 <title>4) Set the driver ID and name strings.</title>
626 <para>
627 <informalexample>
628 <programlisting>
629<![CDATA[
630 strcpy(card->driver, "My Chip");
631 strcpy(card->shortname, "My Own Chip 123");
632 sprintf(card->longname, "%s at 0x%lx irq %i",
633 card->shortname, chip->ioport, chip->irq);
634]]>
635 </programlisting>
636 </informalexample>
637
638 The driver field holds the minimal ID string of the
639 chip. This is referred by alsa-lib's configurator, so keep it
640 simple but unique.
641 Even the same driver can have different driver IDs to
642 distinguish the functionality of each chip type.
643 </para>
644
645 <para>
646 The shortname field is a string shown as more verbose
647 name. The longname field contains the information which is
648 shown in <filename>/proc/asound/cards</filename>.
649 </para>
650 </section>
651
652 <section id="basic-flow-constructor-create-other">
653 <title>5) Create other components, such as mixer, MIDI, etc.</title>
654 <para>
655 Here you define the basic components such as
656 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
657 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
658 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
659 and other interfaces.
660 Also, if you want a <link linkend="proc-interface"><citetitle>proc
661 file</citetitle></link>, define it here, too.
662 </para>
663 </section>
664
665 <section id="basic-flow-constructor-register-card">
666 <title>6) Register the card instance.</title>
667 <para>
668 <informalexample>
669 <programlisting>
670<![CDATA[
671 if ((err = snd_card_register(card)) < 0) {
672 snd_card_free(card);
673 return err;
674 }
675]]>
676 </programlisting>
677 </informalexample>
678 </para>
679
680 <para>
681 Will be explained in the section <link
682 linkend="card-management-registration"><citetitle>Management
683 of Cards and Components</citetitle></link>, too.
684 </para>
685 </section>
686
687 <section id="basic-flow-constructor-set-pci">
688 <title>7) Set the PCI driver data and return zero.</title>
689 <para>
690 <informalexample>
691 <programlisting>
692<![CDATA[
693 pci_set_drvdata(pci, card);
694 dev++;
695 return 0;
696]]>
697 </programlisting>
698 </informalexample>
699
700 In the above, the card record is stored. This pointer is
701 referred in the remove callback and power-management
702 callbacks, too.
703 </para>
704 </section>
705 </section>
706
707 <section id="basic-flow-destructor">
708 <title>Destructor</title>
709 <para>
710 The destructor, remove callback, simply releases the card
711 instance. Then the ALSA middle layer will release all the
712 attached components automatically.
713 </para>
714
715 <para>
716 It would be typically like the following:
717
718 <informalexample>
719 <programlisting>
720<![CDATA[
721 static void __devexit snd_mychip_remove(struct pci_dev *pci)
722 {
723 snd_card_free(pci_get_drvdata(pci));
724 pci_set_drvdata(pci, NULL);
725 }
726]]>
727 </programlisting>
728 </informalexample>
729
730 The above code assumes that the card pointer is set to the PCI
731 driver data.
732 </para>
733 </section>
734
735 <section id="basic-flow-header-files">
736 <title>Header Files</title>
737 <para>
738 For the above example, at least the following include files
739 are necessary.
740
741 <informalexample>
742 <programlisting>
743<![CDATA[
744 #include <sound/driver.h>
745 #include <linux/init.h>
746 #include <linux/pci.h>
747 #include <linux/slab.h>
748 #include <sound/core.h>
749 #include <sound/initval.h>
750]]>
751 </programlisting>
752 </informalexample>
753
754 where the last one is necessary only when module options are
755 defined in the source file. If the codes are split to several
756 files, the file without module options don't need them.
757 </para>
758
759 <para>
760 In addition to them, you'll need
761 <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
762 handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
763 access. If you use <function>mdelay()</function> or
764 <function>udelay()</function> functions, you'll need to include
765 <filename>&lt;linux/delay.h&gt;</filename>, too.
766 </para>
767
768 <para>
769 The ALSA interfaces like PCM or control API are defined in other
770 header files as <filename>&lt;sound/xxx.h&gt;</filename>.
771 They have to be included after
772 <filename>&lt;sound/core.h&gt;</filename>.
773 </para>
774
775 </section>
776 </chapter>
777
778
779<!-- ****************************************************** -->
780<!-- Management of Cards and Components -->
781<!-- ****************************************************** -->
782 <chapter id="card-management">
783 <title>Management of Cards and Components</title>
784
785 <section id="card-management-card-instance">
786 <title>Card Instance</title>
787 <para>
788 For each soundcard, a <quote>card</quote> record must be allocated.
789 </para>
790
791 <para>
792 A card record is the headquarters of the soundcard. It manages
793 the list of whole devices (components) on the soundcard, such as
794 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
795 record holds the ID and the name strings of the card, manages
796 the root of proc files, and controls the power-management states
797 and hotplug disconnections. The component list on the card
798 record is used to manage the proper releases of resources at
799 destruction.
800 </para>
801
802 <para>
803 As mentioned above, to create a card instance, call
804 <function>snd_card_new()</function>.
805
806 <informalexample>
807 <programlisting>
808<![CDATA[
809 snd_card_t *card;
810 card = snd_card_new(index, id, module, extra_size);
811]]>
812 </programlisting>
813 </informalexample>
814 </para>
815
816 <para>
817 The function takes four arguments, the card-index number, the
818 id string, the module pointer (usually
819 <constant>THIS_MODULE</constant>),
820 and the size of extra-data space. The last argument is used to
821 allocate card-&gt;private_data for the
822 chip-specific data. Note that this data
823 <emphasis>is</emphasis> allocated by
824 <function>snd_card_new()</function>.
825 </para>
826 </section>
827
828 <section id="card-management-component">
829 <title>Components</title>
830 <para>
831 After the card is created, you can attach the components
832 (devices) to the card instance. On ALSA driver, a component is
833 represented as a <type>snd_device_t</type> object.
834 A component can be a PCM instance, a control interface, a raw
835 MIDI interface, etc. Each of such instances has one component
836 entry.
837 </para>
838
839 <para>
840 A component can be created via
841 <function>snd_device_new()</function> function.
842
843 <informalexample>
844 <programlisting>
845<![CDATA[
846 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
847]]>
848 </programlisting>
849 </informalexample>
850 </para>
851
852 <para>
853 This takes the card pointer, the device-level
854 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
855 callback pointers (<parameter>&amp;ops</parameter>). The
856 device-level defines the type of components and the order of
857 registration and de-registration. For most of components, the
858 device-level is already defined. For a user-defined component,
859 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
860 </para>
861
862 <para>
863 This function itself doesn't allocate the data space. The data
864 must be allocated manually beforehand, and its pointer is passed
865 as the argument. This pointer is used as the identifier
866 (<parameter>chip</parameter> in the above example) for the
867 instance.
868 </para>
869
870 <para>
871 Each ALSA pre-defined component such as ac97 or pcm calls
872 <function>snd_device_new()</function> inside its
873 constructor. The destructor for each component is defined in the
874 callback pointers. Hence, you don't need to take care of
875 calling a destructor for such a component.
876 </para>
877
878 <para>
879 If you would like to create your own component, you need to
880 set the destructor function to dev_free callback in
881 <parameter>ops</parameter>, so that it can be released
882 automatically via <function>snd_card_free()</function>. The
883 example will be shown later as an implementation of a
884 chip-specific data.
885 </para>
886 </section>
887
888 <section id="card-management-chip-specific">
889 <title>Chip-Specific Data</title>
890 <para>
891 The chip-specific information, e.g. the i/o port address, its
892 resource pointer, or the irq number, is stored in the
893 chip-specific record.
894 Usually, the chip-specific record is typedef'ed as
895 <type>xxx_t</type> like the following:
896
897 <informalexample>
898 <programlisting>
899<![CDATA[
900 typedef struct snd_mychip mychip_t;
901 struct snd_mychip {
902 ....
903 };
904]]>
905 </programlisting>
906 </informalexample>
907 </para>
908
909 <para>
910 In general, there are two ways to allocate the chip record.
911 </para>
912
913 <section id="card-management-chip-specific-snd-card-new">
914 <title>1. Allocating via <function>snd_card_new()</function>.</title>
915 <para>
916 As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
917
918 <informalexample>
919 <programlisting>
920<![CDATA[
921 card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(mychip_t));
922]]>
923 </programlisting>
924 </informalexample>
925
926 whether <type>mychip_t</type> is the type of the chip record.
927 </para>
928
929 <para>
930 In return, the allocated record can be accessed as
931
932 <informalexample>
933 <programlisting>
934<![CDATA[
935 mychip_t *chip = (mychip_t *)card->private_data;
936]]>
937 </programlisting>
938 </informalexample>
939
940 With this method, you don't have to allocate twice.
941 The record is released together with the card instance.
942 </para>
943 </section>
944
945 <section id="card-management-chip-specific-allocate-extra">
946 <title>2. Allocating an extra device.</title>
947
948 <para>
949 After allocating a card instance via
950 <function>snd_card_new()</function> (with
951 <constant>NULL</constant> on the 4th arg), call
Takashi Iwai561b2202005-09-09 14:22:34 +0200952 <function>kzalloc()</function>.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953
954 <informalexample>
955 <programlisting>
956<![CDATA[
957 snd_card_t *card;
958 mychip_t *chip;
959 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
960 .....
Takashi Iwai561b2202005-09-09 14:22:34 +0200961 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962]]>
963 </programlisting>
964 </informalexample>
965 </para>
966
967 <para>
968 The chip record should have the field to hold the card
969 pointer at least,
970
971 <informalexample>
972 <programlisting>
973<![CDATA[
974 struct snd_mychip {
975 snd_card_t *card;
976 ....
977 };
978]]>
979 </programlisting>
980 </informalexample>
981 </para>
982
983 <para>
984 Then, set the card pointer in the returned chip instance.
985
986 <informalexample>
987 <programlisting>
988<![CDATA[
989 chip->card = card;
990]]>
991 </programlisting>
992 </informalexample>
993 </para>
994
995 <para>
996 Next, initialize the fields, and register this chip
997 record as a low-level device with a specified
998 <parameter>ops</parameter>,
999
1000 <informalexample>
1001 <programlisting>
1002<![CDATA[
1003 static snd_device_ops_t ops = {
1004 .dev_free = snd_mychip_dev_free,
1005 };
1006 ....
1007 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1008]]>
1009 </programlisting>
1010 </informalexample>
1011
1012 <function>snd_mychip_dev_free()</function> is the
1013 device-destructor function, which will call the real
1014 destructor.
1015 </para>
1016
1017 <para>
1018 <informalexample>
1019 <programlisting>
1020<![CDATA[
1021 static int snd_mychip_dev_free(snd_device_t *device)
1022 {
1023 mychip_t *chip = device->device_data;
1024 return snd_mychip_free(chip);
1025 }
1026]]>
1027 </programlisting>
1028 </informalexample>
1029
1030 where <function>snd_mychip_free()</function> is the real destructor.
1031 </para>
1032 </section>
1033 </section>
1034
1035 <section id="card-management-registration">
1036 <title>Registration and Release</title>
1037 <para>
1038 After all components are assigned, register the card instance
1039 by calling <function>snd_card_register()</function>. The access
1040 to the device files are enabled at this point. That is, before
1041 <function>snd_card_register()</function> is called, the
1042 components are safely inaccessible from external side. If this
1043 call fails, exit the probe function after releasing the card via
1044 <function>snd_card_free()</function>.
1045 </para>
1046
1047 <para>
1048 For releasing the card instance, you can call simply
1049 <function>snd_card_free()</function>. As already mentioned, all
1050 components are released automatically by this call.
1051 </para>
1052
1053 <para>
1054 As further notes, the destructors (both
1055 <function>snd_mychip_dev_free</function> and
1056 <function>snd_mychip_free</function>) cannot be defined with
1057 <parameter>__devexit</parameter> prefix, because they may be
1058 called from the constructor, too, at the false path.
1059 </para>
1060
1061 <para>
1062 For a device which allows hotplugging, you can use
1063 <function>snd_card_free_in_thread</function>. This one will
1064 postpone the destruction and wait in a kernel-thread until all
1065 devices are closed.
1066 </para>
1067
1068 </section>
1069
1070 </chapter>
1071
1072
1073<!-- ****************************************************** -->
1074<!-- PCI Resource Managements -->
1075<!-- ****************************************************** -->
1076 <chapter id="pci-resource">
1077 <title>PCI Resource Managements</title>
1078
1079 <section id="pci-resource-example">
1080 <title>Full Code Example</title>
1081 <para>
1082 In this section, we'll finish the chip-specific constructor,
1083 destructor and PCI entries. The example code is shown first,
1084 below.
1085
1086 <example>
1087 <title>PCI Resource Managements Example</title>
1088 <programlisting>
1089<![CDATA[
1090 struct snd_mychip {
1091 snd_card_t *card;
1092 struct pci_dev *pci;
1093
1094 unsigned long port;
1095 int irq;
1096 };
1097
1098 static int snd_mychip_free(mychip_t *chip)
1099 {
1100 /* disable hardware here if any */
1101 .... // (not implemented in this document)
1102
1103 /* release the irq */
1104 if (chip->irq >= 0)
1105 free_irq(chip->irq, (void *)chip);
1106 /* release the i/o ports & memory */
1107 pci_release_regions(chip->pci);
1108 /* disable the PCI entry */
1109 pci_disable_device(chip->pci);
1110 /* release the data */
1111 kfree(chip);
1112 return 0;
1113 }
1114
1115 /* chip-specific constructor */
1116 static int __devinit snd_mychip_create(snd_card_t *card,
1117 struct pci_dev *pci,
1118 mychip_t **rchip)
1119 {
1120 mychip_t *chip;
1121 int err;
1122 static snd_device_ops_t ops = {
1123 .dev_free = snd_mychip_dev_free,
1124 };
1125
1126 *rchip = NULL;
1127
1128 /* initialize the PCI entry */
1129 if ((err = pci_enable_device(pci)) < 0)
1130 return err;
1131 /* check PCI availability (28bit DMA) */
1132 if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
1133 pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
1134 printk(KERN_ERR "error to set 28bit mask DMA\n");
1135 pci_disable_device(pci);
1136 return -ENXIO;
1137 }
1138
Takashi Iwai561b2202005-09-09 14:22:34 +02001139 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140 if (chip == NULL) {
1141 pci_disable_device(pci);
1142 return -ENOMEM;
1143 }
1144
1145 /* initialize the stuff */
1146 chip->card = card;
1147 chip->pci = pci;
1148 chip->irq = -1;
1149
1150 /* (1) PCI resource allocation */
1151 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1152 kfree(chip);
1153 pci_disable_device(pci);
1154 return err;
1155 }
1156 chip->port = pci_resource_start(pci, 0);
1157 if (request_irq(pci->irq, snd_mychip_interrupt,
1158 SA_INTERRUPT|SA_SHIRQ, "My Chip",
1159 (void *)chip)) {
1160 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1161 snd_mychip_free(chip);
1162 return -EBUSY;
1163 }
1164 chip->irq = pci->irq;
1165
1166 /* (2) initialization of the chip hardware */
1167 .... // (not implemented in this document)
1168
1169 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
1170 chip, &ops)) < 0) {
1171 snd_mychip_free(chip);
1172 return err;
1173 }
1174
1175 snd_card_set_dev(card, &pci->dev);
1176
1177 *rchip = chip;
1178 return 0;
1179 }
1180
1181 /* PCI IDs */
1182 static struct pci_device_id snd_mychip_ids[] = {
1183 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1185 ....
1186 { 0, }
1187 };
1188 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1189
1190 /* pci_driver definition */
1191 static struct pci_driver driver = {
1192 .name = "My Own Chip",
1193 .id_table = snd_mychip_ids,
1194 .probe = snd_mychip_probe,
1195 .remove = __devexit_p(snd_mychip_remove),
1196 };
1197
1198 /* initialization of the module */
1199 static int __init alsa_card_mychip_init(void)
1200 {
Takashi Iwai01d25d42005-04-11 16:58:24 +02001201 return pci_register_driver(&driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 }
1203
1204 /* clean up the module */
1205 static void __exit alsa_card_mychip_exit(void)
1206 {
1207 pci_unregister_driver(&driver);
1208 }
1209
1210 module_init(alsa_card_mychip_init)
1211 module_exit(alsa_card_mychip_exit)
1212
1213 EXPORT_NO_SYMBOLS; /* for old kernels only */
1214]]>
1215 </programlisting>
1216 </example>
1217 </para>
1218 </section>
1219
1220 <section id="pci-resource-some-haftas">
1221 <title>Some Hafta's</title>
1222 <para>
1223 The allocation of PCI resources is done in the
1224 <function>probe()</function> function, and usually an extra
1225 <function>xxx_create()</function> function is written for this
1226 purpose.
1227 </para>
1228
1229 <para>
1230 In the case of PCI devices, you have to call at first
1231 <function>pci_enable_device()</function> function before
1232 allocating resources. Also, you need to set the proper PCI DMA
1233 mask to limit the accessed i/o range. In some cases, you might
1234 need to call <function>pci_set_master()</function> function,
1235 too.
1236 </para>
1237
1238 <para>
1239 Suppose the 28bit mask, and the code to be added would be like:
1240
1241 <informalexample>
1242 <programlisting>
1243<![CDATA[
1244 if ((err = pci_enable_device(pci)) < 0)
1245 return err;
1246 if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
1247 pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
1248 printk(KERN_ERR "error to set 28bit mask DMA\n");
1249 pci_disable_device(pci);
1250 return -ENXIO;
1251 }
1252
1253]]>
1254 </programlisting>
1255 </informalexample>
1256 </para>
1257 </section>
1258
1259 <section id="pci-resource-resource-allocation">
1260 <title>Resource Allocation</title>
1261 <para>
1262 The allocation of I/O ports and irqs are done via standard kernel
1263 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1264 that. And these resources must be released in the destructor
1265 function (see below). Also, on ALSA 0.9.x, you don't need to
1266 allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
1267 </para>
1268
1269 <para>
1270 Now assume that this PCI device has an I/O port with 8 bytes
1271 and an interrupt. Then <type>mychip_t</type> will have the
1272 following fields:
1273
1274 <informalexample>
1275 <programlisting>
1276<![CDATA[
1277 struct snd_mychip {
1278 snd_card_t *card;
1279
1280 unsigned long port;
1281 int irq;
1282 };
1283]]>
1284 </programlisting>
1285 </informalexample>
1286 </para>
1287
1288 <para>
1289 For an i/o port (and also a memory region), you need to have
1290 the resource pointer for the standard resource management. For
1291 an irq, you have to keep only the irq number (integer). But you
1292 need to initialize this number as -1 before actual allocation,
1293 since irq 0 is valid. The port address and its resource pointer
1294 can be initialized as null by
Takashi Iwai561b2202005-09-09 14:22:34 +02001295 <function>kzalloc()</function> automatically, so you
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 don't have to take care of resetting them.
1297 </para>
1298
1299 <para>
1300 The allocation of an i/o port is done like this:
1301
1302 <informalexample>
1303 <programlisting>
1304<![CDATA[
1305 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1306 kfree(chip);
1307 pci_disable_device(pci);
1308 return err;
1309 }
1310 chip->port = pci_resource_start(pci, 0);
1311]]>
1312 </programlisting>
1313 </informalexample>
1314 </para>
1315
1316 <para>
1317 <!-- obsolete -->
1318 It will reserve the i/o port region of 8 bytes of the given
1319 PCI device. The returned value, chip-&gt;res_port, is allocated
1320 via <function>kmalloc()</function> by
1321 <function>request_region()</function>. The pointer must be
1322 released via <function>kfree()</function>, but there is some
1323 problem regarding this. This issue will be explained more below.
1324 </para>
1325
1326 <para>
1327 The allocation of an interrupt source is done like this:
1328
1329 <informalexample>
1330 <programlisting>
1331<![CDATA[
1332 if (request_irq(pci->irq, snd_mychip_interrupt,
1333 SA_INTERRUPT|SA_SHIRQ, "My Chip",
1334 (void *)chip)) {
1335 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1336 snd_mychip_free(chip);
1337 return -EBUSY;
1338 }
1339 chip->irq = pci->irq;
1340]]>
1341 </programlisting>
1342 </informalexample>
1343
1344 where <function>snd_mychip_interrupt()</function> is the
1345 interrupt handler defined <link
1346 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1347 Note that chip-&gt;irq should be defined
1348 only when <function>request_irq()</function> succeeded.
1349 </para>
1350
1351 <para>
1352 On the PCI bus, the interrupts can be shared. Thus,
1353 <constant>SA_SHIRQ</constant> is given as the interrupt flag of
1354 <function>request_irq()</function>.
1355 </para>
1356
1357 <para>
1358 The last argument of <function>request_irq()</function> is the
1359 data pointer passed to the interrupt handler. Usually, the
1360 chip-specific record is used for that, but you can use what you
1361 like, too.
1362 </para>
1363
1364 <para>
1365 I won't define the detail of the interrupt handler at this
1366 point, but at least its appearance can be explained now. The
1367 interrupt handler looks usually like the following:
1368
1369 <informalexample>
1370 <programlisting>
1371<![CDATA[
1372 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
1373 struct pt_regs *regs)
1374 {
1375 mychip_t *chip = dev_id;
1376 ....
1377 return IRQ_HANDLED;
1378 }
1379]]>
1380 </programlisting>
1381 </informalexample>
1382 </para>
1383
1384 <para>
1385 Now let's write the corresponding destructor for the resources
1386 above. The role of destructor is simple: disable the hardware
1387 (if already activated) and release the resources. So far, we
1388 have no hardware part, so the disabling is not written here.
1389 </para>
1390
1391 <para>
1392 For releasing the resources, <quote>check-and-release</quote>
1393 method is a safer way. For the interrupt, do like this:
1394
1395 <informalexample>
1396 <programlisting>
1397<![CDATA[
1398 if (chip->irq >= 0)
1399 free_irq(chip->irq, (void *)chip);
1400]]>
1401 </programlisting>
1402 </informalexample>
1403
1404 Since the irq number can start from 0, you should initialize
1405 chip-&gt;irq with a negative value (e.g. -1), so that you can
1406 check the validity of the irq number as above.
1407 </para>
1408
1409 <para>
1410 When you requested I/O ports or memory regions via
1411 <function>pci_request_region()</function> or
1412 <function>pci_request_regions()</function> like this example,
1413 release the resource(s) using the corresponding function,
1414 <function>pci_release_region()</function> or
1415 <function>pci_release_regions()</function>.
1416
1417 <informalexample>
1418 <programlisting>
1419<![CDATA[
1420 pci_release_regions(chip->pci);
1421]]>
1422 </programlisting>
1423 </informalexample>
1424 </para>
1425
1426 <para>
1427 When you requested manually via <function>request_region()</function>
1428 or <function>request_mem_region</function>, you can release it via
1429 <function>release_resource()</function>. Suppose that you keep
1430 the resource pointer returned from <function>request_region()</function>
1431 in chip-&gt;res_port, the release procedure looks like below:
1432
1433 <informalexample>
1434 <programlisting>
1435<![CDATA[
1436 if (chip->res_port) {
1437 release_resource(chip->res_port);
1438 kfree_nocheck(chip->res_port);
1439 }
1440]]>
1441 </programlisting>
1442 </informalexample>
1443
1444 As you can see, the resource pointer is also to be freed
1445 via <function>kfree_nocheck()</function> after
1446 <function>release_resource()</function> is called. You
1447 cannot use <function>kfree()</function> here, because on ALSA,
1448 <function>kfree()</function> may be a wrapper to its own
1449 allocator with the memory debugging. Since the resource pointer
1450 is allocated externally outside the ALSA, it must be released
1451 via the native
1452 <function>kfree()</function>.
1453 <function>kfree_nocheck()</function> is used for that; it calls
1454 the native <function>kfree()</function> without wrapper.
1455 </para>
1456
1457 <para>
1458 Don't forget to call <function>pci_disable_device()</function>
1459 before all finished.
1460 </para>
1461
1462 <para>
1463 And finally, release the chip-specific record.
1464
1465 <informalexample>
1466 <programlisting>
1467<![CDATA[
1468 kfree(chip);
1469]]>
1470 </programlisting>
1471 </informalexample>
1472 </para>
1473
1474 <para>
1475 Again, remember that you cannot
1476 set <parameter>__devexit</parameter> prefix for this destructor.
1477 </para>
1478
1479 <para>
1480 We didn't implement the hardware-disabling part in the above.
1481 If you need to do this, please note that the destructor may be
1482 called even before the initialization of the chip is completed.
1483 It would be better to have a flag to skip the hardware-disabling
1484 if the hardware was not initialized yet.
1485 </para>
1486
1487 <para>
1488 When the chip-data is assigned to the card using
1489 <function>snd_device_new()</function> with
1490 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1491 called at the last. That is, it is assured that all other
1492 components like PCMs and controls have been already released.
1493 You don't have to call stopping PCMs, etc. explicitly, but just
1494 stop the hardware in the low-level.
1495 </para>
1496
1497 <para>
1498 The management of a memory-mapped region is almost as same as
1499 the management of an i/o port. You'll need three fields like
1500 the following:
1501
1502 <informalexample>
1503 <programlisting>
1504<![CDATA[
1505 struct snd_mychip {
1506 ....
1507 unsigned long iobase_phys;
1508 void __iomem *iobase_virt;
1509 };
1510]]>
1511 </programlisting>
1512 </informalexample>
1513
1514 and the allocation would be like below:
1515
1516 <informalexample>
1517 <programlisting>
1518<![CDATA[
1519 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1520 kfree(chip);
1521 return err;
1522 }
1523 chip->iobase_phys = pci_resource_start(pci, 0);
1524 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1525 pci_resource_len(pci, 0));
1526]]>
1527 </programlisting>
1528 </informalexample>
1529
1530 and the corresponding destructor would be:
1531
1532 <informalexample>
1533 <programlisting>
1534<![CDATA[
1535 static int snd_mychip_free(mychip_t *chip)
1536 {
1537 ....
1538 if (chip->iobase_virt)
1539 iounmap(chip->iobase_virt);
1540 ....
1541 pci_release_regions(chip->pci);
1542 ....
1543 }
1544]]>
1545 </programlisting>
1546 </informalexample>
1547 </para>
1548
1549 </section>
1550
1551 <section id="pci-resource-device-struct">
1552 <title>Registration of Device Struct</title>
1553 <para>
1554 At some point, typically after calling <function>snd_device_new()</function>,
1555 you need to register the <structname>struct device</structname> of the chip
1556 you're handling for udev and co. ALSA provides a macro for compatibility with
1557 older kernels. Simply call like the following:
1558 <informalexample>
1559 <programlisting>
1560<![CDATA[
1561 snd_card_set_dev(card, &pci->dev);
1562]]>
1563 </programlisting>
1564 </informalexample>
1565 so that it stores the PCI's device pointer to the card. This will be
1566 referred by ALSA core functions later when the devices are registered.
1567 </para>
1568 <para>
1569 In the case of non-PCI, pass the proper device struct pointer of the BUS
1570 instead. (In the case of legacy ISA without PnP, you don't have to do
1571 anything.)
1572 </para>
1573 </section>
1574
1575 <section id="pci-resource-entries">
1576 <title>PCI Entries</title>
1577 <para>
1578 So far, so good. Let's finish the rest of missing PCI
1579 stuffs. At first, we need a
1580 <structname>pci_device_id</structname> table for this
1581 chipset. It's a table of PCI vendor/device ID number, and some
1582 masks.
1583 </para>
1584
1585 <para>
1586 For example,
1587
1588 <informalexample>
1589 <programlisting>
1590<![CDATA[
1591 static struct pci_device_id snd_mychip_ids[] = {
1592 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1593 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1594 ....
1595 { 0, }
1596 };
1597 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1598]]>
1599 </programlisting>
1600 </informalexample>
1601 </para>
1602
1603 <para>
1604 The first and second fields of
1605 <structname>pci_device_id</structname> struct are the vendor and
1606 device IDs. If you have nothing special to filter the matching
1607 devices, you can use the rest of fields like above. The last
1608 field of <structname>pci_device_id</structname> struct is a
1609 private data for this entry. You can specify any value here, for
1610 example, to tell the type of different operations per each
1611 device IDs. Such an example is found in intel8x0 driver.
1612 </para>
1613
1614 <para>
1615 The last entry of this list is the terminator. You must
1616 specify this all-zero entry.
1617 </para>
1618
1619 <para>
1620 Then, prepare the <structname>pci_driver</structname> record:
1621
1622 <informalexample>
1623 <programlisting>
1624<![CDATA[
1625 static struct pci_driver driver = {
1626 .name = "My Own Chip",
1627 .id_table = snd_mychip_ids,
1628 .probe = snd_mychip_probe,
1629 .remove = __devexit_p(snd_mychip_remove),
1630 };
1631]]>
1632 </programlisting>
1633 </informalexample>
1634 </para>
1635
1636 <para>
1637 The <structfield>probe</structfield> and
1638 <structfield>remove</structfield> functions are what we already
1639 defined in
1640 the previous sections. The <structfield>remove</structfield> should
1641 be defined with
1642 <function>__devexit_p()</function> macro, so that it's not
1643 defined for built-in (and non-hot-pluggable) case. The
1644 <structfield>name</structfield>
1645 field is the name string of this device. Note that you must not
1646 use a slash <quote>/</quote> in this string.
1647 </para>
1648
1649 <para>
1650 And at last, the module entries:
1651
1652 <informalexample>
1653 <programlisting>
1654<![CDATA[
1655 static int __init alsa_card_mychip_init(void)
1656 {
Takashi Iwai01d25d42005-04-11 16:58:24 +02001657 return pci_register_driver(&driver);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001658 }
1659
1660 static void __exit alsa_card_mychip_exit(void)
1661 {
1662 pci_unregister_driver(&driver);
1663 }
1664
1665 module_init(alsa_card_mychip_init)
1666 module_exit(alsa_card_mychip_exit)
1667]]>
1668 </programlisting>
1669 </informalexample>
1670 </para>
1671
1672 <para>
1673 Note that these module entries are tagged with
1674 <parameter>__init</parameter> and
1675 <parameter>__exit</parameter> prefixes, not
1676 <parameter>__devinit</parameter> nor
1677 <parameter>__devexit</parameter>.
1678 </para>
1679
1680 <para>
1681 Oh, one thing was forgotten. If you have no exported symbols,
1682 you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1683 it's not necessary, though).
1684
1685 <informalexample>
1686 <programlisting>
1687<![CDATA[
1688 EXPORT_NO_SYMBOLS;
1689]]>
1690 </programlisting>
1691 </informalexample>
1692
1693 That's all!
1694 </para>
1695 </section>
1696 </chapter>
1697
1698
1699<!-- ****************************************************** -->
1700<!-- PCM Interface -->
1701<!-- ****************************************************** -->
1702 <chapter id="pcm-interface">
1703 <title>PCM Interface</title>
1704
1705 <section id="pcm-interface-general">
1706 <title>General</title>
1707 <para>
1708 The PCM middle layer of ALSA is quite powerful and it is only
1709 necessary for each driver to implement the low-level functions
1710 to access its hardware.
1711 </para>
1712
1713 <para>
1714 For accessing to the PCM layer, you need to include
1715 <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1716 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1717 if you access to some functions related with hw_param.
1718 </para>
1719
1720 <para>
1721 Each card device can have up to four pcm instances. A pcm
1722 instance corresponds to a pcm device file. The limitation of
1723 number of instances comes only from the available bit size of
1724 the linux's device number. Once when 64bit device number is
1725 used, we'll have more available pcm instances.
1726 </para>
1727
1728 <para>
1729 A pcm instance consists of pcm playback and capture streams,
1730 and each pcm stream consists of one or more pcm substreams. Some
1731 soundcard supports the multiple-playback function. For example,
1732 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1733 each open, a free substream is (usually) automatically chosen
1734 and opened. Meanwhile, when only one substream exists and it was
1735 already opened, the succeeding open will result in the blocking
1736 or the error with <constant>EAGAIN</constant> according to the
1737 file open mode. But you don't have to know the detail in your
1738 driver. The PCM middle layer will take all such jobs.
1739 </para>
1740 </section>
1741
1742 <section id="pcm-interface-example">
1743 <title>Full Code Example</title>
1744 <para>
1745 The example code below does not include any hardware access
1746 routines but shows only the skeleton, how to build up the PCM
1747 interfaces.
1748
1749 <example>
1750 <title>PCM Example Code</title>
1751 <programlisting>
1752<![CDATA[
1753 #include <sound/pcm.h>
1754 ....
1755
1756 /* hardware definition */
1757 static snd_pcm_hardware_t snd_mychip_playback_hw = {
1758 .info = (SNDRV_PCM_INFO_MMAP |
1759 SNDRV_PCM_INFO_INTERLEAVED |
1760 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1761 SNDRV_PCM_INFO_MMAP_VALID),
1762 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1763 .rates = SNDRV_PCM_RATE_8000_48000,
1764 .rate_min = 8000,
1765 .rate_max = 48000,
1766 .channels_min = 2,
1767 .channels_max = 2,
1768 .buffer_bytes_max = 32768,
1769 .period_bytes_min = 4096,
1770 .period_bytes_max = 32768,
1771 .periods_min = 1,
1772 .periods_max = 1024,
1773 };
1774
1775 /* hardware definition */
1776 static snd_pcm_hardware_t snd_mychip_capture_hw = {
1777 .info = (SNDRV_PCM_INFO_MMAP |
1778 SNDRV_PCM_INFO_INTERLEAVED |
1779 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1780 SNDRV_PCM_INFO_MMAP_VALID),
1781 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1782 .rates = SNDRV_PCM_RATE_8000_48000,
1783 .rate_min = 8000,
1784 .rate_max = 48000,
1785 .channels_min = 2,
1786 .channels_max = 2,
1787 .buffer_bytes_max = 32768,
1788 .period_bytes_min = 4096,
1789 .period_bytes_max = 32768,
1790 .periods_min = 1,
1791 .periods_max = 1024,
1792 };
1793
1794 /* open callback */
1795 static int snd_mychip_playback_open(snd_pcm_substream_t *substream)
1796 {
1797 mychip_t *chip = snd_pcm_substream_chip(substream);
1798 snd_pcm_runtime_t *runtime = substream->runtime;
1799
1800 runtime->hw = snd_mychip_playback_hw;
1801 // more hardware-initialization will be done here
1802 return 0;
1803 }
1804
1805 /* close callback */
1806 static int snd_mychip_playback_close(snd_pcm_substream_t *substream)
1807 {
1808 mychip_t *chip = snd_pcm_substream_chip(substream);
1809 // the hardware-specific codes will be here
1810 return 0;
1811
1812 }
1813
1814 /* open callback */
1815 static int snd_mychip_capture_open(snd_pcm_substream_t *substream)
1816 {
1817 mychip_t *chip = snd_pcm_substream_chip(substream);
1818 snd_pcm_runtime_t *runtime = substream->runtime;
1819
1820 runtime->hw = snd_mychip_capture_hw;
1821 // more hardware-initialization will be done here
1822 return 0;
1823 }
1824
1825 /* close callback */
1826 static int snd_mychip_capture_close(snd_pcm_substream_t *substream)
1827 {
1828 mychip_t *chip = snd_pcm_substream_chip(substream);
1829 // the hardware-specific codes will be here
1830 return 0;
1831
1832 }
1833
1834 /* hw_params callback */
1835 static int snd_mychip_pcm_hw_params(snd_pcm_substream_t *substream,
1836 snd_pcm_hw_params_t * hw_params)
1837 {
1838 return snd_pcm_lib_malloc_pages(substream,
1839 params_buffer_bytes(hw_params));
1840 }
1841
1842 /* hw_free callback */
1843 static int snd_mychip_pcm_hw_free(snd_pcm_substream_t *substream)
1844 {
1845 return snd_pcm_lib_free_pages(substream);
1846 }
1847
1848 /* prepare callback */
1849 static int snd_mychip_pcm_prepare(snd_pcm_substream_t *substream)
1850 {
1851 mychip_t *chip = snd_pcm_substream_chip(substream);
1852 snd_pcm_runtime_t *runtime = substream->runtime;
1853
1854 /* set up the hardware with the current configuration
1855 * for example...
1856 */
1857 mychip_set_sample_format(chip, runtime->format);
1858 mychip_set_sample_rate(chip, runtime->rate);
1859 mychip_set_channels(chip, runtime->channels);
1860 mychip_set_dma_setup(chip, runtime->dma_area,
1861 chip->buffer_size,
1862 chip->period_size);
1863 return 0;
1864 }
1865
1866 /* trigger callback */
1867 static int snd_mychip_pcm_trigger(snd_pcm_substream_t *substream,
1868 int cmd)
1869 {
1870 switch (cmd) {
1871 case SNDRV_PCM_TRIGGER_START:
1872 // do something to start the PCM engine
1873 break;
1874 case SNDRV_PCM_TRIGGER_STOP:
1875 // do something to stop the PCM engine
1876 break;
1877 default:
1878 return -EINVAL;
1879 }
1880 }
1881
1882 /* pointer callback */
1883 static snd_pcm_uframes_t
1884 snd_mychip_pcm_pointer(snd_pcm_substream_t *substream)
1885 {
1886 mychip_t *chip = snd_pcm_substream_chip(substream);
1887 unsigned int current_ptr;
1888
1889 /* get the current hardware pointer */
1890 current_ptr = mychip_get_hw_pointer(chip);
1891 return current_ptr;
1892 }
1893
1894 /* operators */
1895 static snd_pcm_ops_t snd_mychip_playback_ops = {
1896 .open = snd_mychip_playback_open,
1897 .close = snd_mychip_playback_close,
1898 .ioctl = snd_pcm_lib_ioctl,
1899 .hw_params = snd_mychip_pcm_hw_params,
1900 .hw_free = snd_mychip_pcm_hw_free,
1901 .prepare = snd_mychip_pcm_prepare,
1902 .trigger = snd_mychip_pcm_trigger,
1903 .pointer = snd_mychip_pcm_pointer,
1904 };
1905
1906 /* operators */
1907 static snd_pcm_ops_t snd_mychip_capture_ops = {
1908 .open = snd_mychip_capture_open,
1909 .close = snd_mychip_capture_close,
1910 .ioctl = snd_pcm_lib_ioctl,
1911 .hw_params = snd_mychip_pcm_hw_params,
1912 .hw_free = snd_mychip_pcm_hw_free,
1913 .prepare = snd_mychip_pcm_prepare,
1914 .trigger = snd_mychip_pcm_trigger,
1915 .pointer = snd_mychip_pcm_pointer,
1916 };
1917
1918 /*
1919 * definitions of capture are omitted here...
1920 */
1921
1922 /* create a pcm device */
1923 static int __devinit snd_mychip_new_pcm(mychip_t *chip)
1924 {
1925 snd_pcm_t *pcm;
1926 int err;
1927
1928 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1929 &pcm)) < 0)
1930 return err;
1931 pcm->private_data = chip;
1932 strcpy(pcm->name, "My Chip");
1933 chip->pcm = pcm;
1934 /* set operators */
1935 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1936 &snd_mychip_playback_ops);
1937 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1938 &snd_mychip_capture_ops);
1939 /* pre-allocation of buffers */
1940 /* NOTE: this may fail */
1941 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1942 snd_dma_pci_data(chip->pci),
1943 64*1024, 64*1024);
1944 return 0;
1945 }
1946]]>
1947 </programlisting>
1948 </example>
1949 </para>
1950 </section>
1951
1952 <section id="pcm-interface-constructor">
1953 <title>Constructor</title>
1954 <para>
1955 A pcm instance is allocated by <function>snd_pcm_new()</function>
1956 function. It would be better to create a constructor for pcm,
1957 namely,
1958
1959 <informalexample>
1960 <programlisting>
1961<![CDATA[
1962 static int __devinit snd_mychip_new_pcm(mychip_t *chip)
1963 {
1964 snd_pcm_t *pcm;
1965 int err;
1966
1967 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1968 &pcm)) < 0)
1969 return err;
1970 pcm->private_data = chip;
1971 strcpy(pcm->name, "My Chip");
1972 chip->pcm = pcm;
1973 ....
1974 return 0;
1975 }
1976]]>
1977 </programlisting>
1978 </informalexample>
1979 </para>
1980
1981 <para>
1982 The <function>snd_pcm_new()</function> function takes the four
1983 arguments. The first argument is the card pointer to which this
1984 pcm is assigned, and the second is the ID string.
1985 </para>
1986
1987 <para>
1988 The third argument (<parameter>index</parameter>, 0 in the
1989 above) is the index of this new pcm. It begins from zero. When
1990 you will create more than one pcm instances, specify the
1991 different numbers in this argument. For example,
1992 <parameter>index</parameter> = 1 for the second PCM device.
1993 </para>
1994
1995 <para>
1996 The fourth and fifth arguments are the number of substreams
1997 for playback and capture, respectively. Here both 1 are given in
1998 the above example. When no playback or no capture is available,
1999 pass 0 to the corresponding argument.
2000 </para>
2001
2002 <para>
2003 If a chip supports multiple playbacks or captures, you can
2004 specify more numbers, but they must be handled properly in
2005 open/close, etc. callbacks. When you need to know which
2006 substream you are referring to, then it can be obtained from
2007 <type>snd_pcm_substream_t</type> data passed to each callback
2008 as follows:
2009
2010 <informalexample>
2011 <programlisting>
2012<![CDATA[
2013 snd_pcm_substream_t *substream;
2014 int index = substream->number;
2015]]>
2016 </programlisting>
2017 </informalexample>
2018 </para>
2019
2020 <para>
2021 After the pcm is created, you need to set operators for each
2022 pcm stream.
2023
2024 <informalexample>
2025 <programlisting>
2026<![CDATA[
2027 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2028 &snd_mychip_playback_ops);
2029 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2030 &snd_mychip_capture_ops);
2031]]>
2032 </programlisting>
2033 </informalexample>
2034 </para>
2035
2036 <para>
2037 The operators are defined typically like this:
2038
2039 <informalexample>
2040 <programlisting>
2041<![CDATA[
2042 static snd_pcm_ops_t snd_mychip_playback_ops = {
2043 .open = snd_mychip_pcm_open,
2044 .close = snd_mychip_pcm_close,
2045 .ioctl = snd_pcm_lib_ioctl,
2046 .hw_params = snd_mychip_pcm_hw_params,
2047 .hw_free = snd_mychip_pcm_hw_free,
2048 .prepare = snd_mychip_pcm_prepare,
2049 .trigger = snd_mychip_pcm_trigger,
2050 .pointer = snd_mychip_pcm_pointer,
2051 };
2052]]>
2053 </programlisting>
2054 </informalexample>
2055
2056 Each of callbacks is explained in the subsection
2057 <link linkend="pcm-interface-operators"><citetitle>
2058 Operators</citetitle></link>.
2059 </para>
2060
2061 <para>
2062 After setting the operators, most likely you'd like to
2063 pre-allocate the buffer. For the pre-allocation, simply call
2064 the following:
2065
2066 <informalexample>
2067 <programlisting>
2068<![CDATA[
2069 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2070 snd_dma_pci_data(chip->pci),
2071 64*1024, 64*1024);
2072]]>
2073 </programlisting>
2074 </informalexample>
2075
2076 It will allocate up to 64kB buffer as default. The details of
2077 buffer management will be described in the later section <link
2078 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2079 Management</citetitle></link>.
2080 </para>
2081
2082 <para>
2083 Additionally, you can set some extra information for this pcm
2084 in pcm-&gt;info_flags.
2085 The available values are defined as
2086 <constant>SNDRV_PCM_INFO_XXX</constant> in
2087 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2088 the hardware definition (described later). When your soundchip
2089 supports only half-duplex, specify like this:
2090
2091 <informalexample>
2092 <programlisting>
2093<![CDATA[
2094 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2095]]>
2096 </programlisting>
2097 </informalexample>
2098 </para>
2099 </section>
2100
2101 <section id="pcm-interface-destructor">
2102 <title>... And the Destructor?</title>
2103 <para>
2104 The destructor for a pcm instance is not always
2105 necessary. Since the pcm device will be released by the middle
2106 layer code automatically, you don't have to call destructor
2107 explicitly.
2108 </para>
2109
2110 <para>
2111 The destructor would be necessary when you created some
2112 special records internally and need to release them. In such a
2113 case, set the destructor function to
2114 pcm-&gt;private_free:
2115
2116 <example>
2117 <title>PCM Instance with a Destructor</title>
2118 <programlisting>
2119<![CDATA[
2120 static void mychip_pcm_free(snd_pcm_t *pcm)
2121 {
2122 mychip_t *chip = snd_pcm_chip(pcm);
2123 /* free your own data */
2124 kfree(chip->my_private_pcm_data);
2125 // do what you like else
2126 ....
2127 }
2128
2129 static int __devinit snd_mychip_new_pcm(mychip_t *chip)
2130 {
2131 snd_pcm_t *pcm;
2132 ....
2133 /* allocate your own data */
2134 chip->my_private_pcm_data = kmalloc(...);
2135 /* set the destructor */
2136 pcm->private_data = chip;
2137 pcm->private_free = mychip_pcm_free;
2138 ....
2139 }
2140]]>
2141 </programlisting>
2142 </example>
2143 </para>
2144 </section>
2145
2146 <section id="pcm-interface-runtime">
2147 <title>Runtime Pointer - The Chest of PCM Information</title>
2148 <para>
2149 When the PCM substream is opened, a PCM runtime instance is
2150 allocated and assigned to the substream. This pointer is
2151 accessible via <constant>substream-&gt;runtime</constant>.
2152 This runtime pointer holds the various information; it holds
2153 the copy of hw_params and sw_params configurations, the buffer
2154 pointers, mmap records, spinlocks, etc. Almost everyhing you
2155 need for controlling the PCM can be found there.
2156 </para>
2157
2158 <para>
2159 The definition of runtime instance is found in
2160 <filename>&lt;sound/pcm.h&gt;</filename>. Here is the
2161 copy from the file.
2162 <informalexample>
2163 <programlisting>
2164<![CDATA[
2165struct _snd_pcm_runtime {
2166 /* -- Status -- */
2167 snd_pcm_substream_t *trigger_master;
2168 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2169 int overrange;
2170 snd_pcm_uframes_t avail_max;
2171 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2172 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2173
2174 /* -- HW params -- */
2175 snd_pcm_access_t access; /* access mode */
2176 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2177 snd_pcm_subformat_t subformat; /* subformat */
2178 unsigned int rate; /* rate in Hz */
2179 unsigned int channels; /* channels */
2180 snd_pcm_uframes_t period_size; /* period size */
2181 unsigned int periods; /* periods */
2182 snd_pcm_uframes_t buffer_size; /* buffer size */
2183 unsigned int tick_time; /* tick time */
2184 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2185 size_t byte_align;
2186 unsigned int frame_bits;
2187 unsigned int sample_bits;
2188 unsigned int info;
2189 unsigned int rate_num;
2190 unsigned int rate_den;
2191
2192 /* -- SW params -- */
Takashi Iwai07799e72005-10-10 11:49:49 +02002193 struct timespec tstamp_mode; /* mmap timestamp is updated */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194 unsigned int period_step;
2195 unsigned int sleep_min; /* min ticks to sleep */
2196 snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */
2197 snd_pcm_uframes_t start_threshold;
2198 snd_pcm_uframes_t stop_threshold;
2199 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2200 noise is nearest than this */
2201 snd_pcm_uframes_t silence_size; /* Silence filling size */
2202 snd_pcm_uframes_t boundary; /* pointers wrap point */
2203
2204 snd_pcm_uframes_t silenced_start;
2205 snd_pcm_uframes_t silenced_size;
2206
2207 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2208
2209 /* -- mmap -- */
2210 volatile snd_pcm_mmap_status_t *status;
2211 volatile snd_pcm_mmap_control_t *control;
2212 atomic_t mmap_count;
2213
2214 /* -- locking / scheduling -- */
2215 spinlock_t lock;
2216 wait_queue_head_t sleep;
2217 struct timer_list tick_timer;
2218 struct fasync_struct *fasync;
2219
2220 /* -- private section -- */
2221 void *private_data;
2222 void (*private_free)(snd_pcm_runtime_t *runtime);
2223
2224 /* -- hardware description -- */
2225 snd_pcm_hardware_t hw;
2226 snd_pcm_hw_constraints_t hw_constraints;
2227
2228 /* -- interrupt callbacks -- */
2229 void (*transfer_ack_begin)(snd_pcm_substream_t *substream);
2230 void (*transfer_ack_end)(snd_pcm_substream_t *substream);
2231
2232 /* -- timer -- */
2233 unsigned int timer_resolution; /* timer resolution */
2234
2235 /* -- DMA -- */
2236 unsigned char *dma_area; /* DMA area */
2237 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2238 size_t dma_bytes; /* size of DMA area */
2239
2240 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2241
2242#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2243 /* -- OSS things -- */
2244 snd_pcm_oss_runtime_t oss;
2245#endif
2246};
2247]]>
2248 </programlisting>
2249 </informalexample>
2250 </para>
2251
2252 <para>
2253 For the operators (callbacks) of each sound driver, most of
2254 these records are supposed to be read-only. Only the PCM
2255 middle-layer changes / updates these info. The exceptions are
2256 the hardware description (hw), interrupt callbacks
2257 (transfer_ack_xxx), DMA buffer information, and the private
2258 data. Besides, if you use the standard buffer allocation
2259 method via <function>snd_pcm_lib_malloc_pages()</function>,
2260 you don't need to set the DMA buffer information by yourself.
2261 </para>
2262
2263 <para>
2264 In the sections below, important records are explained.
2265 </para>
2266
2267 <section id="pcm-interface-runtime-hw">
2268 <title>Hardware Description</title>
2269 <para>
2270 The hardware descriptor (<type>snd_pcm_hardware_t</type>)
2271 contains the definitions of the fundamental hardware
2272 configuration. Above all, you'll need to define this in
2273 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2274 the open callback</citetitle></link>.
2275 Note that the runtime instance holds the copy of the
2276 descriptor, not the pointer to the existing descriptor. That
2277 is, in the open callback, you can modify the copied descriptor
2278 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2279 number of channels is 1 only on some chip models, you can
2280 still use the same hardware descriptor and change the
2281 channels_max later:
2282 <informalexample>
2283 <programlisting>
2284<![CDATA[
2285 snd_pcm_runtime_t *runtime = substream->runtime;
2286 ...
2287 runtime->hw = snd_mychip_playback_hw; /* common definition */
2288 if (chip->model == VERY_OLD_ONE)
2289 runtime->hw.channels_max = 1;
2290]]>
2291 </programlisting>
2292 </informalexample>
2293 </para>
2294
2295 <para>
2296 Typically, you'll have a hardware descriptor like below:
2297 <informalexample>
2298 <programlisting>
2299<![CDATA[
2300 static snd_pcm_hardware_t snd_mychip_playback_hw = {
2301 .info = (SNDRV_PCM_INFO_MMAP |
2302 SNDRV_PCM_INFO_INTERLEAVED |
2303 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2304 SNDRV_PCM_INFO_MMAP_VALID),
2305 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2306 .rates = SNDRV_PCM_RATE_8000_48000,
2307 .rate_min = 8000,
2308 .rate_max = 48000,
2309 .channels_min = 2,
2310 .channels_max = 2,
2311 .buffer_bytes_max = 32768,
2312 .period_bytes_min = 4096,
2313 .period_bytes_max = 32768,
2314 .periods_min = 1,
2315 .periods_max = 1024,
2316 };
2317]]>
2318 </programlisting>
2319 </informalexample>
2320 </para>
2321
2322 <para>
2323 <itemizedlist>
2324 <listitem><para>
2325 The <structfield>info</structfield> field contains the type and
2326 capabilities of this pcm. The bit flags are defined in
2327 <filename>&lt;sound/asound.h&gt;</filename> as
2328 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2329 have to specify whether the mmap is supported and which
2330 interleaved format is supported.
2331 When the mmap is supported, add
2332 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2333 hardware supports the interleaved or the non-interleaved
2334 format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2335 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2336 be set, respectively. If both are supported, you can set both,
2337 too.
2338 </para>
2339
2340 <para>
2341 In the above example, <constant>MMAP_VALID</constant> and
2342 <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2343 mode. Usually both are set. Of course,
2344 <constant>MMAP_VALID</constant> is set only if the mmap is
2345 really supported.
2346 </para>
2347
2348 <para>
2349 The other possible flags are
2350 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2351 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2352 <constant>PAUSE</constant> bit means that the pcm supports the
2353 <quote>pause</quote> operation, while the
2354 <constant>RESUME</constant> bit means that the pcm supports
2355 the <quote>suspend/resume</quote> operation. If these flags
2356 are set, the <structfield>trigger</structfield> callback below
2357 must handle the corresponding commands.
2358 </para>
2359
2360 <para>
2361 When the PCM substreams can be synchronized (typically,
2362 synchorinized start/stop of a playback and a capture streams),
2363 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2364 too. In this case, you'll need to check the linked-list of
2365 PCM substreams in the trigger callback. This will be
2366 described in the later section.
2367 </para>
2368 </listitem>
2369
2370 <listitem>
2371 <para>
2372 <structfield>formats</structfield> field contains the bit-flags
2373 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2374 If the hardware supports more than one format, give all or'ed
2375 bits. In the example above, the signed 16bit little-endian
2376 format is specified.
2377 </para>
2378 </listitem>
2379
2380 <listitem>
2381 <para>
2382 <structfield>rates</structfield> field contains the bit-flags of
2383 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2384 When the chip supports continuous rates, pass
2385 <constant>CONTINUOUS</constant> bit additionally.
2386 The pre-defined rate bits are provided only for typical
2387 rates. If your chip supports unconventional rates, you need to add
2388 <constant>KNOT</constant> bit and set up the hardware
2389 constraint manually (explained later).
2390 </para>
2391 </listitem>
2392
2393 <listitem>
2394 <para>
2395 <structfield>rate_min</structfield> and
2396 <structfield>rate_max</structfield> define the minimal and
2397 maximal sample rate. This should correspond somehow to
2398 <structfield>rates</structfield> bits.
2399 </para>
2400 </listitem>
2401
2402 <listitem>
2403 <para>
2404 <structfield>channel_min</structfield> and
2405 <structfield>channel_max</structfield>
2406 define, as you might already expected, the minimal and maximal
2407 number of channels.
2408 </para>
2409 </listitem>
2410
2411 <listitem>
2412 <para>
2413 <structfield>buffer_bytes_max</structfield> defines the
2414 maximal buffer size in bytes. There is no
2415 <structfield>buffer_bytes_min</structfield> field, since
2416 it can be calculated from the minimal period size and the
2417 minimal number of periods.
2418 Meanwhile, <structfield>period_bytes_min</structfield> and
2419 define the minimal and maximal size of the period in bytes.
2420 <structfield>periods_max</structfield> and
2421 <structfield>periods_min</structfield> define the maximal and
2422 minimal number of periods in the buffer.
2423 </para>
2424
2425 <para>
2426 The <quote>period</quote> is a term, that corresponds to
2427 fragment in the OSS world. The period defines the size at
2428 which the PCM interrupt is generated. This size strongly
2429 depends on the hardware.
2430 Generally, the smaller period size will give you more
2431 interrupts, that is, more controls.
2432 In the case of capture, this size defines the input latency.
2433 On the other hand, the whole buffer size defines the
2434 output latency for the playback direction.
2435 </para>
2436 </listitem>
2437
2438 <listitem>
2439 <para>
2440 There is also a field <structfield>fifo_size</structfield>.
2441 This specifies the size of the hardware FIFO, but it's not
2442 used currently in the driver nor in the alsa-lib. So, you
2443 can ignore this field.
2444 </para>
2445 </listitem>
2446 </itemizedlist>
2447 </para>
2448 </section>
2449
2450 <section id="pcm-interface-runtime-config">
2451 <title>PCM Configurations</title>
2452 <para>
2453 Ok, let's go back again to the PCM runtime records.
2454 The most frequently referred records in the runtime instance are
2455 the PCM configurations.
2456 The PCM configurations are stored on runtime instance
2457 after the application sends <type>hw_params</type> data via
2458 alsa-lib. There are many fields copied from hw_params and
2459 sw_params structs. For example,
2460 <structfield>format</structfield> holds the format type
2461 chosen by the application. This field contains the enum value
2462 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2463 </para>
2464
2465 <para>
2466 One thing to be noted is that the configured buffer and period
2467 sizes are stored in <quote>frames</quote> in the runtime
2468 In the ALSA world, 1 frame = channels * samples-size.
2469 For conversion between frames and bytes, you can use the
2470 helper functions, <function>frames_to_bytes()</function> and
2471 <function>bytes_to_frames()</function>.
2472 <informalexample>
2473 <programlisting>
2474<![CDATA[
2475 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2476]]>
2477 </programlisting>
2478 </informalexample>
2479 </para>
2480
2481 <para>
2482 Also, many software parameters (sw_params) are
2483 stored in frames, too. Please check the type of the field.
2484 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2485 integer while <type>snd_pcm_sframes_t</type> is for the frames
2486 as signed integer.
2487 </para>
2488 </section>
2489
2490 <section id="pcm-interface-runtime-dma">
2491 <title>DMA Buffer Information</title>
2492 <para>
2493 The DMA buffer is defined by the following four fields,
2494 <structfield>dma_area</structfield>,
2495 <structfield>dma_addr</structfield>,
2496 <structfield>dma_bytes</structfield> and
2497 <structfield>dma_private</structfield>.
2498 The <structfield>dma_area</structfield> holds the buffer
2499 pointer (the logical address). You can call
2500 <function>memcpy</function> from/to
2501 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2502 holds the physical address of the buffer. This field is
2503 specified only when the buffer is a linear buffer.
2504 <structfield>dma_bytes</structfield> holds the size of buffer
2505 in bytes. <structfield>dma_private</structfield> is used for
2506 the ALSA DMA allocator.
2507 </para>
2508
2509 <para>
2510 If you use a standard ALSA function,
2511 <function>snd_pcm_lib_malloc_pages()</function>, for
2512 allocating the buffer, these fields are set by the ALSA middle
2513 layer, and you should <emphasis>not</emphasis> change them by
2514 yourself. You can read them but not write them.
2515 On the other hand, if you want to allocate the buffer by
2516 yourself, you'll need to manage it in hw_params callback.
2517 At least, <structfield>dma_bytes</structfield> is mandatory.
2518 <structfield>dma_area</structfield> is necessary when the
2519 buffer is mmapped. If your driver doesn't support mmap, this
2520 field is not necessary. <structfield>dma_addr</structfield>
2521 is also not mandatory. You can use
2522 <structfield>dma_private</structfield> as you like, too.
2523 </para>
2524 </section>
2525
2526 <section id="pcm-interface-runtime-status">
2527 <title>Running Status</title>
2528 <para>
2529 The running status can be referred via <constant>runtime-&gt;status</constant>.
2530 This is the pointer to <type>snd_pcm_mmap_status_t</type>
2531 record. For example, you can get the current DMA hardware
2532 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2533 </para>
2534
2535 <para>
2536 The DMA application pointer can be referred via
2537 <constant>runtime-&gt;control</constant>, which points
2538 <type>snd_pcm_mmap_control_t</type> record.
2539 However, accessing directly to this value is not recommended.
2540 </para>
2541 </section>
2542
2543 <section id="pcm-interface-runtime-private">
2544 <title>Private Data</title>
2545 <para>
2546 You can allocate a record for the substream and store it in
2547 <constant>runtime-&gt;private_data</constant>. Usually, this
2548 done in
2549 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2550 the open callback</citetitle></link>.
2551 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2552 The <constant>pcm-&gt;private_data</constant> usually points the
2553 chip instance assigned statically at the creation of PCM, while the
2554 <constant>runtime-&gt;private_data</constant> points a dynamic
2555 data created at the PCM open callback.
2556
2557 <informalexample>
2558 <programlisting>
2559<![CDATA[
2560 static int snd_xxx_open(snd_pcm_substream_t *substream)
2561 {
2562 my_pcm_data_t *data;
2563 ....
2564 data = kmalloc(sizeof(*data), GFP_KERNEL);
2565 substream->runtime->private_data = data;
2566 ....
2567 }
2568]]>
2569 </programlisting>
2570 </informalexample>
2571 </para>
2572
2573 <para>
2574 The allocated object must be released in
2575 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2576 the close callback</citetitle></link>.
2577 </para>
2578 </section>
2579
2580 <section id="pcm-interface-runtime-intr">
2581 <title>Interrupt Callbacks</title>
2582 <para>
2583 The field <structfield>transfer_ack_begin</structfield> and
2584 <structfield>transfer_ack_end</structfield> are called at
2585 the beginning and the end of
2586 <function>snd_pcm_period_elapsed()</function>, respectively.
2587 </para>
2588 </section>
2589
2590 </section>
2591
2592 <section id="pcm-interface-operators">
2593 <title>Operators</title>
2594 <para>
2595 OK, now let me explain the detail of each pcm callback
2596 (<parameter>ops</parameter>). In general, every callback must
2597 return 0 if successful, or a negative number with the error
2598 number such as <constant>-EINVAL</constant> at any
2599 error.
2600 </para>
2601
2602 <para>
2603 The callback function takes at least the argument with
2604 <type>snd_pcm_substream_t</type> pointer. For retrieving the
2605 chip record from the given substream instance, you can use the
2606 following macro.
2607
2608 <informalexample>
2609 <programlisting>
2610<![CDATA[
2611 int xxx() {
2612 mychip_t *chip = snd_pcm_substream_chip(substream);
2613 ....
2614 }
2615]]>
2616 </programlisting>
2617 </informalexample>
2618
2619 The macro reads <constant>substream-&gt;private_data</constant>,
2620 which is a copy of <constant>pcm-&gt;private_data</constant>.
2621 You can override the former if you need to assign different data
2622 records per PCM substream. For example, cmi8330 driver assigns
2623 different private_data for playback and capture directions,
2624 because it uses two different codecs (SB- and AD-compatible) for
2625 different directions.
2626 </para>
2627
2628 <section id="pcm-interface-operators-open-callback">
2629 <title>open callback</title>
2630 <para>
2631 <informalexample>
2632 <programlisting>
2633<![CDATA[
2634 static int snd_xxx_open(snd_pcm_substream_t *substream);
2635]]>
2636 </programlisting>
2637 </informalexample>
2638
2639 This is called when a pcm substream is opened.
2640 </para>
2641
2642 <para>
2643 At least, here you have to initialize the runtime-&gt;hw
2644 record. Typically, this is done by like this:
2645
2646 <informalexample>
2647 <programlisting>
2648<![CDATA[
2649 static int snd_xxx_open(snd_pcm_substream_t *substream)
2650 {
2651 mychip_t *chip = snd_pcm_substream_chip(substream);
2652 snd_pcm_runtime_t *runtime = substream->runtime;
2653
2654 runtime->hw = snd_mychip_playback_hw;
2655 return 0;
2656 }
2657]]>
2658 </programlisting>
2659 </informalexample>
2660
2661 where <parameter>snd_mychip_playback_hw</parameter> is the
2662 pre-defined hardware description.
2663 </para>
2664
2665 <para>
2666 You can allocate a private data in this callback, as described
2667 in <link linkend="pcm-interface-runtime-private"><citetitle>
2668 Private Data</citetitle></link> section.
2669 </para>
2670
2671 <para>
2672 If the hardware configuration needs more constraints, set the
2673 hardware constraints here, too.
2674 See <link linkend="pcm-interface-constraints"><citetitle>
2675 Constraints</citetitle></link> for more details.
2676 </para>
2677 </section>
2678
2679 <section id="pcm-interface-operators-close-callback">
2680 <title>close callback</title>
2681 <para>
2682 <informalexample>
2683 <programlisting>
2684<![CDATA[
2685 static int snd_xxx_close(snd_pcm_substream_t *substream);
2686]]>
2687 </programlisting>
2688 </informalexample>
2689
2690 Obviously, this is called when a pcm substream is closed.
2691 </para>
2692
2693 <para>
2694 Any private instance for a pcm substream allocated in the
2695 open callback will be released here.
2696
2697 <informalexample>
2698 <programlisting>
2699<![CDATA[
2700 static int snd_xxx_close(snd_pcm_substream_t *substream)
2701 {
2702 ....
2703 kfree(substream->runtime->private_data);
2704 ....
2705 }
2706]]>
2707 </programlisting>
2708 </informalexample>
2709 </para>
2710 </section>
2711
2712 <section id="pcm-interface-operators-ioctl-callback">
2713 <title>ioctl callback</title>
2714 <para>
2715 This is used for any special action to pcm ioctls. But
2716 usually you can pass a generic ioctl callback,
2717 <function>snd_pcm_lib_ioctl</function>.
2718 </para>
2719 </section>
2720
2721 <section id="pcm-interface-operators-hw-params-callback">
2722 <title>hw_params callback</title>
2723 <para>
2724 <informalexample>
2725 <programlisting>
2726<![CDATA[
2727 static int snd_xxx_hw_params(snd_pcm_substream_t * substream,
2728 snd_pcm_hw_params_t * hw_params);
2729]]>
2730 </programlisting>
2731 </informalexample>
2732
2733 This and <structfield>hw_free</structfield> callbacks exist
2734 only on ALSA 0.9.x.
2735 </para>
2736
2737 <para>
2738 This is called when the hardware parameter
2739 (<structfield>hw_params</structfield>) is set
2740 up by the application,
2741 that is, once when the buffer size, the period size, the
2742 format, etc. are defined for the pcm substream.
2743 </para>
2744
2745 <para>
2746 Many hardware set-up should be done in this callback,
2747 including the allocation of buffers.
2748 </para>
2749
2750 <para>
2751 Parameters to be initialized are retrieved by
2752 <function>params_xxx()</function> macros. For allocating a
2753 buffer, you can call a helper function,
2754
2755 <informalexample>
2756 <programlisting>
2757<![CDATA[
2758 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2759]]>
2760 </programlisting>
2761 </informalexample>
2762
2763 <function>snd_pcm_lib_malloc_pages()</function> is available
2764 only when the DMA buffers have been pre-allocated.
2765 See the section <link
2766 linkend="buffer-and-memory-buffer-types"><citetitle>
2767 Buffer Types</citetitle></link> for more details.
2768 </para>
2769
2770 <para>
2771 Note that this and <structfield>prepare</structfield> callbacks
2772 may be called multiple times per initialization.
2773 For example, the OSS emulation may
2774 call these callbacks at each change via its ioctl.
2775 </para>
2776
2777 <para>
2778 Thus, you need to take care not to allocate the same buffers
2779 many times, which will lead to memory leak! Calling the
2780 helper function above many times is OK. It will release the
2781 previous buffer automatically when it was already allocated.
2782 </para>
2783
2784 <para>
2785 Another note is that this callback is non-atomic
2786 (schedulable). This is important, because the
2787 <structfield>trigger</structfield> callback
2788 is atomic (non-schedulable). That is, mutex or any
2789 schedule-related functions are not available in
2790 <structfield>trigger</structfield> callback.
2791 Please see the subsection
2792 <link linkend="pcm-interface-atomicity"><citetitle>
2793 Atomicity</citetitle></link> for details.
2794 </para>
2795 </section>
2796
2797 <section id="pcm-interface-operators-hw-free-callback">
2798 <title>hw_free callback</title>
2799 <para>
2800 <informalexample>
2801 <programlisting>
2802<![CDATA[
2803 static int snd_xxx_hw_free(snd_pcm_substream_t * substream);
2804]]>
2805 </programlisting>
2806 </informalexample>
2807 </para>
2808
2809 <para>
2810 This is called to release the resources allocated via
2811 <structfield>hw_params</structfield>. For example, releasing the
2812 buffer via
2813 <function>snd_pcm_lib_malloc_pages()</function> is done by
2814 calling the following:
2815
2816 <informalexample>
2817 <programlisting>
2818<![CDATA[
2819 snd_pcm_lib_free_pages(substream);
2820]]>
2821 </programlisting>
2822 </informalexample>
2823 </para>
2824
2825 <para>
2826 This function is always called before the close callback is called.
2827 Also, the callback may be called multiple times, too.
2828 Keep track whether the resource was already released.
2829 </para>
2830 </section>
2831
2832 <section id="pcm-interface-operators-prepare-callback">
2833 <title>prepare callback</title>
2834 <para>
2835 <informalexample>
2836 <programlisting>
2837<![CDATA[
2838 static int snd_xxx_prepare(snd_pcm_substream_t * substream);
2839]]>
2840 </programlisting>
2841 </informalexample>
2842 </para>
2843
2844 <para>
2845 This callback is called when the pcm is
2846 <quote>prepared</quote>. You can set the format type, sample
2847 rate, etc. here. The difference from
2848 <structfield>hw_params</structfield> is that the
2849 <structfield>prepare</structfield> callback will be called at each
2850 time
2851 <function>snd_pcm_prepare()</function> is called, i.e. when
2852 recovered after underruns, etc.
2853 </para>
2854
2855 <para>
2856 Note that this callback became non-atomic since the recent version.
2857 You can use schedule-related fucntions safely in this callback now.
2858 </para>
2859
2860 <para>
2861 In this and the following callbacks, you can refer to the
2862 values via the runtime record,
2863 substream-&gt;runtime.
2864 For example, to get the current
2865 rate, format or channels, access to
2866 runtime-&gt;rate,
2867 runtime-&gt;format or
2868 runtime-&gt;channels, respectively.
2869 The physical address of the allocated buffer is set to
2870 runtime-&gt;dma_area. The buffer and period sizes are
2871 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2872 respectively.
2873 </para>
2874
2875 <para>
2876 Be careful that this callback will be called many times at
2877 each set up, too.
2878 </para>
2879 </section>
2880
2881 <section id="pcm-interface-operators-trigger-callback">
2882 <title>trigger callback</title>
2883 <para>
2884 <informalexample>
2885 <programlisting>
2886<![CDATA[
2887 static int snd_xxx_trigger(snd_pcm_substream_t * substream, int cmd);
2888]]>
2889 </programlisting>
2890 </informalexample>
2891
2892 This is called when the pcm is started, stopped or paused.
2893 </para>
2894
2895 <para>
2896 Which action is specified in the second argument,
2897 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2898 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2899 <constant>START</constant> and <constant>STOP</constant>
2900 commands must be defined in this callback.
2901
2902 <informalexample>
2903 <programlisting>
2904<![CDATA[
2905 switch (cmd) {
2906 case SNDRV_PCM_TRIGGER_START:
2907 // do something to start the PCM engine
2908 break;
2909 case SNDRV_PCM_TRIGGER_STOP:
2910 // do something to stop the PCM engine
2911 break;
2912 default:
2913 return -EINVAL;
2914 }
2915]]>
2916 </programlisting>
2917 </informalexample>
2918 </para>
2919
2920 <para>
2921 When the pcm supports the pause operation (given in info
2922 field of the hardware table), <constant>PAUSE_PUSE</constant>
2923 and <constant>PAUSE_RELEASE</constant> commands must be
2924 handled here, too. The former is the command to pause the pcm,
2925 and the latter to restart the pcm again.
2926 </para>
2927
2928 <para>
2929 When the pcm supports the suspend/resume operation
2930 (i.e. <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set),
2931 <constant>SUSPEND</constant> and <constant>RESUME</constant>
2932 commands must be handled, too.
2933 These commands are issued when the power-management status is
2934 changed. Obviously, the <constant>SUSPEND</constant> and
2935 <constant>RESUME</constant>
2936 do suspend and resume of the pcm substream, and usually, they
2937 are identical with <constant>STOP</constant> and
2938 <constant>START</constant> commands, respectively.
2939 </para>
2940
2941 <para>
2942 As mentioned, this callback is atomic. You cannot call
2943 the function going to sleep.
2944 The trigger callback should be as minimal as possible,
2945 just really triggering the DMA. The other stuff should be
2946 initialized hw_params and prepare callbacks properly
2947 beforehand.
2948 </para>
2949 </section>
2950
2951 <section id="pcm-interface-operators-pointer-callback">
2952 <title>pointer callback</title>
2953 <para>
2954 <informalexample>
2955 <programlisting>
2956<![CDATA[
2957 static snd_pcm_uframes_t snd_xxx_pointer(snd_pcm_substream_t * substream)
2958]]>
2959 </programlisting>
2960 </informalexample>
2961
2962 This callback is called when the PCM middle layer inquires
2963 the current hardware position on the buffer. The position must
2964 be returned in frames (which was in bytes on ALSA 0.5.x),
2965 ranged from 0 to buffer_size - 1.
2966 </para>
2967
2968 <para>
2969 This is called usually from the buffer-update routine in the
2970 pcm middle layer, which is invoked when
2971 <function>snd_pcm_period_elapsed()</function> is called in the
2972 interrupt routine. Then the pcm middle layer updates the
2973 position and calculates the available space, and wakes up the
2974 sleeping poll threads, etc.
2975 </para>
2976
2977 <para>
2978 This callback is also atomic.
2979 </para>
2980 </section>
2981
2982 <section id="pcm-interface-operators-copy-silence">
2983 <title>copy and silence callbacks</title>
2984 <para>
2985 These callbacks are not mandatory, and can be omitted in
2986 most cases. These callbacks are used when the hardware buffer
2987 cannot be on the normal memory space. Some chips have their
2988 own buffer on the hardware which is not mappable. In such a
2989 case, you have to transfer the data manually from the memory
2990 buffer to the hardware buffer. Or, if the buffer is
2991 non-contiguous on both physical and virtual memory spaces,
2992 these callbacks must be defined, too.
2993 </para>
2994
2995 <para>
2996 If these two callbacks are defined, copy and set-silence
2997 operations are done by them. The detailed will be described in
2998 the later section <link
2999 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3000 Management</citetitle></link>.
3001 </para>
3002 </section>
3003
3004 <section id="pcm-interface-operators-ack">
3005 <title>ack callback</title>
3006 <para>
3007 This callback is also not mandatory. This callback is called
3008 when the appl_ptr is updated in read or write operations.
3009 Some drivers like emu10k1-fx and cs46xx need to track the
3010 current appl_ptr for the internal buffer, and this callback
3011 is useful only for such a purpose.
3012 </para>
3013 <para>
3014 This callback is atomic.
3015 </para>
3016 </section>
3017
3018 <section id="pcm-interface-operators-page-callback">
3019 <title>page callback</title>
3020
3021 <para>
3022 This callback is also not mandatory. This callback is used
3023 mainly for the non-contiguous buffer. The mmap calls this
3024 callback to get the page address. Some examples will be
3025 explained in the later section <link
3026 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3027 Management</citetitle></link>, too.
3028 </para>
3029 </section>
3030 </section>
3031
3032 <section id="pcm-interface-interrupt-handler">
3033 <title>Interrupt Handler</title>
3034 <para>
3035 The rest of pcm stuff is the PCM interrupt handler. The
3036 role of PCM interrupt handler in the sound driver is to update
3037 the buffer position and to tell the PCM middle layer when the
3038 buffer position goes across the prescribed period size. To
3039 inform this, call <function>snd_pcm_period_elapsed()</function>
3040 function.
3041 </para>
3042
3043 <para>
3044 There are several types of sound chips to generate the interrupts.
3045 </para>
3046
3047 <section id="pcm-interface-interrupt-handler-boundary">
3048 <title>Interrupts at the period (fragment) boundary</title>
3049 <para>
3050 This is the most frequently found type: the hardware
3051 generates an interrupt at each period boundary.
3052 In this case, you can call
3053 <function>snd_pcm_period_elapsed()</function> at each
3054 interrupt.
3055 </para>
3056
3057 <para>
3058 <function>snd_pcm_period_elapsed()</function> takes the
3059 substream pointer as its argument. Thus, you need to keep the
3060 substream pointer accessible from the chip instance. For
3061 example, define substream field in the chip record to hold the
3062 current running substream pointer, and set the pointer value
3063 at open callback (and reset at close callback).
3064 </para>
3065
3066 <para>
3067 If you aquire a spinlock in the interrupt handler, and the
3068 lock is used in other pcm callbacks, too, then you have to
3069 release the lock before calling
3070 <function>snd_pcm_period_elapsed()</function>, because
3071 <function>snd_pcm_period_elapsed()</function> calls other pcm
3072 callbacks inside.
3073 </para>
3074
3075 <para>
3076 A typical coding would be like:
3077
3078 <example>
3079 <title>Interrupt Handler Case #1</title>
3080 <programlisting>
3081<![CDATA[
3082 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3083 struct pt_regs *regs)
3084 {
3085 mychip_t *chip = dev_id;
3086 spin_lock(&chip->lock);
3087 ....
3088 if (pcm_irq_invoked(chip)) {
3089 /* call updater, unlock before it */
3090 spin_unlock(&chip->lock);
3091 snd_pcm_period_elapsed(chip->substream);
3092 spin_lock(&chip->lock);
3093 // acknowledge the interrupt if necessary
3094 }
3095 ....
3096 spin_unlock(&chip->lock);
3097 return IRQ_HANDLED;
3098 }
3099]]>
3100 </programlisting>
3101 </example>
3102 </para>
3103 </section>
3104
3105 <section id="pcm-interface-interrupt-handler-timer">
3106 <title>High-frequent timer interrupts</title>
3107 <para>
3108 This is the case when the hardware doesn't generate interrupts
3109 at the period boundary but do timer-interrupts at the fixed
3110 timer rate (e.g. es1968 or ymfpci drivers).
3111 In this case, you need to check the current hardware
3112 position and accumulates the processed sample length at each
3113 interrupt. When the accumulated size overcomes the period
3114 size, call
3115 <function>snd_pcm_period_elapsed()</function> and reset the
3116 accumulator.
3117 </para>
3118
3119 <para>
3120 A typical coding would be like the following.
3121
3122 <example>
3123 <title>Interrupt Handler Case #2</title>
3124 <programlisting>
3125<![CDATA[
3126 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3127 struct pt_regs *regs)
3128 {
3129 mychip_t *chip = dev_id;
3130 spin_lock(&chip->lock);
3131 ....
3132 if (pcm_irq_invoked(chip)) {
3133 unsigned int last_ptr, size;
3134 /* get the current hardware pointer (in frames) */
3135 last_ptr = get_hw_ptr(chip);
3136 /* calculate the processed frames since the
3137 * last update
3138 */
3139 if (last_ptr < chip->last_ptr)
3140 size = runtime->buffer_size + last_ptr
3141 - chip->last_ptr;
3142 else
3143 size = last_ptr - chip->last_ptr;
3144 /* remember the last updated point */
3145 chip->last_ptr = last_ptr;
3146 /* accumulate the size */
3147 chip->size += size;
3148 /* over the period boundary? */
3149 if (chip->size >= runtime->period_size) {
3150 /* reset the accumulator */
3151 chip->size %= runtime->period_size;
3152 /* call updater */
3153 spin_unlock(&chip->lock);
3154 snd_pcm_period_elapsed(substream);
3155 spin_lock(&chip->lock);
3156 }
3157 // acknowledge the interrupt if necessary
3158 }
3159 ....
3160 spin_unlock(&chip->lock);
3161 return IRQ_HANDLED;
3162 }
3163]]>
3164 </programlisting>
3165 </example>
3166 </para>
3167 </section>
3168
3169 <section id="pcm-interface-interrupt-handler-both">
3170 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3171 <para>
3172 In both cases, even if more than one period are elapsed, you
3173 don't have to call
3174 <function>snd_pcm_period_elapsed()</function> many times. Call
3175 only once. And the pcm layer will check the current hardware
3176 pointer and update to the latest status.
3177 </para>
3178 </section>
3179 </section>
3180
3181 <section id="pcm-interface-atomicity">
3182 <title>Atomicity</title>
3183 <para>
3184 One of the most important (and thus difficult to debug) problem
3185 on the kernel programming is the race condition.
3186 On linux kernel, usually it's solved via spin-locks or
3187 semaphores. In general, if the race condition may
3188 happen in the interrupt handler, it's handled as atomic, and you
3189 have to use spinlock for protecting the critical session. If it
3190 never happens in the interrupt and it may take relatively long
3191 time, you should use semaphore.
3192 </para>
3193
3194 <para>
3195 As already seen, some pcm callbacks are atomic and some are
3196 not. For example, <parameter>hw_params</parameter> callback is
3197 non-atomic, while <parameter>trigger</parameter> callback is
3198 atomic. This means, the latter is called already in a spinlock
3199 held by the PCM middle layer. Please take this atomicity into
3200 account when you use a spinlock or a semaphore in the callbacks.
3201 </para>
3202
3203 <para>
3204 In the atomic callbacks, you cannot use functions which may call
3205 <function>schedule</function> or go to
3206 <function>sleep</function>. The semaphore and mutex do sleep,
3207 and hence they cannot be used inside the atomic callbacks
3208 (e.g. <parameter>trigger</parameter> callback).
3209 For taking a certain delay in such a callback, please use
3210 <function>udelay()</function> or <function>mdelay()</function>.
3211 </para>
3212
3213 <para>
3214 All three atomic callbacks (trigger, pointer, and ack) are
3215 called with local interrupts disabled.
3216 </para>
3217
3218 </section>
3219 <section id="pcm-interface-constraints">
3220 <title>Constraints</title>
3221 <para>
3222 If your chip supports unconventional sample rates, or only the
3223 limited samples, you need to set a constraint for the
3224 condition.
3225 </para>
3226
3227 <para>
3228 For example, in order to restrict the sample rates in the some
3229 supported values, use
3230 <function>snd_pcm_hw_constraint_list()</function>.
3231 You need to call this function in the open callback.
3232
3233 <example>
3234 <title>Example of Hardware Constraints</title>
3235 <programlisting>
3236<![CDATA[
3237 static unsigned int rates[] =
3238 {4000, 10000, 22050, 44100};
3239 static snd_pcm_hw_constraint_list_t constraints_rates = {
3240 .count = ARRAY_SIZE(rates),
3241 .list = rates,
3242 .mask = 0,
3243 };
3244
3245 static int snd_mychip_pcm_open(snd_pcm_substream_t *substream)
3246 {
3247 int err;
3248 ....
3249 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3250 SNDRV_PCM_HW_PARAM_RATE,
3251 &constraints_rates);
3252 if (err < 0)
3253 return err;
3254 ....
3255 }
3256]]>
3257 </programlisting>
3258 </example>
3259 </para>
3260
3261 <para>
3262 There are many different constraints.
3263 Look in <filename>sound/pcm.h</filename> for a complete list.
3264 You can even define your own constraint rules.
3265 For example, let's suppose my_chip can manage a substream of 1 channel
3266 if and only if the format is S16_LE, otherwise it supports any format
3267 specified in the <type>snd_pcm_hardware_t</type> stucture (or in any
3268 other constraint_list). You can build a rule like this:
3269
3270 <example>
3271 <title>Example of Hardware Constraints for Channels</title>
3272 <programlisting>
3273<![CDATA[
3274 static int hw_rule_format_by_channels(snd_pcm_hw_params_t *params,
3275 snd_pcm_hw_rule_t *rule)
3276 {
3277 snd_interval_t *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
3278 snd_mask_t *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3279 snd_mask_t fmt;
3280
3281 snd_mask_any(&fmt); /* Init the struct */
3282 if (c->min < 2) {
3283 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3284 return snd_mask_refine(f, &fmt);
3285 }
3286 return 0;
3287 }
3288]]>
3289 </programlisting>
3290 </example>
3291 </para>
3292
3293 <para>
3294 Then you need to call this function to add your rule:
3295
3296 <informalexample>
3297 <programlisting>
3298<![CDATA[
3299 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3300 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3301 -1);
3302]]>
3303 </programlisting>
3304 </informalexample>
3305 </para>
3306
3307 <para>
3308 The rule function is called when an application sets the number of
3309 channels. But an application can set the format before the number of
3310 channels. Thus you also need to define the inverse rule:
3311
3312 <example>
3313 <title>Example of Hardware Constraints for Channels</title>
3314 <programlisting>
3315<![CDATA[
3316 static int hw_rule_channels_by_format(snd_pcm_hw_params_t *params,
3317 snd_pcm_hw_rule_t *rule)
3318 {
3319 snd_interval_t *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
3320 snd_mask_t *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3321 snd_interval_t ch;
3322
3323 snd_interval_any(&ch);
3324 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3325 ch.min = ch.max = 1;
3326 ch.integer = 1;
3327 return snd_interval_refine(c, &ch);
3328 }
3329 return 0;
3330 }
3331]]>
3332 </programlisting>
3333 </example>
3334 </para>
3335
3336 <para>
3337 ...and in the open callback:
3338 <informalexample>
3339 <programlisting>
3340<![CDATA[
3341 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3342 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3343 -1);
3344]]>
3345 </programlisting>
3346 </informalexample>
3347 </para>
3348
3349 <para>
3350 I won't explain more details here, rather I
3351 would like to say, <quote>Luke, use the source.</quote>
3352 </para>
3353 </section>
3354
3355 </chapter>
3356
3357
3358<!-- ****************************************************** -->
3359<!-- Control Interface -->
3360<!-- ****************************************************** -->
3361 <chapter id="control-interface">
3362 <title>Control Interface</title>
3363
3364 <section id="control-interface-general">
3365 <title>General</title>
3366 <para>
3367 The control interface is used widely for many switches,
3368 sliders, etc. which are accessed from the user-space. Its most
3369 important use is the mixer interface. In other words, on ALSA
3370 0.9.x, all the mixer stuff is implemented on the control kernel
3371 API (while there was an independent mixer kernel API on 0.5.x).
3372 </para>
3373
3374 <para>
3375 ALSA has a well-defined AC97 control module. If your chip
3376 supports only the AC97 and nothing else, you can skip this
3377 section.
3378 </para>
3379
3380 <para>
3381 The control API is defined in
3382 <filename>&lt;sound/control.h&gt;</filename>.
3383 Include this file if you add your own controls.
3384 </para>
3385 </section>
3386
3387 <section id="control-interface-definition">
3388 <title>Definition of Controls</title>
3389 <para>
3390 For creating a new control, you need to define the three
3391 callbacks: <structfield>info</structfield>,
3392 <structfield>get</structfield> and
3393 <structfield>put</structfield>. Then, define a
3394 <type>snd_kcontrol_new_t</type> record, such as:
3395
3396 <example>
3397 <title>Definition of a Control</title>
3398 <programlisting>
3399<![CDATA[
3400 static snd_kcontrol_new_t my_control __devinitdata = {
3401 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3402 .name = "PCM Playback Switch",
3403 .index = 0,
3404 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3405 .private_values = 0xffff,
3406 .info = my_control_info,
3407 .get = my_control_get,
3408 .put = my_control_put
3409 };
3410]]>
3411 </programlisting>
3412 </example>
3413 </para>
3414
3415 <para>
3416 Most likely the control is created via
3417 <function>snd_ctl_new1()</function>, and in such a case, you can
3418 add <parameter>__devinitdata</parameter> prefix to the
3419 definition like above.
3420 </para>
3421
3422 <para>
3423 The <structfield>iface</structfield> field specifies the type of
Clemens Ladisch67ed4162005-07-29 15:32:58 +02003424 the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3425 is usually <constant>MIXER</constant>.
3426 Use <constant>CARD</constant> for global controls that are not
3427 logically part of the mixer.
3428 If the control is closely associated with some specific device on
3429 the sound card, use <constant>HWDEP</constant>,
3430 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3431 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3432 specify the device number with the
3433 <structfield>device</structfield> and
3434 <structfield>subdevice</structfield> fields.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003435 </para>
3436
3437 <para>
3438 The <structfield>name</structfield> is the name identifier
3439 string. On ALSA 0.9.x, the control name is very important,
3440 because its role is classified from its name. There are
3441 pre-defined standard control names. The details are described in
3442 the subsection
3443 <link linkend="control-interface-control-names"><citetitle>
3444 Control Names</citetitle></link>.
3445 </para>
3446
3447 <para>
3448 The <structfield>index</structfield> field holds the index number
3449 of this control. If there are several different controls with
3450 the same name, they can be distinguished by the index
3451 number. This is the case when
3452 several codecs exist on the card. If the index is zero, you can
3453 omit the definition above.
3454 </para>
3455
3456 <para>
3457 The <structfield>access</structfield> field contains the access
3458 type of this control. Give the combination of bit masks,
3459 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3460 The detailed will be explained in the subsection
3461 <link linkend="control-interface-access-flags"><citetitle>
3462 Access Flags</citetitle></link>.
3463 </para>
3464
3465 <para>
3466 The <structfield>private_values</structfield> field contains
3467 an arbitrary long integer value for this record. When using
3468 generic <structfield>info</structfield>,
3469 <structfield>get</structfield> and
3470 <structfield>put</structfield> callbacks, you can pass a value
3471 through this field. If several small numbers are necessary, you can
3472 combine them in bitwise. Or, it's possible to give a pointer
3473 (casted to unsigned long) of some record to this field, too.
3474 </para>
3475
3476 <para>
3477 The other three are
3478 <link linkend="control-interface-callbacks"><citetitle>
3479 callback functions</citetitle></link>.
3480 </para>
3481 </section>
3482
3483 <section id="control-interface-control-names">
3484 <title>Control Names</title>
3485 <para>
3486 There are some standards for defining the control names. A
3487 control is usually defined from the three parts as
3488 <quote>SOURCE DIRECTION FUNCTION</quote>.
3489 </para>
3490
3491 <para>
3492 The first, <constant>SOURCE</constant>, specifies the source
3493 of the control, and is a string such as <quote>Master</quote>,
3494 <quote>PCM</quote>, <quote>CD</quote> or
3495 <quote>Line</quote>. There are many pre-defined sources.
3496 </para>
3497
3498 <para>
3499 The second, <constant>DIRECTION</constant>, is one of the
3500 following strings according to the direction of the control:
3501 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3502 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3503 be omitted, meaning both playback and capture directions.
3504 </para>
3505
3506 <para>
3507 The third, <constant>FUNCTION</constant>, is one of the
3508 following strings according to the function of the control:
3509 <quote>Switch</quote>, <quote>Volume</quote> and
3510 <quote>Route</quote>.
3511 </para>
3512
3513 <para>
3514 The example of control names are, thus, <quote>Master Capture
3515 Switch</quote> or <quote>PCM Playback Volume</quote>.
3516 </para>
3517
3518 <para>
3519 There are some exceptions:
3520 </para>
3521
3522 <section id="control-interface-control-names-global">
3523 <title>Global capture and playback</title>
3524 <para>
3525 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3526 and <quote>Capture Volume</quote> are used for the global
3527 capture (input) source, switch and volume. Similarly,
3528 <quote>Playback Switch</quote> and <quote>Playback
3529 Volume</quote> are used for the global output gain switch and
3530 volume.
3531 </para>
3532 </section>
3533
3534 <section id="control-interface-control-names-tone">
3535 <title>Tone-controls</title>
3536 <para>
3537 tone-control switch and volumes are specified like
3538 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3539 Switch</quote>, <quote>Tone Control - Bass</quote>,
3540 <quote>Tone Control - Center</quote>.
3541 </para>
3542 </section>
3543
3544 <section id="control-interface-control-names-3d">
3545 <title>3D controls</title>
3546 <para>
3547 3D-control switches and volumes are specified like <quote>3D
3548 Control - XXX</quote>, e.g. <quote>3D Control -
3549 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3550 Control - Space</quote>.
3551 </para>
3552 </section>
3553
3554 <section id="control-interface-control-names-mic">
3555 <title>Mic boost</title>
3556 <para>
3557 Mic-boost switch is set as <quote>Mic Boost</quote> or
3558 <quote>Mic Boost (6dB)</quote>.
3559 </para>
3560
3561 <para>
3562 More precise information can be found in
3563 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3564 </para>
3565 </section>
3566 </section>
3567
3568 <section id="control-interface-access-flags">
3569 <title>Access Flags</title>
3570
3571 <para>
3572 The access flag is the bit-flags which specifies the access type
3573 of the given control. The default access type is
3574 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3575 which means both read and write are allowed to this control.
3576 When the access flag is omitted (i.e. = 0), it is
3577 regarded as <constant>READWRITE</constant> access as default.
3578 </para>
3579
3580 <para>
3581 When the control is read-only, pass
3582 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3583 In this case, you don't have to define
3584 <structfield>put</structfield> callback.
3585 Similarly, when the control is write-only (although it's a rare
3586 case), you can use <constant>WRITE</constant> flag instead, and
3587 you don't need <structfield>get</structfield> callback.
3588 </para>
3589
3590 <para>
3591 If the control value changes frequently (e.g. the VU meter),
3592 <constant>VOLATILE</constant> flag should be given. This means
3593 that the control may be changed without
3594 <link linkend="control-interface-change-notification"><citetitle>
3595 notification</citetitle></link>. Applications should poll such
3596 a control constantly.
3597 </para>
3598
3599 <para>
3600 When the control is inactive, set
3601 <constant>INACTIVE</constant> flag, too.
3602 There are <constant>LOCK</constant> and
3603 <constant>OWNER</constant> flags for changing the write
3604 permissions.
3605 </para>
3606
3607 </section>
3608
3609 <section id="control-interface-callbacks">
3610 <title>Callbacks</title>
3611
3612 <section id="control-interface-callbacks-info">
3613 <title>info callback</title>
3614 <para>
3615 The <structfield>info</structfield> callback is used to get
3616 the detailed information of this control. This must store the
3617 values of the given <type>snd_ctl_elem_info_t</type>
3618 object. For example, for a boolean control with a single
3619 element will be:
3620
3621 <example>
3622 <title>Example of info callback</title>
3623 <programlisting>
3624<![CDATA[
3625 static int snd_myctl_info(snd_kcontrol_t *kcontrol,
3626 snd_ctl_elem_info_t *uinfo)
3627 {
3628 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3629 uinfo->count = 1;
3630 uinfo->value.integer.min = 0;
3631 uinfo->value.integer.max = 1;
3632 return 0;
3633 }
3634]]>
3635 </programlisting>
3636 </example>
3637 </para>
3638
3639 <para>
3640 The <structfield>type</structfield> field specifies the type
3641 of the control. There are <constant>BOOLEAN</constant>,
3642 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3643 <constant>BYTES</constant>, <constant>IEC958</constant> and
3644 <constant>INTEGER64</constant>. The
3645 <structfield>count</structfield> field specifies the
3646 number of elements in this control. For example, a stereo
3647 volume would have count = 2. The
3648 <structfield>value</structfield> field is a union, and
3649 the values stored are depending on the type. The boolean and
3650 integer are identical.
3651 </para>
3652
3653 <para>
3654 The enumerated type is a bit different from others. You'll
3655 need to set the string for the currently given item index.
3656
3657 <informalexample>
3658 <programlisting>
3659<![CDATA[
3660 static int snd_myctl_info(snd_kcontrol_t *kcontrol,
3661 snd_ctl_elem_info_t *uinfo)
3662 {
3663 static char *texts[4] = {
3664 "First", "Second", "Third", "Fourth"
3665 };
3666 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3667 uinfo->count = 1;
3668 uinfo->value.enumerated.items = 4;
3669 if (uinfo->value.enumerated.item > 3)
3670 uinfo->value.enumerated.item = 3;
3671 strcpy(uinfo->value.enumerated.name,
3672 texts[uinfo->value.enumerated.item]);
3673 return 0;
3674 }
3675]]>
3676 </programlisting>
3677 </informalexample>
3678 </para>
3679 </section>
3680
3681 <section id="control-interface-callbacks-get">
3682 <title>get callback</title>
3683
3684 <para>
3685 This callback is used to read the current value of the
3686 control and to return to the user-space.
3687 </para>
3688
3689 <para>
3690 For example,
3691
3692 <example>
3693 <title>Example of get callback</title>
3694 <programlisting>
3695<![CDATA[
3696 static int snd_myctl_get(snd_kcontrol_t *kcontrol,
3697 snd_ctl_elem_value_t *ucontrol)
3698 {
3699 mychip_t *chip = snd_kcontrol_chip(kcontrol);
3700 ucontrol->value.integer.value[0] = get_some_value(chip);
3701 return 0;
3702 }
3703]]>
3704 </programlisting>
3705 </example>
3706 </para>
3707
3708 <para>
3709 Here, the chip instance is retrieved via
3710 <function>snd_kcontrol_chip()</function> macro. This macro
3711 converts from kcontrol-&gt;private_data to the type defined by
3712 <type>chip_t</type>. The
3713 kcontrol-&gt;private_data field is
3714 given as the argument of <function>snd_ctl_new()</function>
3715 (see the later subsection
3716 <link linkend="control-interface-constructor"><citetitle>Constructor</citetitle></link>).
3717 </para>
3718
3719 <para>
3720 The <structfield>value</structfield> field is depending on
3721 the type of control as well as on info callback. For example,
3722 the sb driver uses this field to store the register offset,
3723 the bit-shift and the bit-mask. The
3724 <structfield>private_value</structfield> is set like
3725 <informalexample>
3726 <programlisting>
3727<![CDATA[
3728 .private_value = reg | (shift << 16) | (mask << 24)
3729]]>
3730 </programlisting>
3731 </informalexample>
3732 and is retrieved in callbacks like
3733 <informalexample>
3734 <programlisting>
3735<![CDATA[
3736 static int snd_sbmixer_get_single(snd_kcontrol_t *kcontrol,
3737 snd_ctl_elem_value_t *ucontrol)
3738 {
3739 int reg = kcontrol->private_value & 0xff;
3740 int shift = (kcontrol->private_value >> 16) & 0xff;
3741 int mask = (kcontrol->private_value >> 24) & 0xff;
3742 ....
3743 }
3744]]>
3745 </programlisting>
3746 </informalexample>
3747 </para>
3748
3749 <para>
3750 In <structfield>get</structfield> callback, you have to fill all the elements if the
3751 control has more than one elements,
3752 i.e. <structfield>count</structfield> &gt; 1.
3753 In the example above, we filled only one element
3754 (<structfield>value.integer.value[0]</structfield>) since it's
3755 assumed as <structfield>count</structfield> = 1.
3756 </para>
3757 </section>
3758
3759 <section id="control-interface-callbacks-put">
3760 <title>put callback</title>
3761
3762 <para>
3763 This callback is used to write a value from the user-space.
3764 </para>
3765
3766 <para>
3767 For example,
3768
3769 <example>
3770 <title>Example of put callback</title>
3771 <programlisting>
3772<![CDATA[
3773 static int snd_myctl_put(snd_kcontrol_t *kcontrol,
3774 snd_ctl_elem_value_t *ucontrol)
3775 {
3776 mychip_t *chip = snd_kcontrol_chip(kcontrol);
3777 int changed = 0;
3778 if (chip->current_value !=
3779 ucontrol->value.integer.value[0]) {
3780 change_current_value(chip,
3781 ucontrol->value.integer.value[0]);
3782 changed = 1;
3783 }
3784 return changed;
3785 }
3786]]>
3787 </programlisting>
3788 </example>
3789
3790 As seen above, you have to return 1 if the value is
3791 changed. If the value is not changed, return 0 instead.
3792 If any fatal error happens, return a negative error code as
3793 usual.
3794 </para>
3795
3796 <para>
3797 Like <structfield>get</structfield> callback,
3798 when the control has more than one elements,
3799 all elemehts must be evaluated in this callback, too.
3800 </para>
3801 </section>
3802
3803 <section id="control-interface-callbacks-all">
3804 <title>Callbacks are not atomic</title>
3805 <para>
3806 All these three callbacks are basically not atomic.
3807 </para>
3808 </section>
3809 </section>
3810
3811 <section id="control-interface-constructor">
3812 <title>Constructor</title>
3813 <para>
3814 When everything is ready, finally we can create a new
3815 control. For creating a control, there are two functions to be
3816 called, <function>snd_ctl_new1()</function> and
3817 <function>snd_ctl_add()</function>.
3818 </para>
3819
3820 <para>
3821 In the simplest way, you can do like this:
3822
3823 <informalexample>
3824 <programlisting>
3825<![CDATA[
3826 if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0)
3827 return err;
3828]]>
3829 </programlisting>
3830 </informalexample>
3831
3832 where <parameter>my_control</parameter> is the
3833 <type>snd_kcontrol_new_t</type> object defined above, and chip
3834 is the object pointer to be passed to
3835 kcontrol-&gt;private_data
3836 which can be referred in callbacks.
3837 </para>
3838
3839 <para>
3840 <function>snd_ctl_new1()</function> allocates a new
3841 <type>snd_kcontrol_t</type> instance (that's why the definition
3842 of <parameter>my_control</parameter> can be with
3843 <parameter>__devinitdata</parameter>
3844 prefix), and <function>snd_ctl_add</function> assigns the given
3845 control component to the card.
3846 </para>
3847 </section>
3848
3849 <section id="control-interface-change-notification">
3850 <title>Change Notification</title>
3851 <para>
3852 If you need to change and update a control in the interrupt
3853 routine, you can call <function>snd_ctl_notify()</function>. For
3854 example,
3855
3856 <informalexample>
3857 <programlisting>
3858<![CDATA[
3859 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3860]]>
3861 </programlisting>
3862 </informalexample>
3863
3864 This function takes the card pointer, the event-mask, and the
3865 control id pointer for the notification. The event-mask
3866 specifies the types of notification, for example, in the above
3867 example, the change of control values is notified.
3868 The id pointer is the pointer of <type>snd_ctl_elem_id_t</type>
3869 to be notified.
3870 You can find some examples in <filename>es1938.c</filename> or
3871 <filename>es1968.c</filename> for hardware volume interrupts.
3872 </para>
3873 </section>
3874
3875 </chapter>
3876
3877
3878<!-- ****************************************************** -->
3879<!-- API for AC97 Codec -->
3880<!-- ****************************************************** -->
3881 <chapter id="api-ac97">
3882 <title>API for AC97 Codec</title>
3883
3884 <section>
3885 <title>General</title>
3886 <para>
3887 The ALSA AC97 codec layer is a well-defined one, and you don't
3888 have to write many codes to control it. Only low-level control
3889 routines are necessary. The AC97 codec API is defined in
3890 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3891 </para>
3892 </section>
3893
3894 <section id="api-ac97-example">
3895 <title>Full Code Example</title>
3896 <para>
3897 <example>
3898 <title>Example of AC97 Interface</title>
3899 <programlisting>
3900<![CDATA[
3901 struct snd_mychip {
3902 ....
3903 ac97_t *ac97;
3904 ....
3905 };
3906
3907 static unsigned short snd_mychip_ac97_read(ac97_t *ac97,
3908 unsigned short reg)
3909 {
3910 mychip_t *chip = ac97->private_data;
3911 ....
3912 // read a register value here from the codec
3913 return the_register_value;
3914 }
3915
3916 static void snd_mychip_ac97_write(ac97_t *ac97,
3917 unsigned short reg, unsigned short val)
3918 {
3919 mychip_t *chip = ac97->private_data;
3920 ....
3921 // write the given register value to the codec
3922 }
3923
3924 static int snd_mychip_ac97(mychip_t *chip)
3925 {
3926 ac97_bus_t *bus;
3927 ac97_template_t ac97;
3928 int err;
3929 static ac97_bus_ops_t ops = {
3930 .write = snd_mychip_ac97_write,
3931 .read = snd_mychip_ac97_read,
3932 };
3933
3934 if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0)
3935 return err;
3936 memset(&ac97, 0, sizeof(ac97));
3937 ac97.private_data = chip;
3938 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3939 }
3940
3941]]>
3942 </programlisting>
3943 </example>
3944 </para>
3945 </section>
3946
3947 <section id="api-ac97-constructor">
3948 <title>Constructor</title>
3949 <para>
3950 For creating an ac97 instance, first call <function>snd_ac97_bus</function>
3951 with an <type>ac97_bus_ops_t</type> record with callback functions.
3952
3953 <informalexample>
3954 <programlisting>
3955<![CDATA[
3956 ac97_bus_t *bus;
3957 static ac97_bus_ops_t ops = {
3958 .write = snd_mychip_ac97_write,
3959 .read = snd_mychip_ac97_read,
3960 };
3961
3962 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3963]]>
3964 </programlisting>
3965 </informalexample>
3966
3967 The bus record is shared among all belonging ac97 instances.
3968 </para>
3969
3970 <para>
3971 And then call <function>snd_ac97_mixer()</function> with an <type>ac97_template_t</type>
3972 record together with the bus pointer created above.
3973
3974 <informalexample>
3975 <programlisting>
3976<![CDATA[
3977 ac97_template_t ac97;
3978 int err;
3979
3980 memset(&ac97, 0, sizeof(ac97));
3981 ac97.private_data = chip;
3982 snd_ac97_mixer(bus, &ac97, &chip->ac97);
3983]]>
3984 </programlisting>
3985 </informalexample>
3986
3987 where chip-&gt;ac97 is the pointer of a newly created
3988 <type>ac97_t</type> instance.
3989 In this case, the chip pointer is set as the private data, so that
3990 the read/write callback functions can refer to this chip instance.
3991 This instance is not necessarily stored in the chip
3992 record. When you need to change the register values from the
3993 driver, or need the suspend/resume of ac97 codecs, keep this
3994 pointer to pass to the corresponding functions.
3995 </para>
3996 </section>
3997
3998 <section id="api-ac97-callbacks">
3999 <title>Callbacks</title>
4000 <para>
4001 The standard callbacks are <structfield>read</structfield> and
4002 <structfield>write</structfield>. Obviously they
4003 correspond to the functions for read and write accesses to the
4004 hardware low-level codes.
4005 </para>
4006
4007 <para>
4008 The <structfield>read</structfield> callback returns the
4009 register value specified in the argument.
4010
4011 <informalexample>
4012 <programlisting>
4013<![CDATA[
4014 static unsigned short snd_mychip_ac97_read(ac97_t *ac97,
4015 unsigned short reg)
4016 {
4017 mychip_t *chip = ac97->private_data;
4018 ....
4019 return the_register_value;
4020 }
4021]]>
4022 </programlisting>
4023 </informalexample>
4024
4025 Here, the chip can be cast from ac97-&gt;private_data.
4026 </para>
4027
4028 <para>
4029 Meanwhile, the <structfield>write</structfield> callback is
4030 used to set the register value.
4031
4032 <informalexample>
4033 <programlisting>
4034<![CDATA[
4035 static void snd_mychip_ac97_write(ac97_t *ac97,
4036 unsigned short reg, unsigned short val)
4037]]>
4038 </programlisting>
4039 </informalexample>
4040 </para>
4041
4042 <para>
4043 These callbacks are non-atomic like the callbacks of control API.
4044 </para>
4045
4046 <para>
4047 There are also other callbacks:
4048 <structfield>reset</structfield>,
4049 <structfield>wait</structfield> and
4050 <structfield>init</structfield>.
4051 </para>
4052
4053 <para>
4054 The <structfield>reset</structfield> callback is used to reset
4055 the codec. If the chip requires a special way of reset, you can
4056 define this callback.
4057 </para>
4058
4059 <para>
4060 The <structfield>wait</structfield> callback is used for a
4061 certain wait at the standard initialization of the codec. If the
4062 chip requires the extra wait-time, define this callback.
4063 </para>
4064
4065 <para>
4066 The <structfield>init</structfield> callback is used for
4067 additional initialization of the codec.
4068 </para>
4069 </section>
4070
4071 <section id="api-ac97-updating-registers">
4072 <title>Updating Registers in The Driver</title>
4073 <para>
4074 If you need to access to the codec from the driver, you can
4075 call the following functions:
4076 <function>snd_ac97_write()</function>,
4077 <function>snd_ac97_read()</function>,
4078 <function>snd_ac97_update()</function> and
4079 <function>snd_ac97_update_bits()</function>.
4080 </para>
4081
4082 <para>
4083 Both <function>snd_ac97_write()</function> and
4084 <function>snd_ac97_update()</function> functions are used to
4085 set a value to the given register
4086 (<constant>AC97_XXX</constant>). The difference between them is
4087 that <function>snd_ac97_update()</function> doesn't write a
4088 value if the given value has been already set, while
4089 <function>snd_ac97_write()</function> always rewrites the
4090 value.
4091
4092 <informalexample>
4093 <programlisting>
4094<![CDATA[
4095 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4096 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4097]]>
4098 </programlisting>
4099 </informalexample>
4100 </para>
4101
4102 <para>
4103 <function>snd_ac97_read()</function> is used to read the value
4104 of the given register. For example,
4105
4106 <informalexample>
4107 <programlisting>
4108<![CDATA[
4109 value = snd_ac97_read(ac97, AC97_MASTER);
4110]]>
4111 </programlisting>
4112 </informalexample>
4113 </para>
4114
4115 <para>
4116 <function>snd_ac97_update_bits()</function> is used to update
4117 some bits of the given register.
4118
4119 <informalexample>
4120 <programlisting>
4121<![CDATA[
4122 snd_ac97_update_bits(ac97, reg, mask, value);
4123]]>
4124 </programlisting>
4125 </informalexample>
4126 </para>
4127
4128 <para>
4129 Also, there is a function to change the sample rate (of a
4130 certain register such as
4131 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4132 DRA is supported by the codec:
4133 <function>snd_ac97_set_rate()</function>.
4134
4135 <informalexample>
4136 <programlisting>
4137<![CDATA[
4138 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4139]]>
4140 </programlisting>
4141 </informalexample>
4142 </para>
4143
4144 <para>
4145 The following registers are available for setting the rate:
4146 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4147 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4148 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4149 <constant>AC97_SPDIF</constant>. When the
4150 <constant>AC97_SPDIF</constant> is specified, the register is
4151 not really changed but the corresponding IEC958 status bits will
4152 be updated.
4153 </para>
4154 </section>
4155
4156 <section id="api-ac97-clock-adjustment">
4157 <title>Clock Adjustment</title>
4158 <para>
4159 On some chip, the clock of the codec isn't 48000 but using a
4160 PCI clock (to save a quartz!). In this case, change the field
4161 bus-&gt;clock to the corresponding
4162 value. For example, intel8x0
4163 and es1968 drivers have the auto-measurement function of the
4164 clock.
4165 </para>
4166 </section>
4167
4168 <section id="api-ac97-proc-files">
4169 <title>Proc Files</title>
4170 <para>
4171 The ALSA AC97 interface will create a proc file such as
4172 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4173 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4174 see the current status and registers of the codec.
4175 </para>
4176 </section>
4177
4178 <section id="api-ac97-multiple-codecs">
4179 <title>Multiple Codecs</title>
4180 <para>
4181 When there are several codecs on the same card, you need to
4182 call <function>snd_ac97_new()</function> multiple times with
4183 ac97.num=1 or greater. The <structfield>num</structfield> field
4184 specifies the codec
4185 number.
4186 </para>
4187
4188 <para>
4189 If you have set up multiple codecs, you need to either write
4190 different callbacks for each codec or check
4191 ac97-&gt;num in the
4192 callback routines.
4193 </para>
4194 </section>
4195
4196 </chapter>
4197
4198
4199<!-- ****************************************************** -->
4200<!-- MIDI (MPU401-UART) Interface -->
4201<!-- ****************************************************** -->
4202 <chapter id="midi-interface">
4203 <title>MIDI (MPU401-UART) Interface</title>
4204
4205 <section id="midi-interface-general">
4206 <title>General</title>
4207 <para>
4208 Many soundcards have built-in MIDI (MPU401-UART)
4209 interfaces. When the soundcard supports the standard MPU401-UART
4210 interface, most likely you can use the ALSA MPU401-UART API. The
4211 MPU401-UART API is defined in
4212 <filename>&lt;sound/mpu401.h&gt;</filename>.
4213 </para>
4214
4215 <para>
4216 Some soundchips have similar but a little bit different
4217 implementation of mpu401 stuff. For example, emu10k1 has its own
4218 mpu401 routines.
4219 </para>
4220 </section>
4221
4222 <section id="midi-interface-constructor">
4223 <title>Constructor</title>
4224 <para>
4225 For creating a rawmidi object, call
4226 <function>snd_mpu401_uart_new()</function>.
4227
4228 <informalexample>
4229 <programlisting>
4230<![CDATA[
4231 snd_rawmidi_t *rmidi;
4232 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, integrated,
4233 irq, irq_flags, &rmidi);
4234]]>
4235 </programlisting>
4236 </informalexample>
4237 </para>
4238
4239 <para>
4240 The first argument is the card pointer, and the second is the
4241 index of this component. You can create up to 8 rawmidi
4242 devices.
4243 </para>
4244
4245 <para>
4246 The third argument is the type of the hardware,
4247 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4248 you can use <constant>MPU401_HW_MPU401</constant>.
4249 </para>
4250
4251 <para>
4252 The 4th argument is the i/o port address. Many
4253 backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4254 might be a part of its own PCI i/o region. It depends on the
4255 chip design.
4256 </para>
4257
4258 <para>
4259 When the i/o port address above is a part of the PCI i/o
4260 region, the MPU401 i/o port might have been already allocated
4261 (reserved) by the driver itself. In such a case, pass non-zero
4262 to the 5th argument
4263 (<parameter>integrated</parameter>). Otherwise, pass 0 to it,
4264 and
4265 the mpu401-uart layer will allocate the i/o ports by itself.
4266 </para>
4267
4268 <para>
4269 Usually, the port address corresponds to the command port and
4270 port + 1 corresponds to the data port. If not, you may change
4271 the <structfield>cport</structfield> field of
4272 <type>mpu401_t</type> manually
4273 afterward. However, <type>mpu401_t</type> pointer is not
4274 returned explicitly by
4275 <function>snd_mpu401_uart_new()</function>. You need to cast
4276 rmidi-&gt;private_data to
4277 <type>mpu401_t</type> explicitly,
4278
4279 <informalexample>
4280 <programlisting>
4281<![CDATA[
4282 mpu401_t *mpu;
4283 mpu = rmidi->private_data;
4284]]>
4285 </programlisting>
4286 </informalexample>
4287
4288 and reset the cport as you like:
4289
4290 <informalexample>
4291 <programlisting>
4292<![CDATA[
4293 mpu->cport = my_own_control_port;
4294]]>
4295 </programlisting>
4296 </informalexample>
4297 </para>
4298
4299 <para>
4300 The 6th argument specifies the irq number for UART. If the irq
4301 is already allocated, pass 0 to the 7th argument
4302 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4303 for irq allocation
4304 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4305 reserved by the mpu401-uart layer. If the card doesn't generates
4306 UART interrupts, pass -1 as the irq number. Then a timer
4307 interrupt will be invoked for polling.
4308 </para>
4309 </section>
4310
4311 <section id="midi-interface-interrupt-handler">
4312 <title>Interrupt Handler</title>
4313 <para>
4314 When the interrupt is allocated in
4315 <function>snd_mpu401_uart_new()</function>, the private
4316 interrupt handler is used, hence you don't have to do nothing
4317 else than creating the mpu401 stuff. Otherwise, you have to call
4318 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4319 a UART interrupt is invoked and checked in your own interrupt
4320 handler.
4321 </para>
4322
4323 <para>
4324 In this case, you need to pass the private_data of the
4325 returned rawmidi object from
4326 <function>snd_mpu401_uart_new()</function> as the second
4327 argument of <function>snd_mpu401_uart_interrupt()</function>.
4328
4329 <informalexample>
4330 <programlisting>
4331<![CDATA[
4332 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4333]]>
4334 </programlisting>
4335 </informalexample>
4336 </para>
4337 </section>
4338
4339 </chapter>
4340
4341
4342<!-- ****************************************************** -->
4343<!-- RawMIDI Interface -->
4344<!-- ****************************************************** -->
4345 <chapter id="rawmidi-interface">
4346 <title>RawMIDI Interface</title>
4347
4348 <section id="rawmidi-interface-overview">
4349 <title>Overview</title>
4350
4351 <para>
4352 The raw MIDI interface is used for hardware MIDI ports that can
4353 be accessed as a byte stream. It is not used for synthesizer
4354 chips that do not directly understand MIDI.
4355 </para>
4356
4357 <para>
4358 ALSA handles file and buffer management. All you have to do is
4359 to write some code to move data between the buffer and the
4360 hardware.
4361 </para>
4362
4363 <para>
4364 The rawmidi API is defined in
4365 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4366 </para>
4367 </section>
4368
4369 <section id="rawmidi-interface-constructor">
4370 <title>Constructor</title>
4371
4372 <para>
4373 To create a rawmidi device, call the
4374 <function>snd_rawmidi_new</function> function:
4375 <informalexample>
4376 <programlisting>
4377<![CDATA[
4378 snd_rawmidi_t *rmidi;
4379 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4380 if (err < 0)
4381 return err;
4382 rmidi->private_data = chip;
4383 strcpy(rmidi->name, "My MIDI");
4384 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4385 SNDRV_RAWMIDI_INFO_INPUT |
4386 SNDRV_RAWMIDI_INFO_DUPLEX;
4387]]>
4388 </programlisting>
4389 </informalexample>
4390 </para>
4391
4392 <para>
4393 The first argument is the card pointer, the second argument is
4394 the ID string.
4395 </para>
4396
4397 <para>
4398 The third argument is the index of this component. You can
4399 create up to 8 rawmidi devices.
4400 </para>
4401
4402 <para>
4403 The fourth and fifth arguments are the number of output and
4404 input substreams, respectively, of this device. (A substream is
4405 the equivalent of a MIDI port.)
4406 </para>
4407
4408 <para>
4409 Set the <structfield>info_flags</structfield> field to specify
4410 the capabilities of the device.
4411 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4412 at least one output port,
4413 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4414 least one input port,
4415 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4416 can handle output and input at the same time.
4417 </para>
4418
4419 <para>
4420 After the rawmidi device is created, you need to set the
4421 operators (callbacks) for each substream. There are helper
4422 functions to set the operators for all substream of a device:
4423 <informalexample>
4424 <programlisting>
4425<![CDATA[
4426 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4427 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4428]]>
4429 </programlisting>
4430 </informalexample>
4431 </para>
4432
4433 <para>
4434 The operators are usually defined like this:
4435 <informalexample>
4436 <programlisting>
4437<![CDATA[
4438 static snd_rawmidi_ops_t snd_mymidi_output_ops = {
4439 .open = snd_mymidi_output_open,
4440 .close = snd_mymidi_output_close,
4441 .trigger = snd_mymidi_output_trigger,
4442 };
4443]]>
4444 </programlisting>
4445 </informalexample>
4446 These callbacks are explained in the <link
4447 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4448 section.
4449 </para>
4450
4451 <para>
4452 If there is more than one substream, you should give each one a
4453 unique name:
4454 <informalexample>
4455 <programlisting>
4456<![CDATA[
4457 struct list_head *list;
4458 snd_rawmidi_substream_t *substream;
4459 list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
4460 substream = list_entry(list, snd_rawmidi_substream_t, list);
4461 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4462 }
4463 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4464]]>
4465 </programlisting>
4466 </informalexample>
4467 </para>
4468 </section>
4469
4470 <section id="rawmidi-interface-callbacks">
4471 <title>Callbacks</title>
4472
4473 <para>
4474 In all callbacks, the private data that you've set for the
4475 rawmidi device can be accessed as
4476 substream-&gt;rmidi-&gt;private_data.
4477 <!-- <code> isn't available before DocBook 4.3 -->
4478 </para>
4479
4480 <para>
4481 If there is more than one port, your callbacks can determine the
4482 port index from the snd_rawmidi_substream_t data passed to each
4483 callback:
4484 <informalexample>
4485 <programlisting>
4486<![CDATA[
4487 snd_rawmidi_substream_t *substream;
4488 int index = substream->number;
4489]]>
4490 </programlisting>
4491 </informalexample>
4492 </para>
4493
4494 <section id="rawmidi-interface-op-open">
4495 <title><function>open</function> callback</title>
4496
4497 <informalexample>
4498 <programlisting>
4499<![CDATA[
4500 static int snd_xxx_open(snd_rawmidi_substream_t *substream);
4501]]>
4502 </programlisting>
4503 </informalexample>
4504
4505 <para>
4506 This is called when a substream is opened.
4507 You can initialize the hardware here, but you should not yet
4508 start transmitting/receiving data.
4509 </para>
4510 </section>
4511
4512 <section id="rawmidi-interface-op-close">
4513 <title><function>close</function> callback</title>
4514
4515 <informalexample>
4516 <programlisting>
4517<![CDATA[
4518 static int snd_xxx_close(snd_rawmidi_substream_t *substream);
4519]]>
4520 </programlisting>
4521 </informalexample>
4522
4523 <para>
4524 Guess what.
4525 </para>
4526
4527 <para>
4528 The <function>open</function> and <function>close</function>
4529 callbacks of a rawmidi device are serialized with a mutex,
4530 and can sleep.
4531 </para>
4532 </section>
4533
4534 <section id="rawmidi-interface-op-trigger-out">
4535 <title><function>trigger</function> callback for output
4536 substreams</title>
4537
4538 <informalexample>
4539 <programlisting>
4540<![CDATA[
4541 static void snd_xxx_output_trigger(snd_rawmidi_substream_t *substream, int up);
4542]]>
4543 </programlisting>
4544 </informalexample>
4545
4546 <para>
4547 This is called with a nonzero <parameter>up</parameter>
4548 parameter when there is some data in the substream buffer that
4549 must be transmitted.
4550 </para>
4551
4552 <para>
4553 To read data from the buffer, call
4554 <function>snd_rawmidi_transmit_peek</function>. It will
4555 return the number of bytes that have been read; this will be
4556 less than the number of bytes requested when there is no more
4557 data in the buffer.
4558 After the data has been transmitted successfully, call
4559 <function>snd_rawmidi_transmit_ack</function> to remove the
4560 data from the substream buffer:
4561 <informalexample>
4562 <programlisting>
4563<![CDATA[
4564 unsigned char data;
4565 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
4566 if (mychip_try_to_transmit(data))
4567 snd_rawmidi_transmit_ack(substream, 1);
4568 else
4569 break; /* hardware FIFO full */
4570 }
4571]]>
4572 </programlisting>
4573 </informalexample>
4574 </para>
4575
4576 <para>
4577 If you know beforehand that the hardware will accept data, you
4578 can use the <function>snd_rawmidi_transmit</function> function
4579 which reads some data and removes it from the buffer at once:
4580 <informalexample>
4581 <programlisting>
4582<![CDATA[
4583 while (mychip_transmit_possible()) {
4584 unsigned char data;
4585 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4586 break; /* no more data */
4587 mychip_transmit(data);
4588 }
4589]]>
4590 </programlisting>
4591 </informalexample>
4592 </para>
4593
4594 <para>
4595 If you know beforehand how many bytes you can accept, you can
4596 use a buffer size greater than one with the
4597 <function>snd_rawmidi_transmit*</function> functions.
4598 </para>
4599
4600 <para>
4601 The <function>trigger</function> callback must not sleep. If
4602 the hardware FIFO is full before the substream buffer has been
4603 emptied, you have to continue transmitting data later, either
4604 in an interrupt handler, or with a timer if the hardware
4605 doesn't have a MIDI transmit interrupt.
4606 </para>
4607
4608 <para>
4609 The <function>trigger</function> callback is called with a
4610 zero <parameter>up</parameter> parameter when the transmission
4611 of data should be aborted.
4612 </para>
4613 </section>
4614
4615 <section id="rawmidi-interface-op-trigger-in">
4616 <title><function>trigger</function> callback for input
4617 substreams</title>
4618
4619 <informalexample>
4620 <programlisting>
4621<![CDATA[
4622 static void snd_xxx_input_trigger(snd_rawmidi_substream_t *substream, int up);
4623]]>
4624 </programlisting>
4625 </informalexample>
4626
4627 <para>
4628 This is called with a nonzero <parameter>up</parameter>
4629 parameter to enable receiving data, or with a zero
4630 <parameter>up</parameter> parameter do disable receiving data.
4631 </para>
4632
4633 <para>
4634 The <function>trigger</function> callback must not sleep; the
4635 actual reading of data from the device is usually done in an
4636 interrupt handler.
4637 </para>
4638
4639 <para>
4640 When data reception is enabled, your interrupt handler should
4641 call <function>snd_rawmidi_receive</function> for all received
4642 data:
4643 <informalexample>
4644 <programlisting>
4645<![CDATA[
4646 void snd_mychip_midi_interrupt(...)
4647 {
4648 while (mychip_midi_available()) {
4649 unsigned char data;
4650 data = mychip_midi_read();
4651 snd_rawmidi_receive(substream, &data, 1);
4652 }
4653 }
4654]]>
4655 </programlisting>
4656 </informalexample>
4657 </para>
4658 </section>
4659
4660 <section id="rawmidi-interface-op-drain">
4661 <title><function>drain</function> callback</title>
4662
4663 <informalexample>
4664 <programlisting>
4665<![CDATA[
4666 static void snd_xxx_drain(snd_rawmidi_substream_t *substream);
4667]]>
4668 </programlisting>
4669 </informalexample>
4670
4671 <para>
4672 This is only used with output substreams. This function should wait
4673 until all data read from the substream buffer has been transmitted.
4674 This ensures that the device can be closed and the driver unloaded
4675 without losing data.
4676 </para>
4677
4678 <para>
4679 This callback is optional. If you do not set
4680 <structfield>drain</structfield> in the snd_rawmidi_ops_t
4681 structure, ALSA will simply wait for 50&nbsp;milliseconds
4682 instead.
4683 </para>
4684 </section>
4685 </section>
4686
4687 </chapter>
4688
4689
4690<!-- ****************************************************** -->
4691<!-- Miscellaneous Devices -->
4692<!-- ****************************************************** -->
4693 <chapter id="misc-devices">
4694 <title>Miscellaneous Devices</title>
4695
4696 <section id="misc-devices-opl3">
4697 <title>FM OPL3</title>
4698 <para>
4699 The FM OPL3 is still used on many chips (mainly for backward
4700 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4701 OPL3 API is defined in
4702 <filename>&lt;sound/opl3.h&gt;</filename>.
4703 </para>
4704
4705 <para>
4706 FM registers can be directly accessed through direct-FM API,
4707 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4708 ALSA native mode, FM registers are accessed through
4709 Hardware-Dependant Device direct-FM extension API, whereas in
4710 OSS compatible mode, FM registers can be accessed with OSS
4711 direct-FM compatible API on <filename>/dev/dmfmX</filename> device.
4712 </para>
4713
4714 <para>
4715 For creating the OPL3 component, you have two functions to
4716 call. The first one is a constructor for <type>opl3_t</type>
4717 instance.
4718
4719 <informalexample>
4720 <programlisting>
4721<![CDATA[
4722 opl3_t *opl3;
4723 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4724 integrated, &opl3);
4725]]>
4726 </programlisting>
4727 </informalexample>
4728 </para>
4729
4730 <para>
4731 The first argument is the card pointer, the second one is the
4732 left port address, and the third is the right port address. In
4733 most cases, the right port is placed at the left port + 2.
4734 </para>
4735
4736 <para>
4737 The fourth argument is the hardware type.
4738 </para>
4739
4740 <para>
4741 When the left and right ports have been already allocated by
4742 the card driver, pass non-zero to the fifth argument
4743 (<parameter>integrated</parameter>). Otherwise, opl3 module will
4744 allocate the specified ports by itself.
4745 </para>
4746
4747 <para>
4748 When the accessing to the hardware requires special method
4749 instead of the standard I/O access, you can create opl3 instance
4750 separately with <function>snd_opl3_new()</function>.
4751
4752 <informalexample>
4753 <programlisting>
4754<![CDATA[
4755 opl3_t *opl3;
4756 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4757]]>
4758 </programlisting>
4759 </informalexample>
4760 </para>
4761
4762 <para>
4763 Then set <structfield>command</structfield>,
4764 <structfield>private_data</structfield> and
4765 <structfield>private_free</structfield> for the private
4766 access function, the private data and the destructor.
4767 The l_port and r_port are not necessarily set. Only the
4768 command must be set properly. You can retrieve the data
4769 from opl3-&gt;private_data field.
4770 </para>
4771
4772 <para>
4773 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4774 call <function>snd_opl3_init()</function> to initialize the chip to the
4775 proper state. Note that <function>snd_opl3_create()</function> always
4776 calls it internally.
4777 </para>
4778
4779 <para>
4780 If the opl3 instance is created successfully, then create a
4781 hwdep device for this opl3.
4782
4783 <informalexample>
4784 <programlisting>
4785<![CDATA[
4786 snd_hwdep_t *opl3hwdep;
4787 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4788]]>
4789 </programlisting>
4790 </informalexample>
4791 </para>
4792
4793 <para>
4794 The first argument is the <type>opl3_t</type> instance you
4795 created, and the second is the index number, usually 0.
4796 </para>
4797
4798 <para>
4799 The third argument is the index-offset for the sequencer
4800 client assigned to the OPL3 port. When there is an MPU401-UART,
4801 give 1 for here (UART always takes 0).
4802 </para>
4803 </section>
4804
4805 <section id="misc-devices-hardware-dependent">
4806 <title>Hardware-Dependent Devices</title>
4807 <para>
4808 Some chips need the access from the user-space for special
4809 controls or for loading the micro code. In such a case, you can
4810 create a hwdep (hardware-dependent) device. The hwdep API is
4811 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4812 find examples in opl3 driver or
4813 <filename>isa/sb/sb16_csp.c</filename>.
4814 </para>
4815
4816 <para>
4817 Creation of the <type>hwdep</type> instance is done via
4818 <function>snd_hwdep_new()</function>.
4819
4820 <informalexample>
4821 <programlisting>
4822<![CDATA[
4823 snd_hwdep_t *hw;
4824 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4825]]>
4826 </programlisting>
4827 </informalexample>
4828
4829 where the third argument is the index number.
4830 </para>
4831
4832 <para>
4833 You can then pass any pointer value to the
4834 <parameter>private_data</parameter>.
4835 If you assign a private data, you should define the
4836 destructor, too. The destructor function is set to
4837 <structfield>private_free</structfield> field.
4838
4839 <informalexample>
4840 <programlisting>
4841<![CDATA[
4842 mydata_t *p = kmalloc(sizeof(*p), GFP_KERNEL);
4843 hw->private_data = p;
4844 hw->private_free = mydata_free;
4845]]>
4846 </programlisting>
4847 </informalexample>
4848
4849 and the implementation of destructor would be:
4850
4851 <informalexample>
4852 <programlisting>
4853<![CDATA[
4854 static void mydata_free(snd_hwdep_t *hw)
4855 {
4856 mydata_t *p = hw->private_data;
4857 kfree(p);
4858 }
4859]]>
4860 </programlisting>
4861 </informalexample>
4862 </para>
4863
4864 <para>
4865 The arbitrary file operations can be defined for this
4866 instance. The file operators are defined in
4867 <parameter>ops</parameter> table. For example, assume that
4868 this chip needs an ioctl.
4869
4870 <informalexample>
4871 <programlisting>
4872<![CDATA[
4873 hw->ops.open = mydata_open;
4874 hw->ops.ioctl = mydata_ioctl;
4875 hw->ops.release = mydata_release;
4876]]>
4877 </programlisting>
4878 </informalexample>
4879
4880 And implement the callback functions as you like.
4881 </para>
4882 </section>
4883
4884 <section id="misc-devices-IEC958">
4885 <title>IEC958 (S/PDIF)</title>
4886 <para>
4887 Usually the controls for IEC958 devices are implemented via
4888 control interface. There is a macro to compose a name string for
4889 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4890 defined in <filename>&lt;include/asound.h&gt;</filename>.
4891 </para>
4892
4893 <para>
4894 There are some standard controls for IEC958 status bits. These
4895 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4896 and the size of element is fixed as 4 bytes array
4897 (value.iec958.status[x]). For <structfield>info</structfield>
4898 callback, you don't specify
4899 the value field for this type (the count field must be set,
4900 though).
4901 </para>
4902
4903 <para>
4904 <quote>IEC958 Playback Con Mask</quote> is used to return the
4905 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4906 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4907 professional mode. They are read-only controls, and are defined
4908 as MIXER controls (iface =
4909 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4910 </para>
4911
4912 <para>
4913 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4914 defined for getting and setting the current default IEC958
4915 bits. Note that this one is usually defined as a PCM control
4916 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4917 although in some places it's defined as a MIXER control.
4918 </para>
4919
4920 <para>
4921 In addition, you can define the control switches to
4922 enable/disable or to set the raw bit mode. The implementation
4923 will depend on the chip, but the control should be named as
4924 <quote>IEC958 xxx</quote>, preferably using
4925 <function>SNDRV_CTL_NAME_IEC958()</function> macro.
4926 </para>
4927
4928 <para>
4929 You can find several cases, for example,
4930 <filename>pci/emu10k1</filename>,
4931 <filename>pci/ice1712</filename>, or
4932 <filename>pci/cmipci.c</filename>.
4933 </para>
4934 </section>
4935
4936 </chapter>
4937
4938
4939<!-- ****************************************************** -->
4940<!-- Buffer and Memory Management -->
4941<!-- ****************************************************** -->
4942 <chapter id="buffer-and-memory">
4943 <title>Buffer and Memory Management</title>
4944
4945 <section id="buffer-and-memory-buffer-types">
4946 <title>Buffer Types</title>
4947 <para>
4948 ALSA provides several different buffer allocation functions
4949 depending on the bus and the architecture. All these have a
4950 consistent API. The allocation of physically-contiguous pages is
4951 done via
4952 <function>snd_malloc_xxx_pages()</function> function, where xxx
4953 is the bus type.
4954 </para>
4955
4956 <para>
4957 The allocation of pages with fallback is
4958 <function>snd_malloc_xxx_pages_fallback()</function>. This
4959 function tries to allocate the specified pages but if the pages
4960 are not available, it tries to reduce the page sizes until the
4961 enough space is found.
4962 </para>
4963
4964 <para>
4965 For releasing the space, call
4966 <function>snd_free_xxx_pages()</function> function.
4967 </para>
4968
4969 <para>
4970 Usually, ALSA drivers try to allocate and reserve
4971 a large contiguous physical space
4972 at the time the module is loaded for the later use.
4973 This is called <quote>pre-allocation</quote>.
4974 As already written, you can call the following function at the
4975 construction of pcm instance (in the case of PCI bus).
4976
4977 <informalexample>
4978 <programlisting>
4979<![CDATA[
4980 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
4981 snd_dma_pci_data(pci), size, max);
4982]]>
4983 </programlisting>
4984 </informalexample>
4985
4986 where <parameter>size</parameter> is the byte size to be
4987 pre-allocated and the <parameter>max</parameter> is the maximal
4988 size to be changed via <filename>prealloc</filename> proc file.
4989 The allocator will try to get as large area as possible
4990 within the given size.
4991 </para>
4992
4993 <para>
4994 The second argument (type) and the third argument (device pointer)
4995 are dependent on the bus.
4996 In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
4997 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
4998 For the continuous buffer unrelated to the bus can be pre-allocated
4999 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
5000 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
5001 whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
5002 use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
5003 <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
5004 For the PCI scatter-gather buffers, use
5005 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
5006 <function>snd_dma_pci_data(pci)</function>
5007 (see the section
5008 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5009 </citetitle></link>).
5010 </para>
5011
5012 <para>
5013 Once when the buffer is pre-allocated, you can use the
5014 allocator in the <structfield>hw_params</structfield> callback
5015
5016 <informalexample>
5017 <programlisting>
5018<![CDATA[
5019 snd_pcm_lib_malloc_pages(substream, size);
5020]]>
5021 </programlisting>
5022 </informalexample>
5023
5024 Note that you have to pre-allocate to use this function.
5025 </para>
5026 </section>
5027
5028 <section id="buffer-and-memory-external-hardware">
5029 <title>External Hardware Buffers</title>
5030 <para>
5031 Some chips have their own hardware buffers and the DMA
5032 transfer from the host memory is not available. In such a case,
5033 you need to either 1) copy/set the audio data directly to the
5034 external hardware buffer, or 2) make an intermediate buffer and
5035 copy/set the data from it to the external hardware buffer in
5036 interrupts (or in tasklets, preferably).
5037 </para>
5038
5039 <para>
5040 The first case works fine if the external hardware buffer is enough
5041 large. This method doesn't need any extra buffers and thus is
5042 more effective. You need to define the
5043 <structfield>copy</structfield> and
5044 <structfield>silence</structfield> callbacks for
5045 the data transfer. However, there is a drawback: it cannot
5046 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5047 wavetable PCM.
5048 </para>
5049
5050 <para>
5051 The second case allows the mmap of the buffer, although you have
5052 to handle an interrupt or a tasklet for transferring the data
5053 from the intermediate buffer to the hardware buffer. You can find an
5054 example in vxpocket driver.
5055 </para>
5056
5057 <para>
5058 Another case is that the chip uses a PCI memory-map
5059 region for the buffer instead of the host memory. In this case,
5060 mmap is available only on certain architectures like intel. In
5061 non-mmap mode, the data cannot be transferred as the normal
5062 way. Thus you need to define <structfield>copy</structfield> and
5063 <structfield>silence</structfield> callbacks as well
5064 as in the cases above. The examples are found in
5065 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5066 </para>
5067
5068 <para>
5069 The implementation of <structfield>copy</structfield> and
5070 <structfield>silence</structfield> callbacks depends upon
5071 whether the hardware supports interleaved or non-interleaved
5072 samples. The <structfield>copy</structfield> callback is
5073 defined like below, a bit
5074 differently depending whether the direction is playback or
5075 capture:
5076
5077 <informalexample>
5078 <programlisting>
5079<![CDATA[
5080 static int playback_copy(snd_pcm_substream_t *substream, int channel,
5081 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5082 static int capture_copy(snd_pcm_substream_t *substream, int channel,
5083 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5084]]>
5085 </programlisting>
5086 </informalexample>
5087 </para>
5088
5089 <para>
5090 In the case of interleaved samples, the second argument
5091 (<parameter>channel</parameter>) is not used. The third argument
5092 (<parameter>pos</parameter>) points the
5093 current position offset in frames.
5094 </para>
5095
5096 <para>
5097 The meaning of the fourth argument is different between
5098 playback and capture. For playback, it holds the source data
5099 pointer, and for capture, it's the destination data pointer.
5100 </para>
5101
5102 <para>
5103 The last argument is the number of frames to be copied.
5104 </para>
5105
5106 <para>
5107 What you have to do in this callback is again different
5108 between playback and capture directions. In the case of
5109 playback, you do: copy the given amount of data
5110 (<parameter>count</parameter>) at the specified pointer
5111 (<parameter>src</parameter>) to the specified offset
5112 (<parameter>pos</parameter>) on the hardware buffer. When
5113 coded like memcpy-like way, the copy would be like:
5114
5115 <informalexample>
5116 <programlisting>
5117<![CDATA[
5118 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5119 frames_to_bytes(runtime, count));
5120]]>
5121 </programlisting>
5122 </informalexample>
5123 </para>
5124
5125 <para>
5126 For the capture direction, you do: copy the given amount of
5127 data (<parameter>count</parameter>) at the specified offset
5128 (<parameter>pos</parameter>) on the hardware buffer to the
5129 specified pointer (<parameter>dst</parameter>).
5130
5131 <informalexample>
5132 <programlisting>
5133<![CDATA[
5134 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5135 frames_to_bytes(runtime, count));
5136]]>
5137 </programlisting>
5138 </informalexample>
5139
5140 Note that both of the position and the data amount are given
5141 in frames.
5142 </para>
5143
5144 <para>
5145 In the case of non-interleaved samples, the implementation
5146 will be a bit more complicated.
5147 </para>
5148
5149 <para>
5150 You need to check the channel argument, and if it's -1, copy
5151 the whole channels. Otherwise, you have to copy only the
5152 specified channel. Please check
5153 <filename>isa/gus/gus_pcm.c</filename> as an example.
5154 </para>
5155
5156 <para>
5157 The <structfield>silence</structfield> callback is also
5158 implemented in a similar way.
5159
5160 <informalexample>
5161 <programlisting>
5162<![CDATA[
5163 static int silence(snd_pcm_substream_t *substream, int channel,
5164 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5165]]>
5166 </programlisting>
5167 </informalexample>
5168 </para>
5169
5170 <para>
5171 The meanings of arguments are identical with the
5172 <structfield>copy</structfield>
5173 callback, although there is no <parameter>src/dst</parameter>
5174 argument. In the case of interleaved samples, the channel
5175 argument has no meaning, as well as on
5176 <structfield>copy</structfield> callback.
5177 </para>
5178
5179 <para>
5180 The role of <structfield>silence</structfield> callback is to
5181 set the given amount
5182 (<parameter>count</parameter>) of silence data at the
5183 specified offset (<parameter>pos</parameter>) on the hardware
5184 buffer. Suppose that the data format is signed (that is, the
5185 silent-data is 0), and the implementation using a memset-like
5186 function would be like:
5187
5188 <informalexample>
5189 <programlisting>
5190<![CDATA[
5191 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5192 frames_to_bytes(runtime, count));
5193]]>
5194 </programlisting>
5195 </informalexample>
5196 </para>
5197
5198 <para>
5199 In the case of non-interleaved samples, again, the
5200 implementation becomes a bit more complicated. See, for example,
5201 <filename>isa/gus/gus_pcm.c</filename>.
5202 </para>
5203 </section>
5204
5205 <section id="buffer-and-memory-non-contiguous">
5206 <title>Non-Contiguous Buffers</title>
5207 <para>
5208 If your hardware supports the page table like emu10k1 or the
5209 buffer descriptors like via82xx, you can use the scatter-gather
5210 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5211 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5212 </para>
5213
5214 <para>
5215 For creating the SG-buffer handler, call
5216 <function>snd_pcm_lib_preallocate_pages()</function> or
5217 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5218 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5219 in the PCM constructor like other PCI pre-allocator.
5220 You need to pass the <function>snd_dma_pci_data(pci)</function>,
5221 where pci is the struct <structname>pci_dev</structname> pointer
5222 of the chip as well.
5223 The <type>snd_sg_buf_t</type> instance is created as
5224 substream-&gt;dma_private. You can cast
5225 the pointer like:
5226
5227 <informalexample>
5228 <programlisting>
5229<![CDATA[
5230 snd_pcm_sgbuf_t *sgbuf = (snd_pcm_sgbuf_t*)substream->dma_private;
5231]]>
5232 </programlisting>
5233 </informalexample>
5234 </para>
5235
5236 <para>
5237 Then call <function>snd_pcm_lib_malloc_pages()</function>
5238 in <structfield>hw_params</structfield> callback
5239 as well as in the case of normal PCI buffer.
5240 The SG-buffer handler will allocate the non-contiguous kernel
5241 pages of the given size and map them onto the virtually contiguous
5242 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5243 The physical address (runtime-&gt;dma_addr) is set to zero,
5244 because the buffer is physically non-contigous.
5245 The physical address table is set up in sgbuf-&gt;table.
5246 You can get the physical address at a certain offset via
5247 <function>snd_pcm_sgbuf_get_addr()</function>.
5248 </para>
5249
5250 <para>
5251 When a SG-handler is used, you need to set
5252 <function>snd_pcm_sgbuf_ops_page</function> as
5253 the <structfield>page</structfield> callback.
5254 (See <link linkend="pcm-interface-operators-page-callback">
5255 <citetitle>page callback section</citetitle></link>.)
5256 </para>
5257
5258 <para>
5259 For releasing the data, call
5260 <function>snd_pcm_lib_free_pages()</function> in the
5261 <structfield>hw_free</structfield> callback as usual.
5262 </para>
5263 </section>
5264
5265 <section id="buffer-and-memory-vmalloced">
5266 <title>Vmalloc'ed Buffers</title>
5267 <para>
5268 It's possible to use a buffer allocated via
5269 <function>vmalloc</function>, for example, for an intermediate
5270 buffer. Since the allocated pages are not contiguous, you need
5271 to set the <structfield>page</structfield> callback to obtain
5272 the physical address at every offset.
5273 </para>
5274
5275 <para>
5276 The implementation of <structfield>page</structfield> callback
5277 would be like this:
5278
5279 <informalexample>
5280 <programlisting>
5281<![CDATA[
5282 #include <linux/vmalloc.h>
5283
5284 /* get the physical page pointer on the given offset */
5285 static struct page *mychip_page(snd_pcm_substream_t *substream,
5286 unsigned long offset)
5287 {
5288 void *pageptr = substream->runtime->dma_area + offset;
5289 return vmalloc_to_page(pageptr);
5290 }
5291]]>
5292 </programlisting>
5293 </informalexample>
5294 </para>
5295 </section>
5296
5297 </chapter>
5298
5299
5300<!-- ****************************************************** -->
5301<!-- Proc Interface -->
5302<!-- ****************************************************** -->
5303 <chapter id="proc-interface">
5304 <title>Proc Interface</title>
5305 <para>
5306 ALSA provides an easy interface for procfs. The proc files are
5307 very useful for debugging. I recommend you set up proc files if
5308 you write a driver and want to get a running status or register
5309 dumps. The API is found in
5310 <filename>&lt;sound/info.h&gt;</filename>.
5311 </para>
5312
5313 <para>
5314 For creating a proc file, call
5315 <function>snd_card_proc_new()</function>.
5316
5317 <informalexample>
5318 <programlisting>
5319<![CDATA[
5320 snd_info_entry_t *entry;
5321 int err = snd_card_proc_new(card, "my-file", &entry);
5322]]>
5323 </programlisting>
5324 </informalexample>
5325
5326 where the second argument specifies the proc-file name to be
5327 created. The above example will create a file
5328 <filename>my-file</filename> under the card directory,
5329 e.g. <filename>/proc/asound/card0/my-file</filename>.
5330 </para>
5331
5332 <para>
5333 Like other components, the proc entry created via
5334 <function>snd_card_proc_new()</function> will be registered and
5335 released automatically in the card registration and release
5336 functions.
5337 </para>
5338
5339 <para>
5340 When the creation is successful, the function stores a new
5341 instance at the pointer given in the third argument.
5342 It is initialized as a text proc file for read only. For using
5343 this proc file as a read-only text file as it is, set the read
5344 callback with a private data via
5345 <function>snd_info_set_text_ops()</function>.
5346
5347 <informalexample>
5348 <programlisting>
5349<![CDATA[
5350 snd_info_set_text_ops(entry, chip, read_size, my_proc_read);
5351]]>
5352 </programlisting>
5353 </informalexample>
5354
5355 where the second argument (<parameter>chip</parameter>) is the
5356 private data to be used in the callbacks. The third parameter
5357 specifies the read buffer size and the fourth
5358 (<parameter>my_proc_read</parameter>) is the callback function, which
5359 is defined like
5360
5361 <informalexample>
5362 <programlisting>
5363<![CDATA[
5364 static void my_proc_read(snd_info_entry_t *entry,
5365 snd_info_buffer_t *buffer);
5366]]>
5367 </programlisting>
5368 </informalexample>
5369
5370 </para>
5371
5372 <para>
5373 In the read callback, use <function>snd_iprintf()</function> for
5374 output strings, which works just like normal
5375 <function>printf()</function>. For example,
5376
5377 <informalexample>
5378 <programlisting>
5379<![CDATA[
5380 static void my_proc_read(snd_info_entry_t *entry,
5381 snd_info_buffer_t *buffer)
5382 {
5383 chip_t *chip = entry->private_data;
5384
5385 snd_iprintf(buffer, "This is my chip!\n");
5386 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5387 }
5388]]>
5389 </programlisting>
5390 </informalexample>
5391 </para>
5392
5393 <para>
5394 The file permission can be changed afterwards. As default, it's
5395 set as read only for all users. If you want to add the write
5396 permission to the user (root as default), set like below:
5397
5398 <informalexample>
5399 <programlisting>
5400<![CDATA[
5401 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5402]]>
5403 </programlisting>
5404 </informalexample>
5405
5406 and set the write buffer size and the callback
5407
5408 <informalexample>
5409 <programlisting>
5410<![CDATA[
5411 entry->c.text.write_size = 256;
5412 entry->c.text.write = my_proc_write;
5413]]>
5414 </programlisting>
5415 </informalexample>
5416 </para>
5417
5418 <para>
5419 The buffer size for read is set to 1024 implicitly by
5420 <function>snd_info_set_text_ops()</function>. It should suffice
5421 in most cases (the size will be aligned to
5422 <constant>PAGE_SIZE</constant> anyway), but if you need to handle
5423 very large text files, you can set it explicitly, too.
5424
5425 <informalexample>
5426 <programlisting>
5427<![CDATA[
5428 entry->c.text.read_size = 65536;
5429]]>
5430 </programlisting>
5431 </informalexample>
5432 </para>
5433
5434 <para>
5435 For the write callback, you can use
5436 <function>snd_info_get_line()</function> to get a text line, and
5437 <function>snd_info_get_str()</function> to retrieve a string from
5438 the line. Some examples are found in
5439 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5440 <filename>pcm_oss.c</filename>.
5441 </para>
5442
5443 <para>
5444 For a raw-data proc-file, set the attributes like the following:
5445
5446 <informalexample>
5447 <programlisting>
5448<![CDATA[
5449 static struct snd_info_entry_ops my_file_io_ops = {
5450 .read = my_file_io_read,
5451 };
5452
5453 entry->content = SNDRV_INFO_CONTENT_DATA;
5454 entry->private_data = chip;
5455 entry->c.ops = &my_file_io_ops;
5456 entry->size = 4096;
5457 entry->mode = S_IFREG | S_IRUGO;
5458]]>
5459 </programlisting>
5460 </informalexample>
5461 </para>
5462
5463 <para>
5464 The callback is much more complicated than the text-file
5465 version. You need to use a low-level i/o functions such as
5466 <function>copy_from/to_user()</function> to transfer the
5467 data.
5468
5469 <informalexample>
5470 <programlisting>
5471<![CDATA[
5472 static long my_file_io_read(snd_info_entry_t *entry,
5473 void *file_private_data,
5474 struct file *file,
5475 char *buf,
5476 unsigned long count,
5477 unsigned long pos)
5478 {
5479 long size = count;
5480 if (pos + size > local_max_size)
5481 size = local_max_size - pos;
5482 if (copy_to_user(buf, local_data + pos, size))
5483 return -EFAULT;
5484 return size;
5485 }
5486]]>
5487 </programlisting>
5488 </informalexample>
5489 </para>
5490
5491 </chapter>
5492
5493
5494<!-- ****************************************************** -->
5495<!-- Power Management -->
5496<!-- ****************************************************** -->
5497 <chapter id="power-management">
5498 <title>Power Management</title>
5499 <para>
5500 If the chip is supposed to work with with suspend/resume
5501 functions, you need to add the power-management codes to the
5502 driver. The additional codes for the power-management should be
5503 <function>ifdef</function>'ed with
5504 <constant>CONFIG_PM</constant>.
5505 </para>
5506
5507 <para>
5508 ALSA provides the common power-management layer. Each card driver
5509 needs to have only low-level suspend and resume callbacks.
5510
5511 <informalexample>
5512 <programlisting>
5513<![CDATA[
5514 #ifdef CONFIG_PM
5515 static int snd_my_suspend(snd_card_t *card, pm_message_t state)
5516 {
5517 .... // do things for suspsend
5518 return 0;
5519 }
5520 static int snd_my_resume(snd_card_t *card)
5521 {
5522 .... // do things for suspsend
5523 return 0;
5524 }
5525 #endif
5526]]>
5527 </programlisting>
5528 </informalexample>
5529 </para>
5530
5531 <para>
5532 The scheme of the real suspend job is as following.
5533
5534 <orderedlist>
5535 <listitem><para>Retrieve the chip data from pm_private_data field.</para></listitem>
5536 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5537 <listitem><para>Save the register values if necessary.</para></listitem>
5538 <listitem><para>Stop the hardware if necessary.</para></listitem>
5539 <listitem><para>Disable the PCI device by calling <function>pci_disable_device()</function>.</para></listitem>
5540 </orderedlist>
5541 </para>
5542
5543 <para>
5544 A typical code would be like:
5545
5546 <informalexample>
5547 <programlisting>
5548<![CDATA[
5549 static int mychip_suspend(snd_card_t *card, pm_message_t state)
5550 {
5551 /* (1) */
5552 mychip_t *chip = card->pm_private_data;
5553 /* (2) */
5554 snd_pcm_suspend_all(chip->pcm);
5555 /* (3) */
5556 snd_mychip_save_registers(chip);
5557 /* (4) */
5558 snd_mychip_stop_hardware(chip);
5559 /* (5) */
5560 pci_disable_device(chip->pci);
5561 return 0;
5562 }
5563]]>
5564 </programlisting>
5565 </informalexample>
5566 </para>
5567
5568 <para>
5569 The scheme of the real resume job is as following.
5570
5571 <orderedlist>
5572 <listitem><para>Retrieve the chip data from pm_private_data field.</para></listitem>
5573 <listitem><para>Enable the pci device again by calling
5574 <function>pci_enable_device()</function>.</para></listitem>
5575 <listitem><para>Re-initialize the chip.</para></listitem>
5576 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5577 <listitem><para>Resume the mixer, e.g. calling
5578 <function>snd_ac97_resume()</function>.</para></listitem>
5579 <listitem><para>Restart the hardware (if any).</para></listitem>
5580 </orderedlist>
5581 </para>
5582
5583 <para>
5584 A typical code would be like:
5585
5586 <informalexample>
5587 <programlisting>
5588<![CDATA[
5589 static void mychip_resume(mychip_t *chip)
5590 {
5591 /* (1) */
5592 mychip_t *chip = card->pm_private_data;
5593 /* (2) */
5594 pci_enable_device(chip->pci);
5595 /* (3) */
5596 snd_mychip_reinit_chip(chip);
5597 /* (4) */
5598 snd_mychip_restore_registers(chip);
5599 /* (5) */
5600 snd_ac97_resume(chip->ac97);
5601 /* (6) */
5602 snd_mychip_restart_chip(chip);
5603 return 0;
5604 }
5605]]>
5606 </programlisting>
5607 </informalexample>
5608 </para>
5609
5610 <para>
5611 OK, we have all callbacks now. Let's set up them now. In the
5612 initialization of the card, add the following:
5613
5614 <informalexample>
5615 <programlisting>
5616<![CDATA[
5617 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5618 const struct pci_device_id *pci_id)
5619 {
5620 ....
5621 snd_card_t *card;
5622 mychip_t *chip;
5623 ....
5624 snd_card_set_pm_callback(card, snd_my_suspend, snd_my_resume, chip);
5625 ....
5626 }
5627]]>
5628 </programlisting>
5629 </informalexample>
5630
5631 Here you don't have to put ifdef CONFIG_PM around, since it's already
5632 checked in the header and expanded to empty if not needed.
5633 </para>
5634
5635 <para>
5636 If you need a space for saving the registers, you'll need to
5637 allocate the buffer for it here, too, since it would be fatal
5638 if you cannot allocate a memory in the suspend phase.
5639 The allocated buffer should be released in the corresponding
5640 destructor.
5641 </para>
5642
5643 <para>
5644 And next, set suspend/resume callbacks to the pci_driver,
5645 This can be done by passing a macro SND_PCI_PM_CALLBACKS
5646 in the pci_driver struct. This macro is expanded to the correct
5647 (global) callbacks if CONFIG_PM is set.
5648
5649 <informalexample>
5650 <programlisting>
5651<![CDATA[
5652 static struct pci_driver driver = {
5653 .name = "My Chip",
5654 .id_table = snd_my_ids,
5655 .probe = snd_my_probe,
5656 .remove = __devexit_p(snd_my_remove),
5657 SND_PCI_PM_CALLBACKS
5658 };
5659]]>
5660 </programlisting>
5661 </informalexample>
5662 </para>
5663
5664 </chapter>
5665
5666
5667<!-- ****************************************************** -->
5668<!-- Module Parameters -->
5669<!-- ****************************************************** -->
5670 <chapter id="module-parameters">
5671 <title>Module Parameters</title>
5672 <para>
5673 There are standard module options for ALSA. At least, each
5674 module should have <parameter>index</parameter>,
5675 <parameter>id</parameter> and <parameter>enable</parameter>
5676 options.
5677 </para>
5678
5679 <para>
5680 If the module supports multiple cards (usually up to
5681 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5682 arrays. The default initial values are defined already as
5683 constants for ease of programming:
5684
5685 <informalexample>
5686 <programlisting>
5687<![CDATA[
5688 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5689 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5690 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5691]]>
5692 </programlisting>
5693 </informalexample>
5694 </para>
5695
5696 <para>
5697 If the module supports only a single card, they could be single
5698 variables, instead. <parameter>enable</parameter> option is not
5699 always necessary in this case, but it wouldn't be so bad to have a
5700 dummy option for compatibility.
5701 </para>
5702
5703 <para>
5704 The module parameters must be declared with the standard
5705 <function>module_param()()</function>,
5706 <function>module_param_array()()</function> and
5707 <function>MODULE_PARM_DESC()</function> macros.
5708 </para>
5709
5710 <para>
5711 The typical coding would be like below:
5712
5713 <informalexample>
5714 <programlisting>
5715<![CDATA[
5716 #define CARD_NAME "My Chip"
5717
5718 module_param_array(index, int, NULL, 0444);
5719 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5720 module_param_array(id, charp, NULL, 0444);
5721 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5722 module_param_array(enable, bool, NULL, 0444);
5723 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5724]]>
5725 </programlisting>
5726 </informalexample>
5727 </para>
5728
5729 <para>
5730 Also, don't forget to define the module description, classes,
5731 license and devices. Especially, the recent modprobe requires to
5732 define the module license as GPL, etc., otherwise the system is
5733 shown as <quote>tainted</quote>.
5734
5735 <informalexample>
5736 <programlisting>
5737<![CDATA[
5738 MODULE_DESCRIPTION("My Chip");
5739 MODULE_LICENSE("GPL");
5740 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5741]]>
5742 </programlisting>
5743 </informalexample>
5744 </para>
5745
5746 </chapter>
5747
5748
5749<!-- ****************************************************** -->
5750<!-- How To Put Your Driver -->
5751<!-- ****************************************************** -->
5752 <chapter id="how-to-put-your-driver">
5753 <title>How To Put Your Driver Into ALSA Tree</title>
5754 <section>
5755 <title>General</title>
5756 <para>
5757 So far, you've learned how to write the driver codes.
5758 And you might have a question now: how to put my own
5759 driver into the ALSA driver tree?
5760 Here (finally :) the standard procedure is described briefly.
5761 </para>
5762
5763 <para>
5764 Suppose that you'll create a new PCI driver for the card
5765 <quote>xyz</quote>. The card module name would be
5766 snd-xyz. The new driver is usually put into alsa-driver
5767 tree, <filename>alsa-driver/pci</filename> directory in
5768 the case of PCI cards.
5769 Then the driver is evaluated, audited and tested
5770 by developers and users. After a certain time, the driver
5771 will go to alsa-kernel tree (to the corresponding directory,
5772 such as <filename>alsa-kernel/pci</filename>) and eventually
5773 integrated into Linux 2.6 tree (the directory would be
5774 <filename>linux/sound/pci</filename>).
5775 </para>
5776
5777 <para>
5778 In the following sections, the driver code is supposed
5779 to be put into alsa-driver tree. The two cases are assumed:
5780 a driver consisting of a single source file and one consisting
5781 of several source files.
5782 </para>
5783 </section>
5784
5785 <section>
5786 <title>Driver with A Single Source File</title>
5787 <para>
5788 <orderedlist>
5789 <listitem>
5790 <para>
5791 Modify alsa-driver/pci/Makefile
5792 </para>
5793
5794 <para>
5795 Suppose you have a file xyz.c. Add the following
5796 two lines
5797 <informalexample>
5798 <programlisting>
5799<![CDATA[
5800 snd-xyz-objs := xyz.o
5801 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5802]]>
5803 </programlisting>
5804 </informalexample>
5805 </para>
5806 </listitem>
5807
5808 <listitem>
5809 <para>
5810 Create the Kconfig entry
5811 </para>
5812
5813 <para>
5814 Add the new entry of Kconfig for your xyz driver.
5815 <informalexample>
5816 <programlisting>
5817<![CDATA[
5818 config SND_XYZ
5819 tristate "Foobar XYZ"
5820 depends on SND
5821 select SND_PCM
5822 help
5823 Say Y here to include support for Foobar XYZ soundcard.
5824
5825 To compile this driver as a module, choose M here: the module
5826 will be called snd-xyz.
5827]]>
5828 </programlisting>
5829 </informalexample>
5830
5831 the line, select SND_PCM, specifies that the driver xyz supports
5832 PCM. In addition to SND_PCM, the following components are
5833 supported for select command:
5834 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5835 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5836 Add the select command for each supported component.
5837 </para>
5838
5839 <para>
5840 Note that some selections imply the lowlevel selections.
5841 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5842 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5843 You don't need to give the lowlevel selections again.
5844 </para>
5845
5846 <para>
5847 For the details of Kconfig script, refer to the kbuild
5848 documentation.
5849 </para>
5850
5851 </listitem>
5852
5853 <listitem>
5854 <para>
5855 Run cvscompile script to re-generate the configure script and
5856 build the whole stuff again.
5857 </para>
5858 </listitem>
5859 </orderedlist>
5860 </para>
5861 </section>
5862
5863 <section>
5864 <title>Drivers with Several Source Files</title>
5865 <para>
5866 Suppose that the driver snd-xyz have several source files.
5867 They are located in the new subdirectory,
5868 pci/xyz.
5869
5870 <orderedlist>
5871 <listitem>
5872 <para>
5873 Add a new directory (<filename>xyz</filename>) in
5874 <filename>alsa-driver/pci/Makefile</filename> like below
5875
5876 <informalexample>
5877 <programlisting>
5878<![CDATA[
5879 obj-$(CONFIG_SND) += xyz/
5880]]>
5881 </programlisting>
5882 </informalexample>
5883 </para>
5884 </listitem>
5885
5886 <listitem>
5887 <para>
5888 Under the directory <filename>xyz</filename>, create a Makefile
5889
5890 <example>
5891 <title>Sample Makefile for a driver xyz</title>
5892 <programlisting>
5893<![CDATA[
5894 ifndef SND_TOPDIR
5895 SND_TOPDIR=../..
5896 endif
5897
5898 include $(SND_TOPDIR)/toplevel.config
5899 include $(SND_TOPDIR)/Makefile.conf
5900
5901 snd-xyz-objs := xyz.o abc.o def.o
5902
5903 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5904
5905 include $(SND_TOPDIR)/Rules.make
5906]]>
5907 </programlisting>
5908 </example>
5909 </para>
5910 </listitem>
5911
5912 <listitem>
5913 <para>
5914 Create the Kconfig entry
5915 </para>
5916
5917 <para>
5918 This procedure is as same as in the last section.
5919 </para>
5920 </listitem>
5921
5922 <listitem>
5923 <para>
5924 Run cvscompile script to re-generate the configure script and
5925 build the whole stuff again.
5926 </para>
5927 </listitem>
5928 </orderedlist>
5929 </para>
5930 </section>
5931
5932 </chapter>
5933
5934<!-- ****************************************************** -->
5935<!-- Useful Functions -->
5936<!-- ****************************************************** -->
5937 <chapter id="useful-functions">
5938 <title>Useful Functions</title>
5939
5940 <section id="useful-functions-snd-printk">
5941 <title><function>snd_printk()</function> and friends</title>
5942 <para>
5943 ALSA provides a verbose version of
5944 <function>printk()</function> function. If a kernel config
5945 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
5946 function prints the given message together with the file name
5947 and the line of the caller. The <constant>KERN_XXX</constant>
5948 prefix is processed as
5949 well as the original <function>printk()</function> does, so it's
5950 recommended to add this prefix, e.g.
5951
5952 <informalexample>
5953 <programlisting>
5954<![CDATA[
5955 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
5956]]>
5957 </programlisting>
5958 </informalexample>
5959 </para>
5960
5961 <para>
5962 There are also <function>printk()</function>'s for
5963 debugging. <function>snd_printd()</function> can be used for
5964 general debugging purposes. If
5965 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
5966 compiled, and works just like
5967 <function>snd_printk()</function>. If the ALSA is compiled
5968 without the debugging flag, it's ignored.
5969 </para>
5970
5971 <para>
5972 <function>snd_printdd()</function> is compiled in only when
5973 <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
5974 that <constant>DEBUG_DETECT</constant> is not set as default
5975 even if you configure the alsa-driver with
5976 <option>--with-debug=full</option> option. You need to give
5977 explicitly <option>--with-debug=detect</option> option instead.
5978 </para>
5979 </section>
5980
5981 <section id="useful-functions-snd-assert">
5982 <title><function>snd_assert()</function></title>
5983 <para>
5984 <function>snd_assert()</function> macro is similar with the
5985 normal <function>assert()</function> macro. For example,
5986
5987 <informalexample>
5988 <programlisting>
5989<![CDATA[
5990 snd_assert(pointer != NULL, return -EINVAL);
5991]]>
5992 </programlisting>
5993 </informalexample>
5994 </para>
5995
5996 <para>
5997 The first argument is the expression to evaluate, and the
5998 second argument is the action if it fails. When
5999 <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006000 error message such as <computeroutput>BUG? (xxx)</computeroutput>
6001 together with stack trace.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006002 </para>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006003 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006004 When no debug flag is set, this macro is ignored.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006005 </para>
6006 </section>
6007
6008 <section id="useful-functions-snd-bug">
6009 <title><function>snd_BUG()</function></title>
6010 <para>
Takashi Iwai7c22f1a2005-10-10 11:46:31 +02006011 It shows <computeroutput>BUG?</computeroutput> message and
6012 stack trace as well as <function>snd_assert</function> at the point.
6013 It's useful to show that a fatal error happens there.
6014 </para>
6015 <para>
6016 When no debug flag is set, this macro is ignored.
Linus Torvalds1da177e2005-04-16 15:20:36 -07006017 </para>
6018 </section>
6019 </chapter>
6020
6021
6022<!-- ****************************************************** -->
6023<!-- Acknowledgments -->
6024<!-- ****************************************************** -->
6025 <chapter id="acknowledments">
6026 <title>Acknowledgments</title>
6027 <para>
6028 I would like to thank Phil Kerr for his help for improvement and
6029 corrections of this document.
6030 </para>
6031 <para>
6032 Kevin Conder reformatted the original plain-text to the
6033 DocBook format.
6034 </para>
6035 <para>
6036 Giuliano Pochini corrected typos and contributed the example codes
6037 in the hardware constraints section.
6038 </para>
6039 </chapter>
6040
6041
6042</book>