blob: c4506bf1fca2b7675279bc315257dd5b64d87948 [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
Alexander Duyck86d5d382009-02-06 23:23:12 +00004 Copyright(c) 2007-2009 Intel Corporation.
Auke Kok9d5c8242008-01-24 02:22:38 -08005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#include <linux/types.h>
33#include <linux/slab.h>
Alexander Duyck2d064c02008-07-08 15:10:12 -070034#include <linux/if_ether.h>
Auke Kok9d5c8242008-01-24 02:22:38 -080035
36#include "e1000_mac.h"
37#include "e1000_82575.h"
38
39static s32 igb_get_invariants_82575(struct e1000_hw *);
40static s32 igb_acquire_phy_82575(struct e1000_hw *);
41static void igb_release_phy_82575(struct e1000_hw *);
42static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43static void igb_release_nvm_82575(struct e1000_hw *);
44static s32 igb_check_for_link_82575(struct e1000_hw *);
45static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46static s32 igb_init_hw_82575(struct e1000_hw *);
47static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
Auke Kok9d5c8242008-01-24 02:22:38 -080049static s32 igb_reset_hw_82575(struct e1000_hw *);
50static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
Alexander Duyckf3e78412009-07-23 18:07:58 +000056static void igb_configure_pcs_link_82575(struct e1000_hw *);
Auke Kok9d5c8242008-01-24 02:22:38 -080057static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59static s32 igb_get_phy_id_82575(struct e1000_hw *);
60static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61static bool igb_sgmii_active_82575(struct e1000_hw *);
62static s32 igb_reset_init_script_82575(struct e1000_hw *);
63static s32 igb_read_mac_addr_82575(struct e1000_hw *);
Alexander Duyck009bc062009-07-23 18:08:35 +000064static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
Auke Kok9d5c8242008-01-24 02:22:38 -080065
Auke Kok9d5c8242008-01-24 02:22:38 -080066static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67{
68 struct e1000_phy_info *phy = &hw->phy;
69 struct e1000_nvm_info *nvm = &hw->nvm;
70 struct e1000_mac_info *mac = &hw->mac;
Alexander Duyckc1889bf2009-02-06 23:16:45 +000071 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
Auke Kok9d5c8242008-01-24 02:22:38 -080072 u32 eecd;
73 s32 ret_val;
74 u16 size;
75 u32 ctrl_ext = 0;
76
77 switch (hw->device_id) {
78 case E1000_DEV_ID_82575EB_COPPER:
79 case E1000_DEV_ID_82575EB_FIBER_SERDES:
80 case E1000_DEV_ID_82575GB_QUAD_COPPER:
81 mac->type = e1000_82575;
82 break;
Alexander Duyck2d064c02008-07-08 15:10:12 -070083 case E1000_DEV_ID_82576:
Alexander Duyck9eb23412009-03-13 20:42:15 +000084 case E1000_DEV_ID_82576_NS:
Alexander Duyck2d064c02008-07-08 15:10:12 -070085 case E1000_DEV_ID_82576_FIBER:
86 case E1000_DEV_ID_82576_SERDES:
Alexander Duyckc8ea5ea92009-03-13 20:42:35 +000087 case E1000_DEV_ID_82576_QUAD_COPPER:
Alexander Duyck2d064c02008-07-08 15:10:12 -070088 mac->type = e1000_82576;
89 break;
Auke Kok9d5c8242008-01-24 02:22:38 -080090 default:
91 return -E1000_ERR_MAC_INIT;
92 break;
93 }
94
Auke Kok9d5c8242008-01-24 02:22:38 -080095 /* Set media type */
96 /*
97 * The 82575 uses bits 22:23 for link mode. The mode can be changed
98 * based on the EEPROM. We cannot rely upon device ID. There
99 * is no distinguishable difference between fiber and internal
100 * SerDes mode on the 82575. There can be an external PHY attached
101 * on the SGMII interface. For this, we'll set sgmii_active to true.
102 */
103 phy->media_type = e1000_media_type_copper;
104 dev_spec->sgmii_active = false;
105
106 ctrl_ext = rd32(E1000_CTRL_EXT);
107 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
108 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
109 hw->phy.media_type = e1000_media_type_internal_serdes;
110 ctrl_ext |= E1000_CTRL_I2C_ENA;
111 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
112 dev_spec->sgmii_active = true;
113 ctrl_ext |= E1000_CTRL_I2C_ENA;
114 } else {
115 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
116 }
117 wr32(E1000_CTRL_EXT, ctrl_ext);
118
119 /* Set mta register count */
120 mac->mta_reg_count = 128;
121 /* Set rar entry count */
122 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
Alexander Duyck2d064c02008-07-08 15:10:12 -0700123 if (mac->type == e1000_82576)
124 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
Auke Kok9d5c8242008-01-24 02:22:38 -0800125 /* Set if part includes ASF firmware */
126 mac->asf_firmware_present = true;
127 /* Set if manageability features are enabled. */
128 mac->arc_subsystem_valid =
129 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
130 ? true : false;
131
132 /* physical interface link setup */
133 mac->ops.setup_physical_interface =
134 (hw->phy.media_type == e1000_media_type_copper)
135 ? igb_setup_copper_link_82575
136 : igb_setup_fiber_serdes_link_82575;
137
138 /* NVM initialization */
139 eecd = rd32(E1000_EECD);
140
141 nvm->opcode_bits = 8;
142 nvm->delay_usec = 1;
143 switch (nvm->override) {
144 case e1000_nvm_override_spi_large:
145 nvm->page_size = 32;
146 nvm->address_bits = 16;
147 break;
148 case e1000_nvm_override_spi_small:
149 nvm->page_size = 8;
150 nvm->address_bits = 8;
151 break;
152 default:
153 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
154 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
155 break;
156 }
157
158 nvm->type = e1000_nvm_eeprom_spi;
159
160 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
161 E1000_EECD_SIZE_EX_SHIFT);
162
163 /*
164 * Added to a constant, "size" becomes the left-shift value
165 * for setting word_size.
166 */
167 size += NVM_WORD_SIZE_BASE_SHIFT;
Jeff Kirsher5c3cad72008-06-27 10:59:33 -0700168
169 /* EEPROM access above 16k is unsupported */
170 if (size > 14)
171 size = 14;
Auke Kok9d5c8242008-01-24 02:22:38 -0800172 nvm->word_size = 1 << size;
173
174 /* setup PHY parameters */
175 if (phy->media_type != e1000_media_type_copper) {
176 phy->type = e1000_phy_none;
177 return 0;
178 }
179
180 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
181 phy->reset_delay_us = 100;
182
183 /* PHY function pointers */
184 if (igb_sgmii_active_82575(hw)) {
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000185 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
186 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
187 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
Auke Kok9d5c8242008-01-24 02:22:38 -0800188 } else {
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000189 phy->ops.reset = igb_phy_hw_reset;
190 phy->ops.read_reg = igb_read_phy_reg_igp;
191 phy->ops.write_reg = igb_write_phy_reg_igp;
Auke Kok9d5c8242008-01-24 02:22:38 -0800192 }
193
Alexander Duyck19e588e2009-07-07 13:01:55 +0000194 /* set lan id */
195 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
196 E1000_STATUS_FUNC_SHIFT;
197
Auke Kok9d5c8242008-01-24 02:22:38 -0800198 /* Set phy->phy_addr and phy->id. */
199 ret_val = igb_get_phy_id_82575(hw);
200 if (ret_val)
201 return ret_val;
202
203 /* Verify phy id and set remaining function pointers */
204 switch (phy->id) {
205 case M88E1111_I_PHY_ID:
206 phy->type = e1000_phy_m88;
207 phy->ops.get_phy_info = igb_get_phy_info_m88;
208 phy->ops.get_cable_length = igb_get_cable_length_m88;
209 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
210 break;
211 case IGP03E1000_E_PHY_ID:
212 phy->type = e1000_phy_igp_3;
213 phy->ops.get_phy_info = igb_get_phy_info_igp;
214 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
215 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
216 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
217 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
218 break;
219 default:
220 return -E1000_ERR_PHY;
221 }
222
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800223 /* if 82576 then initialize mailbox parameters */
224 if (mac->type == e1000_82576)
225 igb_init_mbx_params_pf(hw);
226
Auke Kok9d5c8242008-01-24 02:22:38 -0800227 return 0;
228}
229
230/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700231 * igb_acquire_phy_82575 - Acquire rights to access PHY
Auke Kok9d5c8242008-01-24 02:22:38 -0800232 * @hw: pointer to the HW structure
233 *
234 * Acquire access rights to the correct PHY. This is a
235 * function pointer entry point called by the api module.
236 **/
237static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
238{
239 u16 mask;
240
241 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
242
243 return igb_acquire_swfw_sync_82575(hw, mask);
244}
245
246/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700247 * igb_release_phy_82575 - Release rights to access PHY
Auke Kok9d5c8242008-01-24 02:22:38 -0800248 * @hw: pointer to the HW structure
249 *
250 * A wrapper to release access rights to the correct PHY. This is a
251 * function pointer entry point called by the api module.
252 **/
253static void igb_release_phy_82575(struct e1000_hw *hw)
254{
255 u16 mask;
256
257 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
258 igb_release_swfw_sync_82575(hw, mask);
259}
260
261/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700262 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
Auke Kok9d5c8242008-01-24 02:22:38 -0800263 * @hw: pointer to the HW structure
264 * @offset: register offset to be read
265 * @data: pointer to the read data
266 *
267 * Reads the PHY register at offset using the serial gigabit media independent
268 * interface and stores the retrieved information in data.
269 **/
270static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
271 u16 *data)
272{
273 struct e1000_phy_info *phy = &hw->phy;
274 u32 i, i2ccmd = 0;
275
276 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
Auke Kok652fff32008-06-27 11:00:18 -0700277 hw_dbg("PHY Address %u is out of range\n", offset);
Auke Kok9d5c8242008-01-24 02:22:38 -0800278 return -E1000_ERR_PARAM;
279 }
280
281 /*
282 * Set up Op-code, Phy Address, and register address in the I2CCMD
283 * register. The MAC will take care of interfacing with the
284 * PHY to retrieve the desired data.
285 */
286 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
287 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
288 (E1000_I2CCMD_OPCODE_READ));
289
290 wr32(E1000_I2CCMD, i2ccmd);
291
292 /* Poll the ready bit to see if the I2C read completed */
293 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
294 udelay(50);
295 i2ccmd = rd32(E1000_I2CCMD);
296 if (i2ccmd & E1000_I2CCMD_READY)
297 break;
298 }
299 if (!(i2ccmd & E1000_I2CCMD_READY)) {
Auke Kok652fff32008-06-27 11:00:18 -0700300 hw_dbg("I2CCMD Read did not complete\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800301 return -E1000_ERR_PHY;
302 }
303 if (i2ccmd & E1000_I2CCMD_ERROR) {
Auke Kok652fff32008-06-27 11:00:18 -0700304 hw_dbg("I2CCMD Error bit set\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800305 return -E1000_ERR_PHY;
306 }
307
308 /* Need to byte-swap the 16-bit value. */
309 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
310
311 return 0;
312}
313
314/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700315 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
Auke Kok9d5c8242008-01-24 02:22:38 -0800316 * @hw: pointer to the HW structure
317 * @offset: register offset to write to
318 * @data: data to write at register offset
319 *
320 * Writes the data to PHY register at the offset using the serial gigabit
321 * media independent interface.
322 **/
323static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
324 u16 data)
325{
326 struct e1000_phy_info *phy = &hw->phy;
327 u32 i, i2ccmd = 0;
328 u16 phy_data_swapped;
329
330 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
Auke Kok652fff32008-06-27 11:00:18 -0700331 hw_dbg("PHY Address %d is out of range\n", offset);
Auke Kok9d5c8242008-01-24 02:22:38 -0800332 return -E1000_ERR_PARAM;
333 }
334
335 /* Swap the data bytes for the I2C interface */
336 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
337
338 /*
339 * Set up Op-code, Phy Address, and register address in the I2CCMD
340 * register. The MAC will take care of interfacing with the
341 * PHY to retrieve the desired data.
342 */
343 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
344 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
345 E1000_I2CCMD_OPCODE_WRITE |
346 phy_data_swapped);
347
348 wr32(E1000_I2CCMD, i2ccmd);
349
350 /* Poll the ready bit to see if the I2C read completed */
351 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352 udelay(50);
353 i2ccmd = rd32(E1000_I2CCMD);
354 if (i2ccmd & E1000_I2CCMD_READY)
355 break;
356 }
357 if (!(i2ccmd & E1000_I2CCMD_READY)) {
Auke Kok652fff32008-06-27 11:00:18 -0700358 hw_dbg("I2CCMD Write did not complete\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800359 return -E1000_ERR_PHY;
360 }
361 if (i2ccmd & E1000_I2CCMD_ERROR) {
Auke Kok652fff32008-06-27 11:00:18 -0700362 hw_dbg("I2CCMD Error bit set\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800363 return -E1000_ERR_PHY;
364 }
365
366 return 0;
367}
368
369/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700370 * igb_get_phy_id_82575 - Retrieve PHY addr and id
Auke Kok9d5c8242008-01-24 02:22:38 -0800371 * @hw: pointer to the HW structure
372 *
Auke Kok652fff32008-06-27 11:00:18 -0700373 * Retrieves the PHY address and ID for both PHY's which do and do not use
Auke Kok9d5c8242008-01-24 02:22:38 -0800374 * sgmi interface.
375 **/
376static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
377{
378 struct e1000_phy_info *phy = &hw->phy;
379 s32 ret_val = 0;
380 u16 phy_id;
381
382 /*
383 * For SGMII PHYs, we try the list of possible addresses until
384 * we find one that works. For non-SGMII PHYs
385 * (e.g. integrated copper PHYs), an address of 1 should
386 * work. The result of this function should mean phy->phy_addr
387 * and phy->id are set correctly.
388 */
389 if (!(igb_sgmii_active_82575(hw))) {
390 phy->addr = 1;
391 ret_val = igb_get_phy_id(hw);
392 goto out;
393 }
394
395 /*
396 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
397 * Therefore, we need to test 1-7
398 */
399 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
400 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
401 if (ret_val == 0) {
Auke Kok652fff32008-06-27 11:00:18 -0700402 hw_dbg("Vendor ID 0x%08X read at address %u\n",
403 phy_id, phy->addr);
Auke Kok9d5c8242008-01-24 02:22:38 -0800404 /*
405 * At the time of this writing, The M88 part is
406 * the only supported SGMII PHY product.
407 */
408 if (phy_id == M88_VENDOR)
409 break;
410 } else {
Auke Kok652fff32008-06-27 11:00:18 -0700411 hw_dbg("PHY address %u was unreadable\n", phy->addr);
Auke Kok9d5c8242008-01-24 02:22:38 -0800412 }
413 }
414
415 /* A valid PHY type couldn't be found. */
416 if (phy->addr == 8) {
417 phy->addr = 0;
418 ret_val = -E1000_ERR_PHY;
419 goto out;
420 }
421
422 ret_val = igb_get_phy_id(hw);
423
424out:
425 return ret_val;
426}
427
428/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700429 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
Auke Kok9d5c8242008-01-24 02:22:38 -0800430 * @hw: pointer to the HW structure
431 *
432 * Resets the PHY using the serial gigabit media independent interface.
433 **/
434static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
435{
436 s32 ret_val;
437
438 /*
439 * This isn't a true "hard" reset, but is the only reset
440 * available to us at this time.
441 */
442
Auke Kok652fff32008-06-27 11:00:18 -0700443 hw_dbg("Soft resetting SGMII attached PHY...\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800444
445 /*
446 * SFP documentation requires the following to configure the SPF module
447 * to work on SGMII. No further documentation is given.
448 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000449 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
Auke Kok9d5c8242008-01-24 02:22:38 -0800450 if (ret_val)
451 goto out;
452
453 ret_val = igb_phy_sw_reset(hw);
454
455out:
456 return ret_val;
457}
458
459/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700460 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
Auke Kok9d5c8242008-01-24 02:22:38 -0800461 * @hw: pointer to the HW structure
462 * @active: true to enable LPLU, false to disable
463 *
464 * Sets the LPLU D0 state according to the active flag. When
465 * activating LPLU this function also disables smart speed
466 * and vice versa. LPLU will not be activated unless the
467 * device autonegotiation advertisement meets standards of
468 * either 10 or 10/100 or 10/100/1000 at all duplexes.
469 * This is a function pointer entry point only called by
470 * PHY setup routines.
471 **/
472static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
473{
474 struct e1000_phy_info *phy = &hw->phy;
475 s32 ret_val;
476 u16 data;
477
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000478 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800479 if (ret_val)
480 goto out;
481
482 if (active) {
483 data |= IGP02E1000_PM_D0_LPLU;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000484 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
Auke Kok652fff32008-06-27 11:00:18 -0700485 data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800486 if (ret_val)
487 goto out;
488
489 /* When LPLU is enabled, we should disable SmartSpeed */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000490 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
Auke Kok652fff32008-06-27 11:00:18 -0700491 &data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800492 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000493 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
Auke Kok652fff32008-06-27 11:00:18 -0700494 data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800495 if (ret_val)
496 goto out;
497 } else {
498 data &= ~IGP02E1000_PM_D0_LPLU;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000499 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
Auke Kok652fff32008-06-27 11:00:18 -0700500 data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800501 /*
502 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
503 * during Dx states where the power conservation is most
504 * important. During driver activity we should enable
505 * SmartSpeed, so performance is maintained.
506 */
507 if (phy->smart_speed == e1000_smart_speed_on) {
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000508 ret_val = phy->ops.read_reg(hw,
Auke Kok652fff32008-06-27 11:00:18 -0700509 IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800510 if (ret_val)
511 goto out;
512
513 data |= IGP01E1000_PSCFR_SMART_SPEED;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000514 ret_val = phy->ops.write_reg(hw,
Auke Kok652fff32008-06-27 11:00:18 -0700515 IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800516 if (ret_val)
517 goto out;
518 } else if (phy->smart_speed == e1000_smart_speed_off) {
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000519 ret_val = phy->ops.read_reg(hw,
Auke Kok652fff32008-06-27 11:00:18 -0700520 IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800521 if (ret_val)
522 goto out;
523
524 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000525 ret_val = phy->ops.write_reg(hw,
Auke Kok652fff32008-06-27 11:00:18 -0700526 IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800527 if (ret_val)
528 goto out;
529 }
530 }
531
532out:
533 return ret_val;
534}
535
536/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700537 * igb_acquire_nvm_82575 - Request for access to EEPROM
Auke Kok9d5c8242008-01-24 02:22:38 -0800538 * @hw: pointer to the HW structure
539 *
Auke Kok652fff32008-06-27 11:00:18 -0700540 * Acquire the necessary semaphores for exclusive access to the EEPROM.
Auke Kok9d5c8242008-01-24 02:22:38 -0800541 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
542 * Return successful if access grant bit set, else clear the request for
543 * EEPROM access and return -E1000_ERR_NVM (-1).
544 **/
545static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
546{
547 s32 ret_val;
548
549 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
550 if (ret_val)
551 goto out;
552
553 ret_val = igb_acquire_nvm(hw);
554
555 if (ret_val)
556 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
557
558out:
559 return ret_val;
560}
561
562/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700563 * igb_release_nvm_82575 - Release exclusive access to EEPROM
Auke Kok9d5c8242008-01-24 02:22:38 -0800564 * @hw: pointer to the HW structure
565 *
566 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
567 * then release the semaphores acquired.
568 **/
569static void igb_release_nvm_82575(struct e1000_hw *hw)
570{
571 igb_release_nvm(hw);
572 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
573}
574
575/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700576 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -0800577 * @hw: pointer to the HW structure
578 * @mask: specifies which semaphore to acquire
579 *
580 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
581 * will also specify which port we're acquiring the lock for.
582 **/
583static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
584{
585 u32 swfw_sync;
586 u32 swmask = mask;
587 u32 fwmask = mask << 16;
588 s32 ret_val = 0;
589 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
590
591 while (i < timeout) {
592 if (igb_get_hw_semaphore(hw)) {
593 ret_val = -E1000_ERR_SWFW_SYNC;
594 goto out;
595 }
596
597 swfw_sync = rd32(E1000_SW_FW_SYNC);
598 if (!(swfw_sync & (fwmask | swmask)))
599 break;
600
601 /*
602 * Firmware currently using resource (fwmask)
603 * or other software thread using resource (swmask)
604 */
605 igb_put_hw_semaphore(hw);
606 mdelay(5);
607 i++;
608 }
609
610 if (i == timeout) {
Auke Kok652fff32008-06-27 11:00:18 -0700611 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800612 ret_val = -E1000_ERR_SWFW_SYNC;
613 goto out;
614 }
615
616 swfw_sync |= swmask;
617 wr32(E1000_SW_FW_SYNC, swfw_sync);
618
619 igb_put_hw_semaphore(hw);
620
621out:
622 return ret_val;
623}
624
625/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700626 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -0800627 * @hw: pointer to the HW structure
628 * @mask: specifies which semaphore to acquire
629 *
630 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
631 * will also specify which port we're releasing the lock for.
632 **/
633static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
634{
635 u32 swfw_sync;
636
637 while (igb_get_hw_semaphore(hw) != 0);
638 /* Empty */
639
640 swfw_sync = rd32(E1000_SW_FW_SYNC);
641 swfw_sync &= ~mask;
642 wr32(E1000_SW_FW_SYNC, swfw_sync);
643
644 igb_put_hw_semaphore(hw);
645}
646
647/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700648 * igb_get_cfg_done_82575 - Read config done bit
Auke Kok9d5c8242008-01-24 02:22:38 -0800649 * @hw: pointer to the HW structure
650 *
651 * Read the management control register for the config done bit for
652 * completion status. NOTE: silicon which is EEPROM-less will fail trying
653 * to read the config done bit, so an error is *ONLY* logged and returns
654 * 0. If we were to return with error, EEPROM-less silicon
655 * would not be able to be reset or change link.
656 **/
657static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
658{
659 s32 timeout = PHY_CFG_TIMEOUT;
660 s32 ret_val = 0;
661 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
662
663 if (hw->bus.func == 1)
664 mask = E1000_NVM_CFG_DONE_PORT_1;
665
666 while (timeout) {
667 if (rd32(E1000_EEMNGCTL) & mask)
668 break;
669 msleep(1);
670 timeout--;
671 }
672 if (!timeout)
Auke Kok652fff32008-06-27 11:00:18 -0700673 hw_dbg("MNG configuration cycle has not completed.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800674
675 /* If EEPROM is not marked present, init the PHY manually */
676 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
677 (hw->phy.type == e1000_phy_igp_3))
678 igb_phy_init_script_igp3(hw);
679
680 return ret_val;
681}
682
683/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700684 * igb_check_for_link_82575 - Check for link
Auke Kok9d5c8242008-01-24 02:22:38 -0800685 * @hw: pointer to the HW structure
686 *
687 * If sgmii is enabled, then use the pcs register to determine link, otherwise
688 * use the generic interface for determining link.
689 **/
690static s32 igb_check_for_link_82575(struct e1000_hw *hw)
691{
692 s32 ret_val;
693 u16 speed, duplex;
694
695 /* SGMII link check is done through the PCS register. */
696 if ((hw->phy.media_type != e1000_media_type_copper) ||
Alexander Duyck5d0932a2009-01-31 00:53:18 -0800697 (igb_sgmii_active_82575(hw))) {
Auke Kok9d5c8242008-01-24 02:22:38 -0800698 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
Alexander Duyck2d064c02008-07-08 15:10:12 -0700699 &duplex);
Alexander Duyck5d0932a2009-01-31 00:53:18 -0800700 /*
701 * Use this flag to determine if link needs to be checked or
702 * not. If we have link clear the flag so that we do not
703 * continue to check for link.
704 */
705 hw->mac.get_link_status = !hw->mac.serdes_has_link;
706 } else {
Auke Kok9d5c8242008-01-24 02:22:38 -0800707 ret_val = igb_check_for_copper_link(hw);
Alexander Duyck5d0932a2009-01-31 00:53:18 -0800708 }
Auke Kok9d5c8242008-01-24 02:22:38 -0800709
710 return ret_val;
711}
Auke Kok9d5c8242008-01-24 02:22:38 -0800712/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700713 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
Auke Kok9d5c8242008-01-24 02:22:38 -0800714 * @hw: pointer to the HW structure
715 * @speed: stores the current speed
716 * @duplex: stores the current duplex
717 *
Auke Kok652fff32008-06-27 11:00:18 -0700718 * Using the physical coding sub-layer (PCS), retrieve the current speed and
Auke Kok9d5c8242008-01-24 02:22:38 -0800719 * duplex, then store the values in the pointers provided.
720 **/
721static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
722 u16 *duplex)
723{
724 struct e1000_mac_info *mac = &hw->mac;
725 u32 pcs;
726
727 /* Set up defaults for the return values of this function */
728 mac->serdes_has_link = false;
729 *speed = 0;
730 *duplex = 0;
731
732 /*
733 * Read the PCS Status register for link state. For non-copper mode,
734 * the status register is not accurate. The PCS status register is
735 * used instead.
736 */
737 pcs = rd32(E1000_PCS_LSTAT);
738
739 /*
740 * The link up bit determines when link is up on autoneg. The sync ok
741 * gets set once both sides sync up and agree upon link. Stable link
742 * can be determined by checking for both link up and link sync ok
743 */
744 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
745 mac->serdes_has_link = true;
746
747 /* Detect and store PCS speed */
748 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
749 *speed = SPEED_1000;
750 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
751 *speed = SPEED_100;
752 } else {
753 *speed = SPEED_10;
754 }
755
756 /* Detect and store PCS duplex */
757 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
758 *duplex = FULL_DUPLEX;
759 } else {
760 *duplex = HALF_DUPLEX;
761 }
762 }
763
764 return 0;
765}
766
767/**
Alexander Duyck2d064c02008-07-08 15:10:12 -0700768 * igb_init_rx_addrs_82575 - Initialize receive address's
Auke Kok9d5c8242008-01-24 02:22:38 -0800769 * @hw: pointer to the HW structure
Alexander Duyck2d064c02008-07-08 15:10:12 -0700770 * @rar_count: receive address registers
Auke Kok9d5c8242008-01-24 02:22:38 -0800771 *
Alexander Duyck2d064c02008-07-08 15:10:12 -0700772 * Setups the receive address registers by setting the base receive address
773 * register to the devices MAC address and clearing all the other receive
774 * address registers to 0.
Auke Kok9d5c8242008-01-24 02:22:38 -0800775 **/
Alexander Duyck2d064c02008-07-08 15:10:12 -0700776static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
Auke Kok9d5c8242008-01-24 02:22:38 -0800777{
Alexander Duyck2d064c02008-07-08 15:10:12 -0700778 u32 i;
779 u8 addr[6] = {0,0,0,0,0,0};
780 /*
781 * This function is essentially the same as that of
782 * e1000_init_rx_addrs_generic. However it also takes care
783 * of the special case where the register offset of the
784 * second set of RARs begins elsewhere. This is implicitly taken care by
785 * function e1000_rar_set_generic.
786 */
787
788 hw_dbg("e1000_init_rx_addrs_82575");
789
790 /* Setup the receive address */
791 hw_dbg("Programming MAC Address into RAR[0]\n");
792 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
793
794 /* Zero out the other (rar_entry_count - 1) receive addresses */
795 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
796 for (i = 1; i < rar_count; i++)
797 hw->mac.ops.rar_set(hw, addr, i);
798}
799
800/**
Alexander Duyck8a900862009-02-06 23:20:10 +0000801 * igb_update_mc_addr_list - Update Multicast addresses
Alexander Duyck2d064c02008-07-08 15:10:12 -0700802 * @hw: pointer to the HW structure
803 * @mc_addr_list: array of multicast addresses to program
804 * @mc_addr_count: number of multicast addresses to program
805 * @rar_used_count: the first RAR register free to program
806 * @rar_count: total number of supported Receive Address Registers
807 *
808 * Updates the Receive Address Registers and Multicast Table Array.
809 * The caller must have a packed mc_addr_list of multicast addresses.
810 * The parameter rar_count will usually be hw->mac.rar_entry_count
811 * unless there are workarounds that change this.
812 **/
Alexander Duyck8a900862009-02-06 23:20:10 +0000813void igb_update_mc_addr_list(struct e1000_hw *hw,
814 u8 *mc_addr_list, u32 mc_addr_count,
815 u32 rar_used_count, u32 rar_count)
Alexander Duyck2d064c02008-07-08 15:10:12 -0700816{
817 u32 hash_value;
818 u32 i;
819 u8 addr[6] = {0,0,0,0,0,0};
820 /*
821 * This function is essentially the same as that of
822 * igb_update_mc_addr_list_generic. However it also takes care
823 * of the special case where the register offset of the
824 * second set of RARs begins elsewhere. This is implicitly taken care by
825 * function e1000_rar_set_generic.
826 */
827
828 /*
829 * Load the first set of multicast addresses into the exact
830 * filters (RAR). If there are not enough to fill the RAR
831 * array, clear the filters.
832 */
833 for (i = rar_used_count; i < rar_count; i++) {
834 if (mc_addr_count) {
835 igb_rar_set(hw, mc_addr_list, i);
836 mc_addr_count--;
837 mc_addr_list += ETH_ALEN;
838 } else {
839 igb_rar_set(hw, addr, i);
840 }
841 }
842
843 /* Clear the old settings from the MTA */
844 hw_dbg("Clearing MTA\n");
845 for (i = 0; i < hw->mac.mta_reg_count; i++) {
846 array_wr32(E1000_MTA, i, 0);
847 wrfl();
848 }
849
850 /* Load any remaining multicast addresses into the hash table. */
851 for (; mc_addr_count > 0; mc_addr_count--) {
852 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
853 hw_dbg("Hash value = 0x%03X\n", hash_value);
Alexander Duyck549bdd82008-08-04 15:00:06 -0700854 igb_mta_set(hw, hash_value);
Alexander Duyck2d064c02008-07-08 15:10:12 -0700855 mc_addr_list += ETH_ALEN;
856 }
857}
858
859/**
860 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
861 * @hw: pointer to the HW structure
862 *
863 * In the case of fiber serdes, shut down optics and PCS on driver unload
864 * when management pass thru is not enabled.
865 **/
866void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
867{
868 u32 reg;
869
Alexander Duyck099e1cb2009-07-23 18:07:40 +0000870 if (hw->phy.media_type != e1000_media_type_internal_serdes)
Alexander Duyck2d064c02008-07-08 15:10:12 -0700871 return;
872
873 /* if the management interface is not enabled, then power down */
874 if (!igb_enable_mng_pass_thru(hw)) {
875 /* Disable PCS to turn off link */
876 reg = rd32(E1000_PCS_CFG0);
877 reg &= ~E1000_PCS_CFG_PCS_EN;
878 wr32(E1000_PCS_CFG0, reg);
879
880 /* shutdown the laser */
881 reg = rd32(E1000_CTRL_EXT);
882 reg |= E1000_CTRL_EXT_SDP7_DATA;
883 wr32(E1000_CTRL_EXT, reg);
884
885 /* flush the write to verify completion */
886 wrfl();
887 msleep(1);
888 }
Auke Kok9d5c8242008-01-24 02:22:38 -0800889
890 return;
891}
892
893/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700894 * igb_reset_hw_82575 - Reset hardware
Auke Kok9d5c8242008-01-24 02:22:38 -0800895 * @hw: pointer to the HW structure
896 *
897 * This resets the hardware into a known state. This is a
898 * function pointer entry point called by the api module.
899 **/
900static s32 igb_reset_hw_82575(struct e1000_hw *hw)
901{
902 u32 ctrl, icr;
903 s32 ret_val;
904
905 /*
906 * Prevent the PCI-E bus from sticking if there is no TLP connection
907 * on the last TLP read/write transaction when MAC is reset.
908 */
909 ret_val = igb_disable_pcie_master(hw);
910 if (ret_val)
Auke Kok652fff32008-06-27 11:00:18 -0700911 hw_dbg("PCI-E Master disable polling has failed.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800912
Alexander Duyck009bc062009-07-23 18:08:35 +0000913 /* set the completion timeout for interface */
914 ret_val = igb_set_pcie_completion_timeout(hw);
915 if (ret_val) {
916 hw_dbg("PCI-E Set completion timeout has failed.\n");
917 }
918
Auke Kok652fff32008-06-27 11:00:18 -0700919 hw_dbg("Masking off all interrupts\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800920 wr32(E1000_IMC, 0xffffffff);
921
922 wr32(E1000_RCTL, 0);
923 wr32(E1000_TCTL, E1000_TCTL_PSP);
924 wrfl();
925
926 msleep(10);
927
928 ctrl = rd32(E1000_CTRL);
929
Auke Kok652fff32008-06-27 11:00:18 -0700930 hw_dbg("Issuing a global reset to MAC\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800931 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
932
933 ret_val = igb_get_auto_rd_done(hw);
934 if (ret_val) {
935 /*
936 * When auto config read does not complete, do not
937 * return with an error. This can happen in situations
938 * where there is no eeprom and prevents getting link.
939 */
Auke Kok652fff32008-06-27 11:00:18 -0700940 hw_dbg("Auto Read Done did not complete\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800941 }
942
943 /* If EEPROM is not present, run manual init scripts */
944 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
945 igb_reset_init_script_82575(hw);
946
947 /* Clear any pending interrupt events. */
948 wr32(E1000_IMC, 0xffffffff);
949 icr = rd32(E1000_ICR);
950
951 igb_check_alt_mac_addr(hw);
952
953 return ret_val;
954}
955
956/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700957 * igb_init_hw_82575 - Initialize hardware
Auke Kok9d5c8242008-01-24 02:22:38 -0800958 * @hw: pointer to the HW structure
959 *
960 * This inits the hardware readying it for operation.
961 **/
962static s32 igb_init_hw_82575(struct e1000_hw *hw)
963{
964 struct e1000_mac_info *mac = &hw->mac;
965 s32 ret_val;
966 u16 i, rar_count = mac->rar_entry_count;
967
968 /* Initialize identification LED */
969 ret_val = igb_id_led_init(hw);
970 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700971 hw_dbg("Error initializing identification LED\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800972 /* This is not fatal and we should not stop init due to this */
973 }
974
975 /* Disabling VLAN filtering */
Auke Kok652fff32008-06-27 11:00:18 -0700976 hw_dbg("Initializing the IEEE VLAN\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800977 igb_clear_vfta(hw);
978
979 /* Setup the receive address */
Alexander Duyck2d064c02008-07-08 15:10:12 -0700980 igb_init_rx_addrs_82575(hw, rar_count);
Auke Kok9d5c8242008-01-24 02:22:38 -0800981 /* Zero out the Multicast HASH table */
Auke Kok652fff32008-06-27 11:00:18 -0700982 hw_dbg("Zeroing the MTA\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800983 for (i = 0; i < mac->mta_reg_count; i++)
984 array_wr32(E1000_MTA, i, 0);
985
986 /* Setup link and flow control */
987 ret_val = igb_setup_link(hw);
988
989 /*
990 * Clear all of the statistics registers (clear on read). It is
991 * important that we do this after we have tried to establish link
992 * because the symbol error count will increment wildly if there
993 * is no link.
994 */
995 igb_clear_hw_cntrs_82575(hw);
996
997 return ret_val;
998}
999
1000/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001001 * igb_setup_copper_link_82575 - Configure copper link settings
Auke Kok9d5c8242008-01-24 02:22:38 -08001002 * @hw: pointer to the HW structure
1003 *
1004 * Configures the link for auto-neg or forced speed and duplex. Then we check
1005 * for link, once link is established calls to configure collision distance
1006 * and flow control are called.
1007 **/
1008static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1009{
Alexander Duyck12645a12009-07-23 18:08:16 +00001010 u32 ctrl;
Auke Kok9d5c8242008-01-24 02:22:38 -08001011 s32 ret_val;
1012 bool link;
1013
1014 ctrl = rd32(E1000_CTRL);
1015 ctrl |= E1000_CTRL_SLU;
1016 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1017 wr32(E1000_CTRL, ctrl);
1018
1019 switch (hw->phy.type) {
1020 case e1000_phy_m88:
1021 ret_val = igb_copper_link_setup_m88(hw);
1022 break;
1023 case e1000_phy_igp_3:
1024 ret_val = igb_copper_link_setup_igp(hw);
Auke Kok9d5c8242008-01-24 02:22:38 -08001025 break;
1026 default:
1027 ret_val = -E1000_ERR_PHY;
1028 break;
1029 }
1030
1031 if (ret_val)
1032 goto out;
1033
1034 if (hw->mac.autoneg) {
1035 /*
1036 * Setup autoneg and flow control advertisement
1037 * and perform autonegotiation.
1038 */
1039 ret_val = igb_copper_link_autoneg(hw);
1040 if (ret_val)
1041 goto out;
1042 } else {
1043 /*
1044 * PHY will be set to 10H, 10F, 100H or 100F
1045 * depending on user settings.
1046 */
Auke Kok652fff32008-06-27 11:00:18 -07001047 hw_dbg("Forcing Speed and Duplex\n");
Alexander Duycka8d2a0c2009-02-06 23:17:26 +00001048 ret_val = hw->phy.ops.force_speed_duplex(hw);
Auke Kok9d5c8242008-01-24 02:22:38 -08001049 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -07001050 hw_dbg("Error Forcing Speed and Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001051 goto out;
1052 }
1053 }
1054
Alexander Duyckf3e78412009-07-23 18:07:58 +00001055 igb_configure_pcs_link_82575(hw);
Auke Kok9d5c8242008-01-24 02:22:38 -08001056
1057 /*
1058 * Check link status. Wait up to 100 microseconds for link to become
1059 * valid.
1060 */
Auke Kok652fff32008-06-27 11:00:18 -07001061 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
Auke Kok9d5c8242008-01-24 02:22:38 -08001062 if (ret_val)
1063 goto out;
1064
1065 if (link) {
Auke Kok652fff32008-06-27 11:00:18 -07001066 hw_dbg("Valid link established!!!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001067 /* Config the MAC and PHY after link is up */
1068 igb_config_collision_dist(hw);
1069 ret_val = igb_config_fc_after_link_up(hw);
1070 } else {
Auke Kok652fff32008-06-27 11:00:18 -07001071 hw_dbg("Unable to establish link!!!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001072 }
1073
1074out:
1075 return ret_val;
1076}
1077
1078/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001079 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
Auke Kok9d5c8242008-01-24 02:22:38 -08001080 * @hw: pointer to the HW structure
1081 *
1082 * Configures speed and duplex for fiber and serdes links.
1083 **/
1084static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1085{
1086 u32 reg;
1087
1088 /*
1089 * On the 82575, SerDes loopback mode persists until it is
1090 * explicitly turned off or a power cycle is performed. A read to
1091 * the register does not indicate its status. Therefore, we ensure
1092 * loopback mode is disabled during initialization.
1093 */
1094 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1095
1096 /* Force link up, set 1gb, set both sw defined pins */
1097 reg = rd32(E1000_CTRL);
1098 reg |= E1000_CTRL_SLU |
1099 E1000_CTRL_SPD_1000 |
1100 E1000_CTRL_FRCSPD |
1101 E1000_CTRL_SWDPIN0 |
1102 E1000_CTRL_SWDPIN1;
1103 wr32(E1000_CTRL, reg);
1104
Alexander Duyck921aa742009-01-21 14:42:28 -08001105 /* Power on phy for 82576 fiber adapters */
1106 if (hw->mac.type == e1000_82576) {
1107 reg = rd32(E1000_CTRL_EXT);
1108 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1109 wr32(E1000_CTRL_EXT, reg);
1110 }
1111
Auke Kok9d5c8242008-01-24 02:22:38 -08001112 /* Set switch control to serdes energy detect */
1113 reg = rd32(E1000_CONNSW);
1114 reg |= E1000_CONNSW_ENRGSRC;
1115 wr32(E1000_CONNSW, reg);
1116
1117 /*
1118 * New SerDes mode allows for forcing speed or autonegotiating speed
1119 * at 1gb. Autoneg should be default set by most drivers. This is the
1120 * mode that will be compatible with older link partners and switches.
1121 * However, both are supported by the hardware and some drivers/tools.
1122 */
1123 reg = rd32(E1000_PCS_LCTL);
1124
1125 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1126 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1127
1128 if (hw->mac.autoneg) {
1129 /* Set PCS register for autoneg */
1130 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1131 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1132 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1133 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
Auke Kok652fff32008-06-27 11:00:18 -07001134 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
Auke Kok9d5c8242008-01-24 02:22:38 -08001135 } else {
1136 /* Set PCS register for forced speed */
1137 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1138 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1139 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1140 E1000_PCS_LCTL_FSD | /* Force Speed */
1141 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
Auke Kok652fff32008-06-27 11:00:18 -07001142 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
Auke Kok9d5c8242008-01-24 02:22:38 -08001143 }
Alexander Duyck726c09e2008-08-04 14:59:56 -07001144
1145 if (hw->mac.type == e1000_82576) {
1146 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1147 igb_force_mac_fc(hw);
1148 }
1149
Auke Kok9d5c8242008-01-24 02:22:38 -08001150 wr32(E1000_PCS_LCTL, reg);
1151
1152 return 0;
1153}
1154
1155/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001156 * igb_configure_pcs_link_82575 - Configure PCS link
Auke Kok9d5c8242008-01-24 02:22:38 -08001157 * @hw: pointer to the HW structure
1158 *
1159 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1160 * only used on copper connections where the serialized gigabit media
1161 * independent interface (sgmii) is being used. Configures the link
1162 * for auto-negotiation or forces speed/duplex.
1163 **/
Alexander Duyckf3e78412009-07-23 18:07:58 +00001164static void igb_configure_pcs_link_82575(struct e1000_hw *hw)
Auke Kok9d5c8242008-01-24 02:22:38 -08001165{
1166 struct e1000_mac_info *mac = &hw->mac;
1167 u32 reg = 0;
1168
1169 if (hw->phy.media_type != e1000_media_type_copper ||
1170 !(igb_sgmii_active_82575(hw)))
Alexander Duyckf3e78412009-07-23 18:07:58 +00001171 return;
Auke Kok9d5c8242008-01-24 02:22:38 -08001172
1173 /* For SGMII, we need to issue a PCS autoneg restart */
1174 reg = rd32(E1000_PCS_LCTL);
1175
1176 /* AN time out should be disabled for SGMII mode */
1177 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1178
1179 if (mac->autoneg) {
1180 /* Make sure forced speed and force link are not set */
1181 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1182
1183 /*
1184 * The PHY should be setup prior to calling this function.
1185 * All we need to do is restart autoneg and enable autoneg.
1186 */
1187 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1188 } else {
Auke Kok652fff32008-06-27 11:00:18 -07001189 /* Set PCS register for forced speed */
Auke Kok9d5c8242008-01-24 02:22:38 -08001190
1191 /* Turn off bits for full duplex, speed, and autoneg */
1192 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1193 E1000_PCS_LCTL_FSV_100 |
1194 E1000_PCS_LCTL_FDV_FULL |
1195 E1000_PCS_LCTL_AN_ENABLE);
1196
1197 /* Check for duplex first */
1198 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1199 reg |= E1000_PCS_LCTL_FDV_FULL;
1200
1201 /* Now set speed */
1202 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1203 reg |= E1000_PCS_LCTL_FSV_100;
1204
1205 /* Force speed and force link */
1206 reg |= E1000_PCS_LCTL_FSD |
1207 E1000_PCS_LCTL_FORCE_LINK |
1208 E1000_PCS_LCTL_FLV_LINK_UP;
1209
Auke Kok652fff32008-06-27 11:00:18 -07001210 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
Auke Kok9d5c8242008-01-24 02:22:38 -08001211 reg);
1212 }
1213 wr32(E1000_PCS_LCTL, reg);
Auke Kok9d5c8242008-01-24 02:22:38 -08001214}
1215
1216/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001217 * igb_sgmii_active_82575 - Return sgmii state
Auke Kok9d5c8242008-01-24 02:22:38 -08001218 * @hw: pointer to the HW structure
1219 *
1220 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1221 * which can be enabled for use in the embedded applications. Simply
1222 * return the current state of the sgmii interface.
1223 **/
1224static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1225{
Alexander Duyckc1889bf2009-02-06 23:16:45 +00001226 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
Alexander Duyckc1889bf2009-02-06 23:16:45 +00001227 return dev_spec->sgmii_active;
Auke Kok9d5c8242008-01-24 02:22:38 -08001228}
1229
1230/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001231 * igb_reset_init_script_82575 - Inits HW defaults after reset
Auke Kok9d5c8242008-01-24 02:22:38 -08001232 * @hw: pointer to the HW structure
1233 *
1234 * Inits recommended HW defaults after a reset when there is no EEPROM
1235 * detected. This is only for the 82575.
1236 **/
1237static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1238{
1239 if (hw->mac.type == e1000_82575) {
Auke Kok652fff32008-06-27 11:00:18 -07001240 hw_dbg("Running reset init script for 82575\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001241 /* SerDes configuration via SERDESCTRL */
1242 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1243 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1244 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1245 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1246
1247 /* CCM configuration via CCMCTL register */
1248 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1249 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1250
1251 /* PCIe lanes configuration */
1252 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1253 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1254 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1255 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1256
1257 /* PCIe PLL Configuration */
1258 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1259 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1260 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1261 }
1262
1263 return 0;
1264}
1265
1266/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001267 * igb_read_mac_addr_82575 - Read device MAC address
Auke Kok9d5c8242008-01-24 02:22:38 -08001268 * @hw: pointer to the HW structure
1269 **/
1270static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1271{
1272 s32 ret_val = 0;
1273
1274 if (igb_check_alt_mac_addr(hw))
1275 ret_val = igb_read_mac_addr(hw);
1276
1277 return ret_val;
1278}
1279
1280/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001281 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
Auke Kok9d5c8242008-01-24 02:22:38 -08001282 * @hw: pointer to the HW structure
1283 *
1284 * Clears the hardware counters by reading the counter registers.
1285 **/
1286static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1287{
1288 u32 temp;
1289
1290 igb_clear_hw_cntrs_base(hw);
1291
1292 temp = rd32(E1000_PRC64);
1293 temp = rd32(E1000_PRC127);
1294 temp = rd32(E1000_PRC255);
1295 temp = rd32(E1000_PRC511);
1296 temp = rd32(E1000_PRC1023);
1297 temp = rd32(E1000_PRC1522);
1298 temp = rd32(E1000_PTC64);
1299 temp = rd32(E1000_PTC127);
1300 temp = rd32(E1000_PTC255);
1301 temp = rd32(E1000_PTC511);
1302 temp = rd32(E1000_PTC1023);
1303 temp = rd32(E1000_PTC1522);
1304
1305 temp = rd32(E1000_ALGNERRC);
1306 temp = rd32(E1000_RXERRC);
1307 temp = rd32(E1000_TNCRS);
1308 temp = rd32(E1000_CEXTERR);
1309 temp = rd32(E1000_TSCTC);
1310 temp = rd32(E1000_TSCTFC);
1311
1312 temp = rd32(E1000_MGTPRC);
1313 temp = rd32(E1000_MGTPDC);
1314 temp = rd32(E1000_MGTPTC);
1315
1316 temp = rd32(E1000_IAC);
1317 temp = rd32(E1000_ICRXOC);
1318
1319 temp = rd32(E1000_ICRXPTC);
1320 temp = rd32(E1000_ICRXATC);
1321 temp = rd32(E1000_ICTXPTC);
1322 temp = rd32(E1000_ICTXATC);
1323 temp = rd32(E1000_ICTXQEC);
1324 temp = rd32(E1000_ICTXQMTC);
1325 temp = rd32(E1000_ICRXDMTC);
1326
1327 temp = rd32(E1000_CBTMPC);
1328 temp = rd32(E1000_HTDPMC);
1329 temp = rd32(E1000_CBRMPC);
1330 temp = rd32(E1000_RPTHC);
1331 temp = rd32(E1000_HGPTC);
1332 temp = rd32(E1000_HTCBDPC);
1333 temp = rd32(E1000_HGORCL);
1334 temp = rd32(E1000_HGORCH);
1335 temp = rd32(E1000_HGOTCL);
1336 temp = rd32(E1000_HGOTCH);
1337 temp = rd32(E1000_LENERRS);
1338
1339 /* This register should not be read in copper configurations */
1340 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1341 temp = rd32(E1000_SCVPC);
1342}
1343
Alexander Duyck662d7202008-06-27 11:00:29 -07001344/**
1345 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1346 * @hw: pointer to the HW structure
1347 *
1348 * After rx enable if managability is enabled then there is likely some
1349 * bad data at the start of the fifo and possibly in the DMA fifo. This
1350 * function clears the fifos and flushes any packets that came in as rx was
1351 * being enabled.
1352 **/
1353void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1354{
1355 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1356 int i, ms_wait;
1357
1358 if (hw->mac.type != e1000_82575 ||
1359 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1360 return;
1361
1362 /* Disable all RX queues */
1363 for (i = 0; i < 4; i++) {
1364 rxdctl[i] = rd32(E1000_RXDCTL(i));
1365 wr32(E1000_RXDCTL(i),
1366 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1367 }
1368 /* Poll all queues to verify they have shut down */
1369 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1370 msleep(1);
1371 rx_enabled = 0;
1372 for (i = 0; i < 4; i++)
1373 rx_enabled |= rd32(E1000_RXDCTL(i));
1374 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1375 break;
1376 }
1377
1378 if (ms_wait == 10)
1379 hw_dbg("Queue disable timed out after 10ms\n");
1380
1381 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1382 * incoming packets are rejected. Set enable and wait 2ms so that
1383 * any packet that was coming in as RCTL.EN was set is flushed
1384 */
1385 rfctl = rd32(E1000_RFCTL);
1386 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1387
1388 rlpml = rd32(E1000_RLPML);
1389 wr32(E1000_RLPML, 0);
1390
1391 rctl = rd32(E1000_RCTL);
1392 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1393 temp_rctl |= E1000_RCTL_LPE;
1394
1395 wr32(E1000_RCTL, temp_rctl);
1396 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1397 wrfl();
1398 msleep(2);
1399
1400 /* Enable RX queues that were previously enabled and restore our
1401 * previous state
1402 */
1403 for (i = 0; i < 4; i++)
1404 wr32(E1000_RXDCTL(i), rxdctl[i]);
1405 wr32(E1000_RCTL, rctl);
1406 wrfl();
1407
1408 wr32(E1000_RLPML, rlpml);
1409 wr32(E1000_RFCTL, rfctl);
1410
1411 /* Flush receive errors generated by workaround */
1412 rd32(E1000_ROC);
1413 rd32(E1000_RNBC);
1414 rd32(E1000_MPC);
1415}
1416
Alexander Duyck4ae196d2009-02-19 20:40:07 -08001417/**
Alexander Duyck009bc062009-07-23 18:08:35 +00001418 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1419 * @hw: pointer to the HW structure
1420 *
1421 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1422 * however the hardware default for these parts is 500us to 1ms which is less
1423 * than the 10ms recommended by the pci-e spec. To address this we need to
1424 * increase the value to either 10ms to 200ms for capability version 1 config,
1425 * or 16ms to 55ms for version 2.
1426 **/
1427static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1428{
1429 u32 gcr = rd32(E1000_GCR);
1430 s32 ret_val = 0;
1431 u16 pcie_devctl2;
1432
1433 /* only take action if timeout value is defaulted to 0 */
1434 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1435 goto out;
1436
1437 /*
1438 * if capababilities version is type 1 we can write the
1439 * timeout of 10ms to 200ms through the GCR register
1440 */
1441 if (!(gcr & E1000_GCR_CAP_VER2)) {
1442 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1443 goto out;
1444 }
1445
1446 /*
1447 * for version 2 capabilities we need to write the config space
1448 * directly in order to set the completion timeout value for
1449 * 16ms to 55ms
1450 */
1451 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1452 &pcie_devctl2);
1453 if (ret_val)
1454 goto out;
1455
1456 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1457
1458 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1459 &pcie_devctl2);
1460out:
1461 /* disable completion timeout resend */
1462 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1463
1464 wr32(E1000_GCR, gcr);
1465 return ret_val;
1466}
1467
1468/**
Alexander Duyck4ae196d2009-02-19 20:40:07 -08001469 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1470 * @hw: pointer to the hardware struct
1471 * @enable: state to enter, either enabled or disabled
1472 *
1473 * enables/disables L2 switch loopback functionality.
1474 **/
1475void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1476{
1477 u32 dtxswc = rd32(E1000_DTXSWC);
1478
1479 if (enable)
1480 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1481 else
1482 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1483
1484 wr32(E1000_DTXSWC, dtxswc);
1485}
1486
1487/**
1488 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1489 * @hw: pointer to the hardware struct
1490 * @enable: state to enter, either enabled or disabled
1491 *
1492 * enables/disables replication of packets across multiple pools.
1493 **/
1494void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1495{
1496 u32 vt_ctl = rd32(E1000_VT_CTL);
1497
1498 if (enable)
1499 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1500 else
1501 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1502
1503 wr32(E1000_VT_CTL, vt_ctl);
1504}
1505
Auke Kok9d5c8242008-01-24 02:22:38 -08001506static struct e1000_mac_operations e1000_mac_ops_82575 = {
1507 .reset_hw = igb_reset_hw_82575,
1508 .init_hw = igb_init_hw_82575,
1509 .check_for_link = igb_check_for_link_82575,
Alexander Duyck2d064c02008-07-08 15:10:12 -07001510 .rar_set = igb_rar_set,
Auke Kok9d5c8242008-01-24 02:22:38 -08001511 .read_mac_addr = igb_read_mac_addr_82575,
1512 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1513};
1514
1515static struct e1000_phy_operations e1000_phy_ops_82575 = {
Alexander Duycka8d2a0c2009-02-06 23:17:26 +00001516 .acquire = igb_acquire_phy_82575,
Auke Kok9d5c8242008-01-24 02:22:38 -08001517 .get_cfg_done = igb_get_cfg_done_82575,
Alexander Duycka8d2a0c2009-02-06 23:17:26 +00001518 .release = igb_release_phy_82575,
Auke Kok9d5c8242008-01-24 02:22:38 -08001519};
1520
1521static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
Alexander Duyck312c75a2009-02-06 23:17:47 +00001522 .acquire = igb_acquire_nvm_82575,
1523 .read = igb_read_nvm_eerd,
1524 .release = igb_release_nvm_82575,
1525 .write = igb_write_nvm_spi,
Auke Kok9d5c8242008-01-24 02:22:38 -08001526};
1527
1528const struct e1000_info e1000_82575_info = {
1529 .get_invariants = igb_get_invariants_82575,
1530 .mac_ops = &e1000_mac_ops_82575,
1531 .phy_ops = &e1000_phy_ops_82575,
1532 .nvm_ops = &e1000_nvm_ops_82575,
1533};
1534